Experimental Realization of Shor’s Quantum Factoring Algorithm

M. Steffen1,2,3, L.M.K. Vandersypen1,2, G. Breyta1, C.S. Yannoni1, M. Sherwood1, I.L. Chuang1,3

1IBM Almaden Research Center, San Jose, CA 95120
2Stanford University, Stanford, CA 94305
3MIT Media Laboratory, Cambridge, MA 02139

Outline

• Background
• Introduction to Quantum Computation
 ➢ Classical bits vs. Quantum bits
 ➢ Quantum Algorithms
• NMR Quantum Computation
• Shor’s algorithm and Factoring 15
 ➢ Shor’s Quantum circuit
 ➢ Molecule
 ➢ Results (spectra, innovations)
• Conclusions
The quantum limit

1 bit = 1 atom?

Can we exploit quantum mechanics for ultra-fast computation?
The promise of Quantum Computation

Searching databases
- unsorted list of N entries
- how many queries?

\[O(N) \quad \Rightarrow \quad O(\sqrt{N}) \]

1 month \quad \rightarrow \quad 27 minutes

Factoring Integers
- \(N = pq \)
- \(N \) has L digits
- given \(N \), what are \(p \) and \(q \)?

\[O(e^{L^{1/3}}) \quad \Rightarrow \quad O(L^3) \]

10 billion years \quad \rightarrow \quad 3 years

400 digits

Classical vs. Quantum

Classical bits
- transistors
- 0 or 1

Quantum bits
- quantum systems
- 0 or 1 or in-between

NAND, NOT, CNOT …

These quantum gates allow operations that are impossible on classical computers!
Quantum bits

One qubit:
\[|\psi_1\rangle = a|0\rangle + b|1\rangle \quad |a|^2 + |b|^2 = 1 \]

Multiple qubits:
\[|\psi_n\rangle = a_0|00...0\rangle + a_1|00...1\rangle + a_2^n|11...1\rangle \quad \sum_i |a_i|^2 = 1 \]

Evolution of quantum states:

Conservation of probabilities allows only reversible, unitary operations

\[|\psi_{n,out}\rangle = U |\psi_{n,in}\rangle \quad U \text{ is a } 2^n \times 2^n \text{ unitary matrix, i.e. } UU^\dagger = I \]
Quantum bits cont’d

Let a function $f(x)$ (implemented by unitary transforms) act on an equal superposition:

$$|\psi_{n,\text{out}}\rangle = f(|00...0\rangle) + f(|00...1\rangle) + f(|11...1\rangle)$$

Parallel operation, **BUT** a measurement collapses the wave function to only one of the states with probability $|a_i|^2$
⇒ Need to design clever algorithms
Quantum Algorithms

Example: 2 qubit Grover search

1. Create equal superposition
 \[|\psi\rangle = |00\rangle + |01\rangle + |10\rangle + |11\rangle \]

2. Mark special element
 \[|\psi\rangle = |00\rangle + |01\rangle + |10\rangle - |11\rangle \]

3. Inversion about average
 \[|\psi\rangle = |11\rangle \]

One query = marking & inversion
In general, need \(\sqrt{N} \) queries
Physical Realization of QCs

Requirements for Quantum Computers1:

- A quantum system with qubits
- Individually addressable qubits
- Two qubit interactions (universal set of quantum gates)
- Long coherence times
- Initialize quantum system to known state
- Extract result from quantum system

Meeting all of these requirements \textit{simultaneously} presents a significant experimental challenge.

\Rightarrow \textbf{Nuclear Magnetic Resonance (NMR) techniques} largely satisfies these requirements and have enabled experimental exploration of small-scale quantum computers

1 DiVincenzo D.P., \textit{Fortschr. Physik}, 48 (9-11), 771 – 783 (2000)
NMR Quantum Computing 1,2

$$\psi_{\text{out}} = e^{-iHt} \psi_{\text{in}} = U \psi_{\text{in}}$$

Characterize all Hamiltonians

spin $\frac{1}{2}$ particle in magnetic field:

$$H_0 = -\frac{\gamma B_0 Z}{2} = -\frac{\omega_0 Z}{2} = \frac{\omega_0}{2} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Multiple spin ½ nuclei

Heteronuclear spins:

<table>
<thead>
<tr>
<th>nucleus</th>
<th>1H</th>
<th>2H</th>
<th>13C</th>
<th>15N</th>
<th>19F</th>
<th>31P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_0 [MHz]</td>
<td>500</td>
<td>77</td>
<td>126</td>
<td>-51</td>
<td>470</td>
<td>202</td>
</tr>
</tbody>
</table>

Homonuclear spins:

Chemical shift

\[
H_0 = -\sum_{i=1}^{n} \frac{\omega_0^i Z^i}{2}
\]
Spin-spin coupling

- Dipolar couplings (averaged away in liquids)
- J-coupling (through shared electrons)

\[H_J \approx \sum_{i<j} \frac{\pi J_{ij} Z^i Z^j}{2} \]

\[H = -\sum_{i=1}^{n} \frac{\hbar \omega_0 Z^i}{2} + \sum_{i<j} \frac{\pi J_{ij} Z^i Z^j}{2} \]

Lamour frequency of spin \(i \) shifts by \(-J_{ij}/2\) if spin \(j \) is in \(|0\rangle\) and by \(+J_{ij}/2\) if spin \(j \) is in \(|1\rangle\)
Single qubit rotations

Radio-frequency (RF) pulses tuned to ω_0
Two qubit gates

Lamour frequency of spin i shifts by $-J_{ij}/2$ if spin j is in $|0\rangle$ and by $+J_{ij}/2$ if spin j is in $|1\rangle$

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

2-bit CNOT
State initialization

Thermal Equilibrium: … highly mixed state

\[\rho_{eq} \propto I + \sum_i \omega_0^i Z^i \]

Effective pure state: … still mixed but:

\[\rho_{eq} \propto I + \varepsilon |00\cdots0\rangle\langle00\cdots0| \]

• Spatial Labeling
• Temporal Labeling
• Logical Labeling
• Schulman-Vazirani

\[
\begin{array}{cccc}
 a & b & c & d \\
 a & c & d & b \\
 a & d & b & c \\
 \hline
 3a & b+c+d & b+c+d & b+c+d
\end{array}
\]
NMR Setup
Shor’s Factoring Algorithm

Quantum circuit to factor an integer \(N \)

- \(|x\rangle\) \(n \) qubits
- \(|1\rangle\) \(m \) qubits
- \(f(x) = a^x \mod N \)
- \(\text{QFT} \)
- \(\gcd(a^{r/2} \pm 1, N) \)

- \(m = \log_2(N) \)
- \(n = 2m \)
- ‘a’ is randomly chosen and can’t have factors in common with \(N \).

The algorithm fails for \(N \) even or equal to a prime power (\(N=15 \) is smallest meaningful instance).
Factoring 15 ...

... sounds easy, but

Challenging experiment:

• synthesis of suitable 7 qubit molecule
• requires interaction between almost all pairs of qubits
• coherent control over qubits
Shor’s Factoring Algorithm

\[a^x = a^{2^{n-1}x_{n-1}} \cdots a^{2x_1}a^{x_0} \]
where \(x_k \) are the binary digits of \(x \).

- \(a = 2, 7, 8, 13 \)
- \(a^4 \mod 15 = 1 \)
- “hard case”

- \(a = 4, 11, 14 \)
- \(a^2 \mod 15 = 1 \)
- “easy case”

Three qubits in the first register are sufficient to factor 15.
Factoring N = 15

- **a = 11**
 ‘easy case’

- **a = 7**
 ‘hard case’

Diagram showing the process of factoring N = 15 with operations labeled as **mod exp** and **QFT**.
The molecule

<table>
<thead>
<tr>
<th>i</th>
<th>Ω/2π</th>
<th>T1,i</th>
<th>T2,i</th>
<th>J7i</th>
<th>J6i</th>
<th>J5i</th>
<th>J4i</th>
<th>J3i</th>
<th>J2i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15186.6</td>
<td>2.8</td>
<td>1.8</td>
<td>2.1</td>
<td>2.5</td>
<td>6.6</td>
<td>19.4</td>
<td>59.5</td>
<td>41.6</td>
</tr>
<tr>
<td>2</td>
<td>25088.3</td>
<td>3.0</td>
<td>2.5</td>
<td>12.9</td>
<td>3.9</td>
<td>14.5</td>
<td>1.0</td>
<td>-13.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-4519.1</td>
<td>45.4</td>
<td>2.0</td>
<td>-5.7</td>
<td>-3.9</td>
<td>37.7</td>
<td>68.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4244.3</td>
<td>31.6</td>
<td>2.0</td>
<td>54.1</td>
<td>18.6</td>
<td>-221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-22052</td>
<td>25.0</td>
<td>1.3</td>
<td>-114.3</td>
<td>25.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>489.5</td>
<td>13.7</td>
<td>1.8</td>
<td>79.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-4918.3</td>
<td>10.0</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pulse Sequence

Init. mod. exp. QFT

~ 300 RF pulses || ~ 750 ms duration
Experimental detail and innovations

- Modified state initialization procedure
- Gaussian shaped $\pi/2$ pulses (220 – 900 μs)
- Hermite 180 shaped π pulses (~ 2 ms)
- 4 channels, 7 spins: 6 spins always off resonance
- transient Bloch-Siegert shifts
- used technique for simultaneous soft pulses1
- refocus T2* effects
- correct J-coupling during pulses

Results: Spectra

Mixture of $|0\rangle, |4\rangle$
$2^{3/2} = r = 4$
$\gcd(7^{4/2} \pm 1, 15) = 3, 5$

$15 = 3 \cdot 5$

Mixture of $|0\rangle, |2\rangle, |4\rangle, |6\rangle$
$2^{3/2} = r = 4$
$\gcd(7^{4/2} \pm 1, 15) = 3, 5$

$qubit 3$ $qubit 2$ $qubit 1$

$|0\rangle$

$a = 11$

$|0\rangle$

$a = 7$
Results: Predictive Decoherence Model

Operator sum representation: \(\rho \Rightarrow \sum_k E_k \rho E_k^\dagger \)

Generalized Amplitude Damping

\[E_0 = \sqrt{p} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{bmatrix} \quad E_1 = \sqrt{p} \begin{bmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{bmatrix} \quad E_2 = \sqrt{1-p} \begin{bmatrix} \sqrt{1-\gamma} & 0 \\ 0 & 1 \end{bmatrix} \quad E_3 = \sqrt{1-p} \begin{bmatrix} 0 & 0 \\ \sqrt{\gamma} & 0 \end{bmatrix} \]

Phase Damping

\[E_0 = \sqrt{\lambda} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad E_1 = \sqrt{1-\lambda} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]
Decoherence Model cont’d

- GAD (and PD) acting on different spins commute
- E_k for GAD commute with E_k for PD on arb. Pauli matrices
- PD commutes with J-coupling, and z-rotations
- GAD (and PD) do NOT commute with RF pulses

- Pulse: time delay / GAD / PD / ideal pulse
Results: Circuit Simplifications

'Peephole' optimization

- control of C is $|0\rangle$
- control of F is $|1\rangle$
- E and H inconsequential to outcome
- targets of D and G in computational basis
Conclusions

• First experimental demonstration of Shor’s factoring algorithm
• Developed predictive decoherence model
• Methods for circuit simplifications