Solutions 1

1. First notice that there is nothing to prove if det(A) = 0, so we may assume that det(A) > 0.
Let X be a complex Gaussian vector with covariance matrix A. Then by the hint,
\[
\log \det(\pi eA) \leq \sum_{j=1}^{n} \log(\pi e a_{jj})
\]
which implies Hadamard’s inequality (simplifying by πe).

2. We need to show that for any pair of positive definite matrices A, B and any $p \in [0, 1],$
\[
\log \det(pA + (1 - p)B) \geq p \log \det(A) + (1 - p) \log \det(B)
\]
Following the hint, let X, Y be independent Gaussian vectors with covariance matrices A, B, and let Θ be a random variable independent of both X and Y such that $P(\Theta = 1) = p = 1 - P(\Theta = 0)$. Let also Z be the random vector such that $Z = X$ if $\Theta = 1$ and $Z = Y$ if $\Theta = 0$. The covariance matrix of Z is $pA + (1 - p)B$, so
\[
h(Z) \leq \log \det(\pi e (pA + (1 - p)B))
\]
(NB: this inequality is an equality when Z is Gaussian, but here, Z is not Gaussian). On the other hand,
\[
h(Z) \geq h(Z|\Theta) = p h(X) + (1 - p) h(Y) = p \log \det(\pi eA) + (1 - p) \log \det(\pi eB)
\]
which gives the desired inequality (simplifying by πe again).

3. a) If the channel coefficients are i.i.d., then H and $H\Pi$ share the same distribution for any permutation matrix, so
\[
\psi(\Pi\Pi^*) = E_H(\log \det(I + (H\Pi)Q(H\Pi)^*)) = \psi(Q)
\]
b) By Ex. 2, $Q \mapsto \psi(Q)$ is concave, so letting P_n be the set of all permutation matrices and using part a), we obtain, for any $Q > 0,$
\[
\psi(Q) = \frac{1}{n!} \sum_{\Pi \in P_n} \psi(\Pi\Pi^*) \leq \psi(\overline{Q})
\]
where
\[
\overline{Q} = \frac{1}{n!} \sum_{\Pi \in P_n} \Pi\Pi^*
\]
Notice that $\overline{Q} \geq 0$ and $\text{Tr}(\overline{Q}) = \text{Tr}(Q) \leq P$. Also, observe that all diagonal coefficients of \overline{Q} are equal, and the same holds for all non-diagonal coefficients as well. Therefore, \overline{Q} satisfies the constraints and has the form given in the problem set (choosing $\text{Tr}(\overline{Q}) = P$). As the above inequality holds for any Q satisfying the constraints, we obtain that Q_{opt} is of the form given in the problem set. The fact that $-\frac{1}{n-1} \leq c \leq 1$ is due to the constraint that $Q_{opt} \geq 0.$
4. a) If the channel coefficients are independent and such that for all \(j, k \), \(-h_{j,k}\) has the same distribution as \(h_{j,k} \), then \(H \) and \(H\Sigma \) share the same distribution for any matrix \(\Sigma = \text{diag}(\pm 1, \ldots, \pm 1) \), so, as above,

\[
\psi(\Sigma Q \Sigma^*) = E_H(\log \det(I + (H\Sigma)Q(H\Sigma)^*)) = \psi(Q)
\]

b) By Ex. 2, \(Q \mapsto \psi(Q) \) is concave, so letting \(S_n \) be the set of all matrices \(\Sigma \) and using part a), we obtain, for any \(Q > 0 \),

\[
\psi(Q) = \frac{1}{2^n} \sum_{\Sigma \in S_n} \psi(\Sigma Q \Sigma^*) \leq \psi(\hat{Q})
\]

where

\[
\hat{Q} = \frac{1}{2^n} \sum_{\Sigma \in S_n} \Sigma Q \Sigma^*
\]

Notice that \(\hat{Q} \geq 0 \) and \(\text{Tr}(\hat{Q}) = \text{Tr}(Q) \leq P \). Also, observe that all non-diagonal coefficients of \(\hat{Q} \) are zero. Therefore, \(\hat{Q} \) satisfies the constraints and is diagonal. As the above inequality holds for any \(Q \) satisfying the constraints, we obtain that \(Q_{\text{opt}} \) is diagonal.