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Solutions 2

1. a) The joint distribution of the entries of H is given by

pH(H) =
2∏

j,k=1

1√
2π

exp(−h2
jk/2) =

1

4π2
exp(−Tr(HHT )/2)

b) Componentwise, the change of variable H = LQ reads:

h11 = a cos(u), h12 = a sin(u), h21 = b cos(u)− c sin(u), h22 = b sin(u) + c cos(u)

so the Jacobian is given by

J = det


cos(u) sin(u) 0 0

0 0 cos(u) sin(u)
0 0 − sin(u) cos(u)

−a sin(u) a cos(u) −b sin(u)− c cos(u) b cos(u)− c sin(u)

 = a

Therefore,

pL,Q(a, b, c, u) =
a

4π2
exp(−(a2 + 2b2 + c2)/2)

The 4 random variables a, b, c, u are therefore independent and u is uniformly distributed on [0, 2π],
so

pL(a, b, c) =
a

2π
exp(−(a2 + 2b2 + c2)/2)

NB: There is a little bug in the above argument, as any matrix H is not necessarily of the form LQ
with ljj ≥ 0 for all j and Q orthogonal with det(Q) = +1. In order to be completely rigorous, we
should first consider the change of variable H = LQ with no restriction on the diagonal entries of
L (other than ljj being real) and Q being such that det(Q) = +1. A computation totally similar
to the above computation leads to the joint distribution

PL,Q(L,Q) = C exp(−Tr(LLT )/2)

Choose now a matrix Σ = diag(±1, . . . ,±1) such that (LΣ)jj ≥ 0 for all j, we obtain

H = LQ = (LΣ) (ΣQ)

One can check that Σ is uniformly distributed, so ΣQ is also uniformly distributed on the set of
orthogonal matrices (and therefore independent of LΣ).

c) Componentwise, the change of variable W = LLT reads

w11 = a2, w12 = ab, w22 = b2 + c2

so the (reverse) Jacobian is given by

J = det

2a b 0
0 a 2b
0 0 2c

 = 4a2c

and

pW (W ) =
a

2π
exp(−(a2 + 2b2 + c2)/2)

1

4a2c
=

1

8πac
exp(−(a2 + 2b2 + c2)/2)

=
1

8π det(L)
exp(−Tr(LLT )/2) =

1

8π
√

detW
exp(−Tr(W )/2)
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2. a) As Q is positive (semi-)definite, it holds that x∗Qx ≥ 0 for all x ∈ Cn, so in particular also
for x = H∗y, where y ∈ Cn is arbitrary. So y∗HQH∗y ≥ 0 for all y ∈ Cn, which is saying that
HQH∗ is positive semi-definite.

b) Let Q = VMV ∗ be the eigenvalue decomposition of Q. We know that H and HV have the same
distribution, for any unitary matrix V . So W = (HV )M(HV )∗ and HMH∗ also have the same
distribution.

c) h̃jk = hjk
√
µk, so

p
h̃jk

(z) =
1

µk
phjk

(z/
√
µk) =

1

π µk
exp

(
−|z|

2

µk

)
and

p
H̃

(H̃) =
n∏

j,k=1

1

πµk
exp

(
−
|h̃jk|2

µk

)
=

Cn

(detM)n
exp(−Tr(H̃M−1H̃∗))

where Cn = 1/πn
2

is a constant.

d) In the course, we have seen that the Jacobian of the transfromation H̃ 7→ W̃ is a constant
(remember that we are in the case where H̃ is square here), so

p
W̃

(W̃ ) =
Cn

(detM)n
exp(−Tr(M−1W̃ ))

e) Let W̃ = UΛU∗ be the eigenvalue decomposition of W̃ . By the course, we have

pΛ,U (Λ, U) = p
W̃

(UΛU∗) |J(Λ, U)|

where J(Λ, U) = ∆(Λ)2 =
∏

j<k(λk − λj)2. Therefore,

pΛ,U (Λ, U) = Cn
∆(Λ)2

(detM)n
exp(−Tr(M−1UΛU∗))

and consequently,

pΛ(Λ) = Cn
∆(Λ)2

(detM)n

∫
Un
dU exp(−Tr(M−1UΛU∗))

where Un is the group of n× n unitary matrices and dU is the Haar measure on this group. This
integral can be further computed via the Harish-Chandra formula:

∫
Un
dU exp(−Tr(M−1UΛU∗)) = Cn

det
(
{exp(−λj/µk)}nj,k=1

)
∆(Λ) ∆(−M−1)

Noticing that

∆(−M−1) =
∏
j<k

(
1

µj
− 1

µk

)
=
∏
j<k

(
µk − µj
µj µk

)
=

∆(M)

(detM)n−1

we finally obtain

pΛ(Λ) =
Cn

detM

∆(Λ)

∆(M)
det
(
{exp(−λj/µk)}nj,k=1

)

2


