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Random matrices and communication systems: WEEK 2

In this lecture, we adopt the following (temporary) notations: small letters refer to scalar numbers and
capital letters refer to scalar random variables.

Single antenna systems

Let us consider the additive white Gaussian noise (AWGN) channel:

Yk = HkXk + Zk

where k ∈ {1, . . . , N} is the time index and

• (X1, . . . , XN ) is the input vector submitted to the average power constraint E
(

1
N

∑N
k=1 |Xk|2

)
≤ P ;

• (Z1, . . . , ZN ) is the noise vector, whose components are i.i.d.∼ NC(0, σ2) random variables, inde-
pendent of X1, . . . , XN ;

• (Y1, . . . , YN ) is the output vector;

• H1, . . . ,HN are the fading coefficients (to be specified below).

The signal-to-noise ratio (SNR) of the system is defined as SNR = P/σ2. In order to simplify notation,
we will assume in the following that the noise variance σ2 = 1, so that SNR = P .

The general question we would like to address in the present lecture is the following. Assume that
two users wish to communicate over the above channel; what is then the maximum rate R at which
communication can be established reliably? The answer depends of course on the specific model chosen
for the fading coefficients Hk. We will review in the following various possible assumptions.

1 Hk = hk, k = 1, . . . , N are deterministic coefficients

We start by considering the case of deterministic (complex-valued) fading coefficients, as an “appetizer”
to the random case, which is the case of interest for this course.

In the deterministic case, the maximum rate at which one may possibly communicate over the time
interval [1, . . . , N ] is given by

maxR ≤ sup
pX1,...,XN

E( 1
N

∑N
k=1 |Xk|2)≤P

1

N
I(X1, . . . , XN ;Y1, . . . , YN )

Let us compute

I(X1, . . . , XN ;Y1, . . . , YN ) = h(Y1, . . . , YN )− h(Y1, . . . , YN |X1, . . . , XN )

= h(h1X1 + Z1, . . . , hN XN + ZN )− h(h1X1 + Z1, . . . , hN XN + ZN |X1, . . . , XN )

= h(h1X1 + Z1, . . . , hN XN + ZN )− h(Z1, . . . , ZN |X1, . . . , XN )

= h(h1X1 + Z1, . . . , hN XN + ZN )− h(Z1, . . . , ZN )

as X1, . . . , XN and Z1, . . . , ZN are independent by assumption. Using now the fact that for jointly
continuous random variables U1, . . . , UN ,

h(U1, . . . , UN ) ≤
N∑

k=1

h(Uk)
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with equality if and only if the Uk are independent, we obtain

I(X1, . . . , XN ;Y1, . . . , YN ) ≤
N∑

k=1

(h(hkXk + Zk)− h(Zk))

with equality if and only if the Xk are independent. Using then the fact

sup
pU :E(|U |2)≤P

h(U) = log(πeP )

where the supremum is attained for U ∼ NC(0, P ), we further obtain

I(X1, . . . , XN ;Y1, . . . , YN ) ≤
N∑

k=1

(log(πe(Pk |hk|2 + 1))− log(πe)) =

N∑
k=1

log(1 + Pk |hk|2)

by taking Xk ∼ NC(0, Pk) independent with 1
N

∑N
k=1 Pk ≤ P in order to meet the power constraint. This

finally implies

maxR ≤ sup
P1,...,PN≥0

1
N

∑N
k=1 Pk≤P

1

N

N∑
k=1

log(1 + Pk |hk|2)

This optimization problem can be solved analytically; its solution is the well known “water-filling” solu-
tion, but let us not write this down explicitly at this stage. Also, without making any further assumption
on the (arbitrary) sequence of fading coefficients hk, we cannot conclude anything on the capacity of the
channel in the large N limit.

1.1 Hk ≡ h0 for all k = 1, . . . , N

In this particular case, the above optimization problem is symmetric in P1, . . . , PN and has therefore the
following simple solution:

maxR ≤ sup
P1,...,PN≥0

1
N

∑N
k=1 Pk≤P

1

N

N∑
k=1

log(1 + Pk |h0|2) = log(1 + P |h0|2)

Here, as h0 is fixed, the above expression can also be shown to be equal to the capacity of the channel in
the large N limit.

2 Hk, k = 1, . . . , N are random coefficients

In this section, we consider the Hk as random, in order to take into account the uncertainty about the
fading coefficients. We should specify:

- how fast do these coefficients vary over time?

- among the receiver and the transmitter, who knows the realizations of these coefficients?

In the following, we assume that these coefficients have a given distribution and that this distribution is
known to everyone. This is needed in order to be able to describe the statistics of the channel between
X and Y . If even the distribution itself is not known, then the channel becomes an arbitrarily varying
channel, which is out of the scope of the present course.
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2.1 Hk are i.i.d. random variables (fast fading assumption)

This is in some sense an extreme assumption, which could be relaxed to “the coefficients Hk vary er-
godically over time”. By “ergodically”, we actually mean that the empirical distribution of H1, . . . ,HN

converges to a given fixed distribution pH (this holds in particular for an i.i.d. sequence, by the law of
large numbers). But present in this assumption is also the fact that the coefficients Hk should vary
relatively fast with respect to the duration of communication.

We need now to specify who knows the realizations of the coefficients Hk. In the following, we assume
that that receiver is able to track (perfectly) the values of the Hk (by using pilot signals first, e.g.), but
we make two different assumptions regarding the transmitter.

2.1.1 The transmitter knows the realizations of the coefficients Hk

This assumption is justified when feedback is easy to obtain at the transmitter. In this case, as everyone
knows the channel realizations, it is as if these were actually deterministic, so the maximum rate achievable
over the time interval [1, . . . , N ] is bounded above by

maxR ≤ sup
P1,...,PN≥0

1
N

∑N
k=1 Pk≤P

1

N

N∑
k=1

log(1 + Pk |Hk|2)

This leads to the definition of ergodic capacity:

Cerg = lim
N→∞

sup
P1,...,PN≥0

1
N

∑N
k=1 Pk≤P

1

N

N∑
k=1

log(1 + Pk |Hk|2) = sup
Q(·)≥0∫

C dh pH(h)Q(h)≤P

∫
C
dh pH(h) log(1 +Q(h) |h|2)

This can in turn be rewritten as

Cerg = sup
Q(·)≥0

EH(Q(H))≤P

EH(log(1 +Q(H) |H|2))

The solution of this optimization problem is given by the water-filling solution:

Cerg = EH

((
log(ν |H|2)

)+)
where ν satisfies EH

((
ν − 1

|H|2

)+)
≤ P (1)

and a+ = max(a, 0) denotes the positive part of a ∈ R.

2.1.2 The transmitter does not know the realizations of the coefficients Hk

This assumption is justified when feedback is difficult, or even impossible, to obtain at the transmit-
ter. In this case, the input vector (X1, . . . , XN ) cannot be tuned according to the channel realizations
H1, . . . ,HN , which we model mathematically by saying that X1, . . . , XN and H!, . . . ,HN are independent.

As we assume on the other hand that the receiver knows the Hk, the channel between the trans-
mitter and the receiver can be seen in this case as the channel with input (X1, . . . , XN ) and output
(Y1, . . . , YN , H1, . . . ,HN ); it is as if a genie were revealing the channel coefficients Hk to the receiver. So
the mutual information of this channel is given by

I(X1, . . . , XN ;Y1, . . . , YN , H1, . . . ,HN )

= I(X1, . . . , XN ;H1, . . . ,HN ) + I(X1, . . . , XN ;Y1, . . . , YN |H1. . . . ,HN )

= 0 + h(Y1, . . . , YN |H1, . . . ,HN )− h(Y1, . . . , YN |X1, . . . , XN , H1, . . . ,HN )
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where the chain rule was used in the first inequality and the independence of the Hk and Xk in the second
inquality. As Yk = HkXK + ZK we further obtain

I(X1, . . . , XN ;Y1, . . . , YN , H1, . . . ,HN )

= h(Y1, . . . , YN |H1, . . . ,HN )− h(Z1, . . . , ZN )

=

∫
CN

dh1 · · · dhN pH1,...,HN
(h1, . . . , hN )h(h1X1 + Z1, . . . , hN XN + ZN )− h(Z1, . . . , ZN )

where we have used the fact that the Hk, Xk, Zk are independent. This can in turn be bouded above by

I(X1, . . . , XN ;Y1, . . . , YN , H1, . . . ,HN ) ≤
N∑

k=1

∫
C
dhk pHk

(hk) (h(hkXk + Zk)− h(Zk))

≤
N∑

k=1

∫
C
dhk pHk

(hk) log(1 + Pk |hk|2)

by chosing Xk ∼ NC(0, Pk) independent with 1
N

∑N
k=1 Pk ≤ P (and notice that this choice of Xk max-

imzing the mutal information does not depend on the particular realizations of the fading coefficients
Hk). The ergodic capacity of the channel is therefore given in this case by

Cerg = lim
n→∞

sup
pX1,...,XN

E( 1
N

∑N
k=1 |Xk|2)≤P

1

N
I(X1, . . . , XN ;Y1, . . . , YN , H1, . . . ,HN )

= lim
N→∞

sup
P1,...,PN≥0

1
N

∑N
k=1 Pk≤P

1

N

N∑
k=1

∫
C
dhk pHk

(hk) log(1 + Pk |hk|2) =

∫
C
dh pH(h) log(1 + P |h|2)

because again of the symmetry of the optimization problem. This can in turn be rewritten as

Cerg = EH(log(1 + P |H|2)) (2)

Remarks. - Comparing this expression with (1), we see the impact on the capacity of not knowing the
channel coefficients at the transmitter.

- By Jensen’s inequality, we obtain

Cerg = EH(log(1 + P |H|2)) ≤ log(1 + P EH(|H|2))

so the ergodic capacity is less than or equal to the capacity of the channel with fixed and deterministic
fading coefficient h0 satisfying |h0|2 = EH(|H|2), which leads to the conclusion that fading degrades
capacity in single antenna channels. We will see that the situation differs in multiple antenna channels.

2.2 Hk ≡ H for all k = 1, . . . , N (slow fading assumption)

This is again an extreme assumption, which could be relaxed to “the variations of the coefficients Hk

are sufficiently small over the duration of communication”. We again assume that the receiver is able to
track the fading coefficients and make two different assumptions on the transmitter.

2.2.1 The transmitter knows the realization of H

In this case, as H is fixed over time and known to everyone, it is as if we were in the fixed and determinisitc
scenariio (see paragraph 1.1), so the capacity of the channel is given by

C = log(1 + P |H|2)

which is a random variable here, depending on the given realization of H.
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2.2.2 The transmitter does not know the realization of H

In this case, let us moreover assume that the distribution of H admits a continuous pdf pH whose support
contains the point 0 (this is in particular verified for Rayleigh fading, that is, when H ∼ NC(0, 1)). This
is implying that whatever ε > 0, P(|H|2 < ε) > 0. As a consequence, whatever the rate chosen by the
transmitter for communication (who does not know the value of H), there is always a non-zero probability
that the chosen rate is above the actual capacity of the channel. Therefore, the capacity in this case is
strictly speaking equal to zero. We therefore shift our attention to another performance measure: the
outage probability, defined as, for a given target rate R > 0,

Pout(R) = PH(log(1 + P |H|2) < R)

The outage probability is a lower bound on the error probability achieved by any scheme on this channel
(exactly like the capacity is an upper bound on the rate achieved by any scheme on a given channel). As
long as the assumption on pH made at the beginning of this paragraph is verified, the outage probability
is always strictly positive.

Considering the high SNR regime (i.e. P → ∞), this probability can still be made vanishingly small.
First, observe that as P →∞,

Cerg = EH(log(1 + P |H|2)) ' logP

So if one wants Pout(R) to decrease to zero as P → ∞, one should not choose the target rate R higher
than logP . Let us therefore choose R = r logP , with 0 ≤ r ≤ 1. In the case where H ∼ NC(0, 1), we
obtain

Pout(r logP ) = PH(log(1 + P |H|2) < r logP ) = PH

(
1 + P |H|2 < P r

)
= PH

(
|H|2 < P r − 1

P

)
' PH

(
|H|2 < P r−1) ' P r−1

So the decay is polynomial in P . In addition, we observe the following tradeoff: the lower the target rate
r logP , the higher the speed of decrease to zero of the outage probability.
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Random matrices and communication systems: WEEK 3

In this lecture and in the subsequent ones, we adopt the following notations: small letters refer to scalars
(deterministic or random) and deterministic vectors, while capital letters refer to matrices (deterministic
or random) and random vectors. In some cases, this rule will not be followed strictly, but what is actually
meant will be clear from the context.

Summary of last lecture and single-letter characterization

- We saw first that when the fading coefficient h0 is fixed over time and deterministic, the capacity of the
channel is given by

C = log(1 + P |h0|2)

This result can also be seen as the solution of the following single-letter characterization of the channel
capacity (that remains valid in the more general context of multiple antenna systems):

C = sup
pX :E(|X|2)≤P

I(X;Y )

- Then, we saw that when the fading coefficients Hk are random and i.i.d. over time, known at both the
transmitter and the receiver, the ergodic capacity of the channel is given by

Cerg = sup
Q(·)≥0

EH(Q(H))≤P

EH(log(1 +Q(H) |H|2))

while when they are known at the receiver but not at the transmitter,

Cerg = EH(log(1 + P |H|2))

Again, in this second case (which we will mainly focus on in the following), this ergodic capacity expression
may be found as the result of the more general single-letter characterization:

Cerg = sup
pX :E(|X|2)≤P

I(X;Y,H)

- Finally, when the fading coefficient H is random and fixed over time, known at both the transmitter
and the receiver, the capacity of the channel is a random variable given by

C = log(1 + P |H|2)

while when H is not known at the transmitter, the capacity is equal to zero and the outage probability
is given by

Pout(R) = PH(log(1 + P |H|2) < R)

for a target rate R > 0. Again, in this second case, this expression may be viewed as the result of the
more general single-letter characterization:

Pout(R) = inf
pX : E(|X|2)≤P

PH(I(X;Y ) < R)

(notice that in this case, I(X;Y ) is a random variable depending on the realization of H).

Preliminaries for this lecture

- An n-variate complex-valued random vector X = (X1, . . . , Xn) is (jointly) continuous if it admits a
joint pdf pX = pX!,...,Xn , i.e.

P(X ∈ B) =

∫
B

dx pX(x) ∀B ⊂ Cn Borel set
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Its mean vector is defined as µ = (E(X1), . . . ,E(Xn)) and its covariance matrix is defined as (QX)jk =
E(Xj Xk) (when they exist).

- Let X be a complex Gaussian random vector with mean 0 and positive definite covariance matrix QX

(notation: X ∼ NC(0, QX)). This random vector admits the following joint pdf:

pX(x) =
1

πndet(QX)
exp

(
−x∗ (QX)−1 x

)
, x ∈ Cn

Notice that E(Xj) = 0, E(Xj Xk) = (QX)jk and also that X1, . . . , Xn are independent if and only if QX

is diagonal.

- The differential entropy of a continuous random vector X is defined as

h(X) = −
∫
Cn

dx pX(x) log(pX(x))

One can check that

h(X) ≤
n∑

j=1

h(Xj)

with equality if and only if the Xj are independent, and also that

sup
pX :E(XX∗)=QX

h(X) = log det(πeQX)

is achieved by taking X ∼ NC(0, QX).

Multiple antenna systems

We now consider the multiple antenna system (only one time-slot is considered here):

Y = HX + Z

where X,Y, Z are n-variate vectors and H is an n× n matrix. More precisely,

• X is the input vector submitted to the average power constraint E(‖X‖2) ≤ P ;
(notice that E(‖X‖2) = E(X∗X) = E(Tr(XX∗)) = Tr(QX))

• Z ∼ NC(0, I) is the noise vector, independent of X;

• Y is the output vector;

• H is the channel fading matrix (to be specified below).

1 H = H0 is deterministic and fixed over time

In this case, the single-letter characterization of the capacity reads

C = sup
pX : Tr(QX)≤P

I(X;Y ) = sup
pX :Tr(QX)≤P

h(Y )− h(Y |X)

Notice that h(Y |X) = h(H0X + Z |X) = h(Z), so

C =

(
sup

pX : Tr(QX)≤P
h(H0X + Z)

)
− h(Z)
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The above expression is maximized when H0X+Z is Gaussian, which happens when X itself is Gaussian.
In this case, H0X + Z ∼ NC(0, I +H0QX H∗0 ), so

C =

(
sup

QX : Tr(QX)≤P
log det(πe(I +H0QX H∗0 ))

)
− log det(πeI) = sup

QX : Tr(QX)≤P
log det(I +H0QX H∗0 )

In order to proceed further, we need the following inequality, whose proof is left as an exercise in the
homework.

Hadamard’s inequality. Let A be a positive semi-definite n× n matrix. Then det(A) ≤
∏n

j=1 ajj .

A second ingredient is the singular value decomposition of H0, stating that there exist unitary matrices
U, V and Σ = diag(σ1, . . . , σn), with σj ≥ 0 for all j, such that H0 = U ΣV ∗. Therefore,

log det(I +H0QX H∗0 ) = log det(I + U ΣV ∗QX V Σ∗ U∗) = log det(I + ΣV ∗QX V Σ∗)

Let now Q̃X = V ∗QX V . Notice that Q̃X also satisfies the above constraints:

Q̃X ≥ 0 and Tr(Q̃X) = Tr(QX) ≤ P

so
C = sup

QX : Tr(QX)≤P
log det(I +H0QX H∗0 ) = sup

Q̃X : Tr(Q̃x)≤P
log det(I + Σ Q̃X Σ∗)

Using now Hadamard’s inequality, we obtain

det(I + Σ Q̃X Σ∗) ≤
n∏

j=1

(
1 + (Σ Q̃X Σ∗)jj

)
=

n∏
j=1

(
1 + (Q̃X)jj σ

2
j

)
and the equality is met by taking Q̃X diagonal, say Q̃X = diag(d1, . . . , dn). The above expression for the
capacity can therefore be rewritten as

C = sup
d1,...,dn≥0∑n

j=1 dj≤P

n∑
j=1

log(1 + dj σ
2
j )

The solution of this optimization problem is again obtained via water-filling:

C =

n∑
j=1

(
log(ν σ2

j )
)+

where
n∑

j=1

(
ν − 1

σ2
j

)+

≤ P

As an example, let us consider the following simple case: (H0)jk = 1 for all j, k. In this case, σ1 = n,
σ2 = . . . = σn = 0, so

C = log(νn2) such that

(
ν − 1

n2

)
≤ P

i.e. ν = P + 1
n2 and C = log(1 + P n2).

2 H is random and varying ergodically over time (fast fading)

We assume now that the matrix H admits the pdf pH(·) and that its realizations over time are i.i.d. (or
ergodic), known at the receiver but not at the transmitter (so that X and H are independent). In this
case, the single-letter characterization of the capacity reads:

Cerg = sup
pX : Tr(QX)≤P

I(X;Y,H) = sup
pX : Tr(QX)≤P

I(X;H) + I(X;Y |H)
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by the chain rule. Because of the independence of X and H, the first term is zero, so

Cerg = sup
pX : Tr(QX)≤P

∫
Cn2

dGpH(G) I(X;Y |H = G)

Notice that for any fixed matrix G,

I(X;Y |H = G) = I(X;GX + Z) ≤ log det(I +GQX G∗)

and the equality is met when X ∼ N(0, QX) (which does not depend of the specific value of G). So

Cerg = sup
QX≥0 : Tr(QX)≤P

∫
Cn2

dGpH(G) log det(I +GQX G∗)

which can be rewritten as

Cerg = sup
QX≥0 : Tr(QX)≤P

EH(log det(I +H QX H∗))

Remark. It is not because the realizations of H are not known at the transmitter that the optimal
QX should be a multiple of identity; it is indeed always possible to optimize over the distribution of H.
Notice also that the solution is not the water-filling solution, as the singular values and vectors of H are
not known at the transmitter.

Nevertheless, under symmetry conditions on the distribution of H, something more can be said on the
optimal input covariance matrix QX . This is illustrated in the following lemmas, whose respective proofs
are left as exercises in the homework.

Lemma 2.1. If hjk are i.i.d. random variables, then the optimal input covariance matrix is of the form

QX =
P

n


1 c · · · c c
c 1 c c
...

. . .
. . .

. . .
...

c c 1 c
c c · · · c 1


where − 1

n−1 ≤ c ≤ 1 is some real parameter.

Lemma 2.2. If hjk are independent random variables such that hjk ∼ −hjk for all j, k, then the optimal
input covariance matrix QX is diagonal.

Lemma 2.3. If hjk are i.i.d random variables such that hjk ∼ −hjk for all j, k, then the optimal input
covariance matrix QX = P

n I.

Notice that the third lemma is simply a combination of the first two. It holds true in particular when
hjk are i.i.d.∼ NC(0, 1) random variables, in which case

Cerg = EH

(
log det

(
I +

P

n
HH∗

))
We will analyze this expression further in the next lecture.
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Random matrices and communication systems: WEEK 4

2bis H is random and varying ergodically over time (fast fading)

Let us consider again the expression found for the ergodic capacity, under the assumption that the fading
coefficients hjk are i.i.d.∼ NC(0, 1) random variables:

Cerg = E
(

log det

(
I +

P

n
HH∗

))
This expression can be computed explicitly via random matrix theory, which is the subject of this course.
Before that, we will see below a relatively simple computation that will provide us with a lower bound
on Cerg, that turns out to be asymptotically tight, either when n→∞ or P →∞.

As a preliminary, we need the Paley-Zygmund inequality: if X ≥ 0 is a square-integrable random variable,
then

P(X > t) ≥ (E(X)− t)2

E(X2)
∀0 ≤ t ≤ E(X)

The proof of this fact is an application of Cauchy-Schwarz’ inequality.

Let now λ1, . . . , λn denote the eigenvalues of the (positive semi-definite) n×n matrix 1
n HH

∗. This allows
us to write

Cerg = E

 n∑
j=1

log(1 + Pλj)


Let furthermore λ be one of the eigenvalues λ1, . . . , λn picked uniformly at random. We obtain

Cerg = nE(log(1 + Pλ)) ≥ n log(1 + Pt)P(λ > t) ≥ n log(1 + Pt)
(E(λ)− t)2

E(λ2)

for all 0 ≤ t ≤ E(λ), by the above Paley-Zygmund inequality. Let us compute (these are by the way our
first random matrix computations):

E(λ) = E

 1

n

n∑
j=1

λj

 = E
(

1

n
Tr

(
1

n
HH∗

))
=

1

n2

n∑
j,k=1

E
(
|hjk|2

)
=

1

n2
n2 = 1

and

E
(
λ2
)

= E

 1

n

n∑
j=1

λ2j

 = E

(
1

n
Tr

((
1

n
HH∗

)2
))

=
1

n3

n∑
j,k,l,m=1

E
(
hjk hlk hlmhjm

)
Notice that because the hjk are i.i.d. and E(hjk) = 0 for all j, k, it holds that E

(
hjk hlk hlmhjm

)
= 0

unless j = l or k = m. We therefore obtain

E
(
λ2
)

=
1

n3

 n∑
j,k=1

E
(
|hjk|4

)
+
∑

j k 6=m

E
(
|hjk|2 |hjm|2

)
+
∑
j 6=l, k

E
(
|hjk|2 |hlk|2

)
=

1

n3
(
2n2 + n2 (n− 1) + n2 (n− 1)

)
= 2

This finally implies that for all 0 ≤ t ≤ 1,

Cerg ≥ n log(1 + Pt)
(1− t)2

2
=
n

8
log(1 + P/2)

by choosing t = 1/2. This is to be compared with the case of a fixed deterministic matrix H0 whose
coefficients are all equal to 1, with corresponding capacity C0 = log(1 + P n2) (see last lecture). It holds
that E(|hjk|2) = 1 = (H0)jk for all j, k, but notice that:
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a) for fixed P and n→∞, C0 ' log n, while Cerg

∼
≥ n.

b) for fixed n and P →∞, C0 ' 1 logP , while Cerg

∼
≥ n logP

So in multiple antenna systems, random (i.i.d.) fading actually improves the capacity, contrary to single
antenna systems.

3 H is random and fixed over time (slow fading)

We assume now that the matrix H admits the continuous pdf pH(·), whose support contains the all
zero matrix, that H is fixed over time, and that its realization is known at the receiver, but not at the
transmitter. In this case, the capacity of the channel is zero and the single-letter characterization of its
outage probability reads:

Pout(R) = inf
pX : Tr(QX)≤P

PH(I(X;Y ) < R)

where R is the target rate chosen by the transmitter. As we have already seen, for a any given H,

I(X;Y ) ≤ log det(I +H QX H∗)

and the equality is met when X ∼ NC(0, QX) (that does not depend on the particular realization of H).
So

Pout(R) = inf
QX≥0 : Tr(QX)≤P

PH(log det(I +H QX H∗) < R)

Let us now consider the particular case where the matrix H has i.i.d entries hjk ∼ NC(0, 1). In this case,
H and HU share the same distribution, for any deterministic n× n unitary matrix U , so we may as well
take QX diagonal in the above optimization problem. Therefore,

Pout(R) = inf
d1,...,dn≥0∑n

j=1 dj≤P

PH(log det(I +HDH∗) < R)

where D = diag(d1, . . . , dn). Solving further this optimization problem turns out to be difficult. Notice
first that the answer depends on the target rate R:

- if R is (sufficiently) small, then setting D = P
n I achieves the minimum outage probability, as in this

case, the law of large numbers plays for us: log det(I + P
n HH

∗) is highly likely to be around its average
value and therefore to exceed R.

- if R is (sufficiently) large, then the law of large numbers plays on the contrary against us, and it is
therefore better in this case to put “all our eggs in one basket”, that is, to use D = diag(P, 0, . . . , 0) and
hope that the chosen channel is by chance a good one that will prevent the mutual information to fall
below the target rate.

Besides, it has been conjectured that in general, the optimal matrix D should be of the form

D = diag

(
P

k
, . . . ,

P

k︸ ︷︷ ︸
k times

, 0, . . . , 0

)

where 1 ≤ k ≤ n is some integer parameter. We will see in the course how to analyze further this outage
probability, with the help of random matrix theory.
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Random matrices and communication systems: WEEK 5

1 Wishart random matrices: joint distribution of the entries

1.1 Complex case

Let H be an n ×m random matrix with i.i.d.∼ NC(0, 1) entries and let W be the n × n matrix defined
as W = HH∗. W is a positive semi-definite matrix, as x∗Wx = ‖H∗x‖2 ≥ 0 for all x ∈ Cn. So by the
spectral theorem, there exist U n× n unitary (i.e. UU∗ = I) and Λ = diag(λ1, . . . , λn) such that λj ≥ 0
for all j and W = UΛU∗. Ultimately, we are interested in computing the joint distribution p(λ1, . . . , λn)
of the eigenvalues of W (for fixed values of both n and m), as well as its marginals. This however requires
a first step, namely to compute the joint distribution of the entries of W , which is the purpose of the
present lecture.

Remark. If m < n, then rank(W ) ≤ rank(H) ≤ min(m,n) = m < n, which is saying the the matrix
W is rank-deficient and admits at least n−m zero eigenvalues. So in this case, the joint distribution of
λ1, . . . , λn is singular. Instead, we may as well consider the m × m matrix W̃ = H∗H, which has the
same non-zero eigenvalues as W , and look for the joint distribution of its eigenvalues λ̃1, . . . , λ̃m. In the
following, we therefore restrict ourselves without loss of generality to the case where m ≥ n.

Let us now describe the various steps that lead to the joint distribution of the entries of W .

Joint distribution of the entries of H. This is an easy computation. By independence, we have

pH(H) =

n,m∏
j,k=1

1

π
exp

(
−|hjk|2

)
=

1

πnm
exp

− n,m∑
j,k=1

|hjk|2
 =

1

πnm
exp (−Tr (HH∗))

LQ decomposition of H and Choleski decomposition of W . Let us recall the following fact:

Any n × m complex-valued matrix H may be decomposed into H = LQ, where L is an n × n lower-
triangular matrix such that ljj ≥ 0 for all j and Q is an n ×m matrix such that QQ∗ = In (i.e. Q is a
submatrix of an m×m unitary matrix).

Consequently, W = HH∗ = LQQ∗L∗ = LL∗, which is the Cholesky decomposition of W .

The strategy now is, starting from the expression for pH(H), to compute pL(L) and then pW (W ).

Joint distribution of the entries of L. The relation H = LQ can be seen as a change of variables
H 7→ (L,Q). Let us first check how many free real parameters there are on each side of the equality.
On the left-hand side, H has clearly 2nm free parameters. On the right-hand side,, there are n free real

diagonal parameters in L and 2n(n−1)
2 = n2 − n free real off-diagonal one; this makes in total n2 free

parameters in L. Regarding Q, there are a priori 2m free parameters in each row, but the first row should
have unit norm, the second row should also have unit norm and be orthogonal to the first one, and so
on. This makes in total

(2m− 1) + (2m− 3) + . . .+ (2(m− n) + 1) = m2 − (m− n)2 = 2mn− n2 free real parameters in Q

So the number of free real parameters coincide on each side. The joint distribution of L and Q may
therefore be written as

pL,Q(L,Q) = pH(LQ) |J1(L,Q)|

where J1(L,Q) is the Jacobian of the transformation H 7→ (L,Q). The computation of this Jacobian,

1



that we shall skip here, gives

J1(L,Q) =

n∏
j=1

l
2(m−j)+1
jj

Besides,

pH(LQ) =
1

πnm
exp (−Tr (LQQ∗L∗)) =

1

πnm
exp (−Tr (LL∗))

so finally, we obtain

PL,Q(L,Q) =
1

πnm
exp (−Tr (LL∗))

n∏
j=1

l
2(m−j)+1
jj 1ljj≥0

As this expression does not depend explicitly on Q, this says two things: 1) the distribution of Q is
uniform over the set of n×m complex matrices such that QQ∗ = In (we will come back to this below);
2) L and Q are actually independent! Let us now look more closely at the distribution of L:

pL(L) = cn,m exp (−Tr (LL∗))

n∏
j=1

l
2(m−j)+1
jj 1ljj≥0

= cn,m

n∏
j=1

(
l
2(m−j)+1
jj exp

(
−l2jj

)
1ljj≥0

)∏
k<j

exp
(
−|ljk|2

)
Notice that cn,m above is not equal to 1/πnm, nor is the normalization constant in the uniform distribution
pQ(Q) equal to 1 (the latter is actually equal to 1/Vn,m, where Vn,m is the volume of the set of n ×m
complex matrices Q such that QQ∗ = In). What the above equality tells us is that:

1) all the entries of L are independent;

2) the off-diagonal entries ljk are i.i.d.∼ NC(0, 1) random variables;

3) the diagonal entry ljj is a χ2(m−j+1) random variable.

Remark. Even though we do not need it in the following, let us just make clear what we mean by
“uniform” while talking about the distribution of Q. For every fixed m ×m unitary matrix U ∈ U(m),
the matrices H and HU share the same distribution, so the same holds for LQ and LQU . By the
independence of L and Q and the non-singularity of the distribution of L, this is saying that Q and QU
share the same distribution, for every fixed m ×m unitary matrix U . It is actually a fact that there is
only one such distribution, that we call the uniform distribution over the set of n×m complex matrices
Q such that QQ∗ = In.

Joint distribution of the entries of W . We now consider the change of variables L 7→ W = LL∗.
Let us compute the number of free real parameters on each side. We have seen above that L contains
n2 free real parameters. The same holds for W , as W contains n diagonal free real parameters and

2n(n−1)
2 = n2 − n off-diagonal free real parameters (remembering that W is Hermitian). Considering the

reverse transformation W 7→ L (just because it is easier), we obtain

pL(L) = pW (LL∗) |J2(L)|

where J2(L) is the Jacobian of the transformation W 7→ L. The computation of this Jacobian, that we
shall again skip here, gives:

J2(L) = 2n
n∏

j=1

l
2(n−j)+1
jj

We therefore deduce that

pW (LL∗) =
PL(L)

|J2(L)|
= cn,m exp (−Tr (LL∗))

n∏
j=1

l
2(m−n)
jj

2



where the constant cn,m differs from the previous one by a factor 2n, but we keep the same notation for
simplicity. Noticing that LL∗ = W and

∏n
j=1 l

2
jj = |det(L)|2 = det(LL∗) = det(W ), we finally obtain

the joint distribution of the entries of W :

pW (W ) = cn,m det(W )m−n exp(−Tr(W )) 1{W≥0}

Remark. In the case n = m, the above distribution reads

pW (W ) = cn,n exp(−Tr(W )) 1{W≥0}

which looks like a particularly simple expression: it indeed says on one hand that the diagonal entries
wjj are i.i.d. exponential random variables; on the other hand, the condition W ≥ 0 induces lots of subtle
constraints and dependencies between the off-diagonal entries.

1.2 Real case

The corresponding model in the real case is given by W = HHT , where H is an n×m random matrix with
i.i.d.∼ NR(0, 1) entries. Without repeating the whole reasoning, let us briefly mention the corresponding
result in this case. We again assume that m ≥ n without loss of generality. In this case, the joint
distribution of the entries of H is given by

pH(H) =
1

(2π)nm/2
exp

(
1

2
Tr
(
HHT

))
and the joint distribution of the entries of W is given by

pW (W ) = cn,m det(W )
m−n−1

2 exp

(
−1

2
Tr(W )

)
1{W≥0}
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Random matrices and communication systems: WEEK 6

1 Wishart random matrices: joint eigenvalue distribution

1.1 Real case

Recall first from previous lecture that if W = HHT , where H is an n ×m random matrix with i.i.d.∼
NR(0, 1) entries and m ≥ n, then the joint distribution of the entries of W is given by

pW (W ) = cn,m det(W )
m−n−1

2 exp

(
−1

2
Tr(W )

)
1{W≥0}

By the spectral theorem, the matrix W is orthogonally diagonalizable, that is, there exist V an n × n
orthogonal matrix (i.e. V V T = I) and Λ = diag(λ1, . . . , λn) such that λj ≥ 0 for all 1 ≤ j ≤ n and
W = V ΛV T , i.e.

wjk =

n∑
l=1

λl vjl vkl, 1 ≤ j, k ≤ n

Again, this can be viewed as a change of variables; on the left-hand side, there are n diagonal free

parameters wjj and n(n−1)
2 off-diagonal free parameters wjk, j < k in the matrix W (the remaining off-

diagonal parameters are fixed, as W is symmetric); on the right-hand side, there are n free parameters

in the matrix Λ and (n − 1) + (n − 2) + . . . + 1 + 0 = n(n−1)
2 free parameters in the matrix V . So the

number of free parameters on both sides coincide. The joint distribution of Λ and V is then given by

pΛ,V (Λ, V ) = pW
(
V ΛV T

)
|J(Λ, V )|

where, according to the above formula,

pW
(
V ΛV T

)
= cn,m det

(
V ΛV T

)m−n−1
2 exp

(
−1

2
Tr
(
V ΛV T

))
= cn,m det(Λ)

m−n−1
2 exp

(
−1

2
Tr(Λ)

)
and J(Λ, V ) is the Jacobian of the transformation W 7→ (Λ, V ). We now set out to compute this Jacobian.

Let N = n(n−1)
2 and let us denote by p1, . . . , pN the N free parameters in the matrix V (leaving aside

the explicit description of what these N parameters are: we will see in the following that this is actually
not needed). The Jacobian is then given by

J(Λ, V ) = det


{
∂wjj

∂λi

}
i,j

{
∂wjk

∂λi

}
i,j<k{

∂wjj

∂pi

}
i,j

{
∂wjk

∂pi

}
i,j<k


where the blocks in the above matrix are respectively of size n × n, n × N , N × n and N × N . As
W = V ΛV T , the computation of the above partial derivatives gives, in matrix form:

∂W

∂λi
= V∆(i)V T , where ∆

(i)
jk = δij δik

∂W

∂pi
=

∂V

∂pi
ΛV T + V Λ

∂V T

∂pi

Multiplying both these equations by V T and V and the left-hand and right-hand side, we obtain

V T
∂W

∂λi
V = ∆(i)

V T
∂W

∂pi
V =

(
V T

∂V

∂pi

)
Λ + Λ

(
∂V T

∂pi
V

)

1



Let now S(i) = V T ∂V∂pi . As V TV = I, we also obtain

V T
∂V

∂pi
+
∂V T

∂pi
V = 0, i.e.

∂V T

∂pi
V = −S(i)

which allows us to rewrite V T ∂W∂pi V = S(i)Λ−ΛS(i). Component-wise, the two equations for the deriva-
tives with respect to λi and pi therefore read:

n∑
l,m=1

∂wlm
∂λi

vlj vmk = δij δik

n∑
l,m=1

∂wlm
∂pi

vlj vmk = S
(i)
jk (λk − λj)

(1)

With the help of these formulas, let us now compute the Jacobian J(Λ, V ) when V = I. In this case, the
above two formulas boil down to

∂wjk
∂λi

= δij δik and
∂wjk
∂pi

= S
(i)
jk (λk − λj)

so

J(Λ, V ) = det

(
I 0

0
{
S

(i)
jk (λk − λj)

}
i,j<k

)
= det

({
S

(i)
jk (λk − λj)

}
i,j<k

)
=

∏
j<k

(λk − λj) det
({
S

(i)
jk

}
i,j<k

)
=
∏
j<k

(λk − λj) f(V )

for some function f , as the matrix elements S
(i)
jk possibly only depend on V . We claim that the same

conclusion holds in the case where V 6= I. To this end, let us consider

J̃(Λ, V ) = det



{
∂wll

∂λi

}
i,l

{
∂wlm

∂λi

}
i,l<m{

∂wll

∂pi

}
i,l

{
∂wjk

∂pi

}
i,l<m


 {

v2
lj

}
l,j

{vljvlk}l,j<k
{2vljvmj}l<m,j {2vljvmk}l<m,j<k




Using the fact that det(AB) = det(A) det(B) and observing that the second term on the right-hand side

only depends on V , we deduce that J̃(Λ, V ) = J(Λ, V ) g(V ) for some function g. On the other hand,
performing the matrix multiplication inside the determinant gives for matrix element i, (jk) in the first
n rows:

n∑
l=1

∂wll
∂λi

vlj vlk + 2
∑
l<m

∂wlm
∂λi

vlj vmk =

n∑
l,m=1

∂wlm
∂λi

vlj vmk

and likewise for the matrix element i, (jk) in the last N rows:

n∑
l=1

∂wll
∂pi

vlj vlk + 2
∑
l<m

∂wlm
∂pi

vlj vmk =

n∑
l,m=1

∂wlm
∂pi

vlj vmk

Using then equation (1), we obtain again

J̃(Λ, V ) = det

(
I 0

0
{
S

(i)
jk (λk − λj)

}
i,j<k

)
=
∏
j<k

(λk − λj) f(V )

which, together with the above observation that J̃(Λ, V ) = J(Λ, V ) g(V ), proves the claim. What can be
deduced so far from all these computations is that

pΛ,V (Λ, V ) = cn,m det(Λ)
m−n−1

2 exp

(
−1

2
Tr(Λ)

) ∏
j<k

|λk − λj | |f(V )|

2



for some function f . This is actually saying that pΛ,V (Λ, V ) = pΛ(Λ) pV (V ), so the eigenvalues and
eigenvectors of W are independent! The joint distribution of the eigenvalues is given by

p(λ1, . . . , λn) = cn,m

n∏
j=1

(
λ

m−n−1
2

j exp(−λj/2) 1λj≥0

) ∏
j<k

|λk − λj |

where cn,m is the normalization constant, which can be computed explicitly; it differs from the constant
in the expression for pW (W ), but in order to keep notation simple, we do not change notation here.

The above distribution may also be rewritten in the following form:

p(λ1, . . . , λn) = cn,m exp

− n∑
j=1

(
λj
2
− m− n− 1

2
log(λj)

)
+
∑
j<k

log |λk − λj |

 1λ1≥0,...,λn≥0

and given the following interpretation: it represents the Gibbs distribution of a system of n particles
in positions λ1, . . . , λn evolving in a potential U(λ) = λ

2 −
m−n−1

2 log(λ) and repelling each other. Two
opposite forces operate here: on one hand, the particles would all like to be in the minimum of the
potential, but as they repel each other, there is not enough room for them, so some are driven away from
this minimum. The fact that eigenvalues repel each other is a common feature to most random matrix
models (essentially because of the term resulting from the above Jacobian computation).

Now, what is the distribution of the eigenvectors? As already seen, for every fixed n × n orthogonal
matrix O ∈ O(n), the matrices H and OH share the same distribution. Therefore, so do the matrices W
and OWOT , which is saying that

V ΛV T and (OV )Λ(OV )T

also share the same distribution. By the independence of Λ and V (and the non-singularity of the distribu-
tion of Λ), this finally implies that V and OV share the same distribution, for every fixed n×n orthogonal
matrix O. This in turn implies that the matrix V is distributed according to the Haar distribution on
O(n), which is the unique distribution on O(n) being invariant under orthogonal transformations.

1.2 Complex case

We shall not repeat here the whole reasoning; we just mention the main steps of the computation. In
this case, W = HH∗, where H is an n×m random matrix with i.i.d.∼ NC(0, 1) entries and m ≥ n. The
joint distribution of the entries of W is given by

pW (W ) = cn,m det(W )m−n exp(−Tr(W )) 1{W≥0}

By the spectral theorem, the matrix W is unitarily diagonalizable, that is, there exist U an n×n unitary
matrix (i.e. UU∗ = I) and Λ = diag(λ1, . . . , λn) such that λj ≥ 0 for all 1 ≤ j ≤ n and W = UΛU∗, i.e.

wjk =

n∑
l=1

λl ujl ukl, 1 ≤ j, k ≤ n

On the left-hand side, there are n diagonal free real parameters and 2 n(n−1)
2 = n2 − n off-diagonal free

real parameters in the matrix W ; on the right-hand side, there are n free real parameters in the matrix Λ
and n2 free real parameters in the matrix U . So here we see that there is a mismatch. The mismatch can
be resolved by observing that in the complex case, an eigenvector rotated by eiφ remains an eigenvector.
So it is possible to set the first component of each eigenvector of W to be a real number, which reduces
by n the numbers of free real parameters in U , so that the number of free real parameters on both sides
coincide. The joint distribution of Λ and U is then given by

pΛ,U (Λ, U) = pW (UΛU∗) |J(Λ, U)|

3



where
pW (UΛU∗) = cn,m det(Λ)m−n exp(−Tr(Λ))

and the computation of the Jacobian gives

J(Λ, U) =
∏
j<k

(λk − λj)2 f(U)

for some function f . Therefore, Λ and U are also independent in this case, and

p(λ1, . . . , λn) = cn,m

n∏
j=1

(
λm−nj exp(−λj) 1λj≥0

) ∏
j<k

(λk − λj)2

where cn,m is the normalization constant, which differs from the previous cn,m and can be computed
explicitly. Finally, similarly to the previous section, U is distributed according to the Haar distribution
on U(n), which is the unique distribution on U(n) being invariant under unitary transformations.
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Random matrices and communication systems: WEEK 7

1 Wishart random matrices: marginal eigenvalue distribution

We only consider here the complex case, as the analysis of the real case is sensibly more difficult than
what is presented below. Let H be an n × n matrix with i.i.d.∼ NC(0, 1) entries and W = HH∗. We
have seen in the previous lecture that the joint distribution of the eigenvalues λ1, . . . , λn of W is given
by

p(λ1, . . . , λn) = cn

n
∏

j=1

e−λj

∏

j<k

(λk − λj)
2

where cn is a normalization constant and where we have dropped the term “1λj≥0” in the above expression
in order to lighten the notation. Notice also that compared to the previous lecture, we consider here only
the case n = m. This is meant to simplify the exposition in the sequel, but contrary to the above
mentioned real case, the case m ≥ n can be handled with little extra effort.

Let us first give a possible reason for studying marginals of this joint distribution. The above expression
allows to compute the expectation of a function of the eigenvalues f(λ1, . . . , λn):

E(f(λ1, . . . , λn)) =

∫ ∞

0

dλ1 · · ·

∫ ∞

0

dλn p(λ1, . . . , λn) f(λ1, . . . , λn)

An example of such function is f(λ1, . . . , λn) =
∏n

j=1 λj (which corresponds to f(W ) = det(W )).

If one wants now to compute the expectation of a funtion of the form f(λ1, . . . , λn) =
∑n

j=1 g(λj), for
some function g, it is of course possible to write

E





n
∑

j=1

g(λj)



 =
n
∑

j=1

∫ ∞

0

dλ1 · · ·

∫ ∞

0

dλn p(λ1, . . . , λn) g(λj)

But notice that this may also be rewritten as

E





n
∑

j=1

g(λj)



 =

n
∑

j=1

∫ ∞

0

dλj p(λj) g(λj)

where

p(λj) =

∫ ∞

0

dλ1 · · ·

∫ ∞

0

dλj−1

∫ ∞

0

dλj+1 · · ·

∫ ∞

0

dλn p(λ1, . . . , λn)

are the first-order marginals of p. Notice in addition that the distribution p(λ1, . . . , λn) is symmetric in
any permutation of the λ’s, so we may as well consider the eigenvalues λ1, . . . λn as unordered. In this
case, all the above marginals are the same, so the expression for the expectation boils down to

E





n
∑

j=1

g(λj)



 = n

∫ ∞

0

dλ p(λ) g(λ)

p(λ) may be also interpreted here as the distribution of one of the eigenvalues λ1, . . . , λn picked uni-
formly at random. An example where this formula applies is when g(λ) = log(λ), which corresponds to
f(λ1, . . . , λn) =

∑n

j=1 log(λj), which corresponds in turn to f(W ) = log det(W ).

Computation of the marginals. The first step for the computation of the marginal p(λ) is to use
Vandermonde’s determinant formula:

∏

j<k

(λk − λj) = det











1 1 · · · 1
λ1 λ2 · · · λn

...
...

...
λn−1
1 λn−1

2 · · · λn−1
n











1



Next, we introduce Laguerre polynomials: these are defined as

Lk(λ) =
1

k!
eλ

dk

dλk

(

e−λ λk
)

where k ∈ N, λ ≥ 0

So L0(λ) = 1, L1(λ) = 1− λ, L2(λ) =
1
2 (λ− 2)2 − 1, and so on. In general, Lk is a polynomial of degree

k in λ that may be written as

Lk(λ) = γk λ
k + lower order terms, where γk =

(−1)k

k!
6= 0

One can check in addition that these polynomials satisfy in the following orthogonality relations:
∫ ∞

0

dλ e−λ Lk(λ)Ll(λ) = δkl (1)

We now use these Laguerre polynomials to rewrite the above determinant (using the basic rules for the
determinant) as

det











1 1 · · · 1
λ1 λ2 · · · λn

...
...

...
λn−1
1 λn−1

2 · · · λn−1
n











=





n−1
∏

j=1

1

γj



 det











L0(λ1) L0(λ2) · · · L0(λn)
L1(λ1) L1(λ2) · · · L1(λn)

...
...

...
Ln−1(λ1) Ln−1(λ2) · · · Ln−1(λn)











In order to simplify notation, let us rewrite the matrix on the right-hand side as {Lj−1(λk)}nj,k=1. Com-
bining everything together, we obtain

p(λ1, . . . , λn) = cn

n
∏

j=1

e−λj





n−1
∏

j=1

1

γj





2

det
(

{Lj−1(λk)}
n
j,k=1

)2

Noticing that the product of γ’s is yet another constant, we may simply include it in the constant cn.
Also, the above expression may be transformed into

p(λ1, . . . , λn) = cn

n
∏

j=1

e−λj det
(

(

{Lj−1(λk)}
n
j,k=1

)T
{Lj−1(λk)}

n
j,k=1

)

= cn det
(

{K(λj , λk}
n
j,k=1

)

where K(λ, µ) = e−
λ+µ

2

∑n−1
l=0 Ll(λ)Ll(µ).

Remarks. - Notice that even though we are talking about the eigenvalues of the complex-valued matrix
W , this matrix is Hermitian (and even positive semi-definite), so its eigenvalues are real (we therefore
only have a transpose matrix above, and not a complex-conjugate transpose).

- The above trick of writing det(A)2 = det(ATA) is of course made possible because of the presence of
the square in the expression for the joint eigenvalue distribution. In the real case, the square is missing,
which makes things much more delicate (one can always write |det(A)| =

√

det(ATA), but the square
root creates problems later).

The Kernel K has the following nice properties, that follow from the orthogonality relations (1) for the
Laguerre polynomials.

Lemma 1.1. a) K(µ, λ) = K(λ, µ) b)

∫ ∞

0

dλK(λ, λ) = n c)

∫ ∞

0

dµK(λ, µ)K(µ, ν) = K(λ, ν)

The last property above is known as the “self-reproducing property” of the Kernel K.

Proof. a) is obvious. b)

∫ ∞

0

dλK(λ, λ) =

n−1
∑

l=0

∫ ∞

0

dλ e−λ Ll(λ)
2 = n.

c)

∫ ∞

0

dµK(λ, µ)K(µ, ν) = e−
λ+ν
2 Ll(λ)Lm(ν)

n−1
∑

l,m=0

∫ ∞

0

dµ e−µ Ll(µ)Lm(µ) = K(λ, ν).

2



From these properties follows the remarkable fact below, known as Mehta’s lemma.

Lemma 1.2. The mth order marginal of the joint eigenvalue distribution p(λ1, . . . , λn) is given by

p(λ1, . . . , λm) =
(n−m)!

n!
det
(

{K(λj , λk}
m
j,k=1

)

Proof. We first give the proof for the case m = n − 1 (the general case follows then easily). We are
interested in computing

p(λ1, . . . , λn−1) = cn

∫ ∞

0

dλn det
(

{K(λj , λk}
n
j,k=1

)

In order to lighten the notation, let us write A = {ajk}nj,k=1 = {K(λj , λk)}nj,k=1. Using the expansion
formula for the determinant, we obtain

p(λ1, . . . , λn−1) = cn

∫ ∞

0

dλn det(A) = cn

n
∑

l=1

(−1)n+l

∫ ∞

0

dλn anl det(A(n, l))

where A(n, l) denotes the matrix A with nth row and lth column suppressed. This may be further
rewritten as

p(λ1, . . . , λn−1) = cn

(∫ ∞

0

dλn ann

)

det(A(n, n)) + cn

n−1
∑

l=1

(−1)n+l

∫ ∞

0

dλn anl det(A(n, l)) (2)

where
∫ ∞

0

dλn ann =

∫ ∞

0

dλn K(λn, λn) = n

by property b) of Lemma 1.1, Furthermore, we have for all 1 ≤ l ≤ n− 1,
∫ ∞

0

dλn anl det(A(n, l))

=

∫ ∞

0

dλn anl det







a1,1 · · · a1,l−1 a1,l+1 · · · a1,n−1 a1,n
...

...
...

...
...

an−1,1 · · · an−1,l−1 an−1,l+1 · · · an−1,n−1 an−1,n






(3)

= det







a1,1 · · · a1,l−1 a1,l+1 · · · a1,n−1

∫∞

0 dλn a1,n an,l
...

...
...

...
...

an−1,1 · · · an−1,l−1 an−1,l+1 · · · an−1,n−1

∫∞

0 dλn an−1,nan,l







Indeed, the integral can be brought inside the determinant for the following reason: writing down the
full expansion formula for the determinant in (3), we see that each term only involves one occurrence of
λn. We further have

∫ ∞

0

dλn ajn anl =

∫ ∞

0

dλn K(λj , λn)K(λn, λl) = K(λj , λl) = ajl

by property c) of Lemma 1.1. So up to a column permutation, the matrix on the right-hand side of the
above expression is A(n, n), which leads to

∫ ∞

0

dλn anl det(A(n, l)) = (−1)n−l−1 det(A(n, n))

Inserting this in equation (2) finally gives

p(λ1, . . . , λn−1) = cn

(

n det(A(n, n)) +
n
∑

l=1

(−1)2n−1 det(A(n, n))

)

= cn (n− (n− 1)) det(A(n, n)) = cn det
(

{K(λj , λk}
n−1
j,k=1

)

3



which proves the claim for m = n− 1. A similar reasoning shows that

p(λ1, . . . , λn−2) = cn (n− (n− 2)) det
(

{K(λj, λk}
n−2
j,k=1

)

= 2 cn det
(

{K(λj , λk}
n−2
j,k=1

)

and more generally
p(λ1, . . . , λm) = (n−m)! cn det

(

{K(λj, λk}
m
j,k=1

)

Finally, in order to compute the normalization constant, notice that for m = 1,

p(λ1) = (n− 1)! cnK(λ1, λ1)

As we know that
∫∞

0 dλ1 p(λ1) = 1, this together with property b) of Lemma 1.1 implies that n! cn = 1,

i.e. cn = 1
n! , which completes the proof of the lemma.

A word on the asymptotic analysis of the eigenvalue distribution. A particular instance of the
above result is of course the case m = 1, which gives the first-order marginal:

p(λ) =
1

n
e−λ

n−1
∑

l=0

Ll(λ)
2

As mentioned above, this distribution represents the distribution of a “typical” eigenvalue of W in the
“bulk” of the spectrum. Analyzing directly the behavior of p(λ) for large values of n is not an easy task.
First of all, let us mention that in order to obtain convergence, a rescaling is needed. Indeed:

E(λ) = E





1

n

n
∑

j=1

λj



 = E

(

1

n
Tr(W )

)

=
1

n
E(Tr(HH∗)) =

1

n

n
∑

j,k=1

E(|hjk |
2) = n

We should then rather consider p(n)(λ), the distribution of an eigenvalue of 1
n
W picked uniformly at

random:

p(n)(λ) = n p(nλ) = e−nλ

n−1
∑

l=0

Ll(nλ)
2

Studying the asymptotic behavior of this expression as n gets large requires the knowledge of fine prop-
erties of Laguerre polynomials, that we skip here. The result gives (we are going to recover this result
using a different approach later in the course):

lim
n→∞

p(n)(λ) =
1

π

√

1

λ
−

1

4
10<λ<4

which is illustrated on the figures below. On the left, p(n)(λ) is represented for n = 2 and n = 4, while on
the right, it is represented for n = 8 and n = ∞ (spreading the rumor that for random matrices, 8 ∼ ∞):
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Random matrices and communication systems: WEEK 8

The goal of this lecture is to introduce the notion of asymptotic eigenvalue distribution. In particular, we
will see that this notion already appears for large deterministic matrices, such as the classical Toeplitz
matrices. We first need a preliminary on a particular type of Toeplitz matrices, whose eigenvalues are
particularly easy to compute; these are circulant matrices.

1 Circulant matrices

Let c0, c1, . . . , cn−1 be complex numbers and C be the n× n matrix defined as

C =



c0 c1
. . . cn−2 cn−1

cn−1 c0 c1
. . . cn−2

. . .
. . .

. . .
. . .

. . .

c2
. . . cn−1 c0 c1

c1 c2
. . . cn−1 c0


Notation. C = circ(c0, c1, . . . , cn−1).

The eigenvalues and eigenvectors C can be computed as follows.

Lemma 1.1. Let α ∈ C be such that αn = 1 (i.e. α is an nth root of unity). Then the vector u defined
as

u =


α
α2

...
αn

 is an eigenvector of C, with corresponding eigenvalue λ =

n−1∑
l=0

cl α
l

Proof. One has to check that Cu = λu. Indeed, for all 1 ≤ j ≤ n, we have

(Cu)j =

n∑
k=1

cjk uk =

j−1∑
k=1

cn−j+k α
k +

n∑
k=j

ck−j α
k =

n−1∑
l=n−j+1

cl α
l+j−n +

n−j∑
l=0

cl α
l+j

(a)
=

n−1∑
l=0

cl α
l+j =

(
n−1∑
l=0

cl α
l

)
αj = λuj

where we have used the fact that αn = 1 in (a).

Let now (αk = exp(2πik/n), k = 1, . . . , n) denote the n different roots of unity. One can check that the
corresponding eigenvectors (uk, k = 1, . . . , n) are mutually orthogonal. As a consequence, we have the
following proposition.

Proposition 1.2. For any values of c0, c1, . . . , cn−1, there exist Λ = diag(λ1, . . . , λn) and U n×n unitary
with C = UΛU∗. In addition, we have

λk =

n−1∑
l=0

cl exp(2πilk/n) and ujk =
1√
n

(uk)j =
1√
n

exp(2πijk/n)

Important consequences and remarks. - The above proposition says that all circulant matrices are
unitarily diagonalizable (even though they may not be Hermitian).

1



- More than that, the matrix U of eigenvectors of C (called the Discrete Fourier Transform (DFT) matrix)
does not depend on the values of the numbers c0, c1, . . . , cn−1, Therefore, all the circulant matrices share
the same set of eigenvectors.

- As a consequence, if C is circulant, then C∗ is, and CC∗ = C∗C, i.e. C is normal (in accordance with
the above proposition). Also, if C is circulant and invertible, then C−1 is circulant.

- More generally, if C1, C2 are circulant, then C1 +C2 and C1C2 are, with eigenvalues respectively given

by λ
(sum)
k = λ

(1)
k +λ

(2)
k and λ

(prod)
k = λ

(1)
k λ

(2)
k . Such nice rules for sums and products of matrices are the

exception.

- Finally, only the eigenvalues of C depend on the values of c0, c1, . . . , cn−1 and this dependence is linear.
This is in sharp contrast to arbitrary matrices for which the dependence of the eigenvalues on the entries
is intricate in general.

2 Toeplitz matrices and the Grenander-Szegö theorem

Let l0 be a fixed positive integer and let (tl, −l0 ≤ l ≤ l0) be given complex numbers. We consider now
the n× n matrix T (n) defined as

(T (n))jk =

{
tk−j if |j − k| ≤ l0
0 if |j − k| > l0

that is: T (n) =



t0 t1
. . . tl0 0 · · · 0

t−1 t0 t1
. . . tl0 0

...
. . . t−1 t0 t1

. . .
. . . 0

t−l0
. . .

. . .
. . .

. . .
. . . tl0

0
. . .

. . . t−1 t0 t1
. . .

... 0 t−l0
. . . t−1 t0 t1

0 · · · 0 t−l0
. . . t−1 t0


Such a matrix is called a finite-order Toeplitz matrix. Let λ

(n)
1 , . . . , λ

(n)
n denote its eigenvalues. Our aim

in the following is to characterize the behavior of these eigenvalues as n gets large.

Remark 2.1. Contrary to circulant matrices, there is no general formula at finite n for the eigenvalues
of T (n) in terms of the numbers tl. Also, the matrix of eigenvectors of T (n) is not the DFT matrix.

Let now us define the following function:

g(x) =

l0∑
l=−l0

tl e
ilx, x ∈ [0, 2π]

g is a complex-valued, bounded and continuous function, and the numbers tl are the Fourier coefficients
of g:

tl =
1

2π

∫ 2π

0

g(x) e−ilx dx

The following lemma establishes a first connection between the eigenvalues of T (n) and the function g.

Lemma 2.2. For any m ≥ 0,

lim
n→∞

1

n

n∑
k=1

(
λ
(n)
k

)m
=

1

2π

∫ 2π

0

(g(x))m dx

2



Proof. (sketch: the whole proof is left as an exercise in the homework) Let us consider the matrices
(represented here in the case l0 = 1 for simplicity)

T (n) =



t0 t1 0 · · · 0

t−1 t0 t1 0
...

0
. . .

. . .
. . . 0

... 0 t−1 t0 t1

0 · · · 0 t−1 t0


and C(n) =



t0 t1 0 · · · t−1

t−1 t0 t1 0
...

0
. . .

. . .
. . . 0

... 0 t−1 t0 t1

t1 · · · 0 t−1 t0


Let us denote by λ

(n)
1 , . . . , λ

(n)
n and µ

(n)
1 , . . . , µ

(n)
n the eigenvalues of T (n) and C(n), respectively. These

two matrices can be shown to be asymptotically equivalent, which implies that for all m ≥ 0,

lim
n→∞

1

n

n∑
k=1

(
λ
(n)
k

)m
= lim
n→∞

1

n

n∑
k=1

(
µ
(n)
k

)m
Moreover, notice that C(n) is circulant, so by Section 1, its eigenvalues are given by (for n ≥ 2l0 + 1)

µ
(n)
k =

l0∑
l=−l0

tl exp(2πikl/n) = g(2πk/n)

Therefore,

lim
n→∞

1

n

n∑
k=1

(
λ
(n)
k

)m
= lim
n→∞

1

n

n∑
k=1

(g(2πk/n))
m

=
1

2π

∫ 2π

0

(g(x))m dx

by definition of Riemann’s integral of the continuous function gm over the interval [0, 2π].

We need now the following assumption.

Assumption H. For all −l0 ≤ l ≤ l0, t−l = tl.

This assumption implies both that T (n) is Hermitian for all values of n (so its eigenvalues λ
(n)
1 , . . . , λ

(n)
n

are real), and that the function g is real-valued. Moreover we have the following lemma, whose proof is
again left as an exercise in the homework.

Lemma 2.3. Under Assumption H, let a = infx∈[0,2π] g(x) and b = supx∈[0,2π] g(x). Then for all n ≥ 1
and all 1 ≤ k ≤ n,

a ≤ λ(n)k ≤ b

This finally allows us to state the main theorem.

Theorem 2.4. (Grenander-Szegö, 1958 - Gray, 1972)
Under Assumption H, we have for any continuous function f : [a, b]→ R

lim
n→∞

1

n

n∑
k=1

f
(
λ
(n)
k

)
=

1

2π

∫ 2π

0

f(g(x)) dx

Proof. Notice first that because of Lemma 2.3, λ
(n)
k ∈ [a, b] for all k, n, so the expression on the left-hand

side is well defined (and so is the one on the right-hand side, as by definition, a ≤ g(x) ≤ b for all
x ∈ [0, 2π]). Next, we see that Lemma 2.2 proves the theorem for f(y) = ym, for any m ≥ 0. By linearity
of the integral, this relation can be extended to any polynomial of the form f(y) = Pm(y) =

∑m
j=1 cj y

j .
The final step is made possible by Weierstrass’ theorem, stating that any continuous function f on [a, b]
can be uniformly approached by a sequence of polynomials (Pm, m ≥ 0), i.e.

lim
m→∞

sup
y∈[a,b]

|f(y)− Pm(y)| = 0

3



By the triangle inequality, we now have for any m ≥ 0∣∣∣∣∣ 1n
n∑
k=1

f
(
λ
(n)
k

)
− 1

2π

∫ 2π

0

f(g(x)) dx

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
k=1

f
(
λ
(n)
k

)
− 1

n

n∑
k=1

Pm

(
λ
(n)
k

)∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
k=1

Pm

(
λ
(n)
k

)
− 1

2π

∫ 2π

0

Pm(g(x)) dx

∣∣∣∣∣+

∣∣∣∣ 1

2π

∫ 2π

0

Pm(g(x)) dx− 1

2π

∫ 2π

0

f(g(x)) dx

∣∣∣∣
≤ 2 sup

y∈[a,b]
|f(y)− Pm(y)|+

∣∣∣∣∣ 1n
n∑
k=1

Pm

(
λ
(n)
k

)
− 1

2π

∫ 2π

0

Pm(g(x)) dx

∣∣∣∣∣ →n→∞ 2 sup
y∈[a,b]

|f(y)− Pm(y)|

Taking finally the limit m→∞ allows to conclude.

Remark 2.5. Without Assumption H, the theorem fails. Consider for example the sequence (tl, l ∈ Z)
with tl = δl1 (i.e. t1 = 1 and all other tl = 0). Then

T (n) =



0 1 0 · · · 0

0 0 1 0
...

...
. . .

. . .
. . . 0

... 0 0 1

0 · · · · · · 0 0


so all its eigenvalues λ

(n)
k = 0, but the function g(x) = eitx so in general

lim
n→∞

1

n

n∑
k=1

f
(
λ
(n)
k

)
= f(0) 6= 1

2π

∫ 2π

0

f
(
eitx
)
dx

In order for this relation to hold, f should be a polynomial, or more generally, an analytic function on C.
The reason why the theorem fails in this case is that Weierstrass’ theorem does not hold for continuous
functions on C.

Remark 2.6. On the other hand, the theorem can be generalized to Toeplitz matrices constructed from
an infinite sequence (tl, l ∈ Z) satisfying Assumption H and the following additional condition:∑

l∈Z
|tl| <∞

Under these assumptions, it still holds that g is a real-valued, bounded and continuous function, but the
proof of Lemma 2.2 becomes slightly more involved.

3 Asymptotic eigenvalue distribution

Theorem 2.4 may be rephrased as a weak convergence result for a sequence of distributions. To this end,
let us consider the function ft(y) = 1y≤t, where t ∈ R. ft is not a continuous function, but it can be
approximated by a sequence of continuous functions (although not uniformly, which might sometimes
create problems), implying that for almost all t ∈ R (details to follow below)

lim
n→∞

1

n

n∑
k=1

ft

(
λ
(n)
k

)
=

1

2π

∫ 2π

0

ft(g(x)) dx

The above line may be rephrased as

lim
n→∞

1

n
]{1 ≤ k ≤ n : λ

(n)
k ≤ t} =

1

2π
|{x ∈ [0, 2π] : g(x) ≤ t}|
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where ]A denotes the number of elements in the discrete set A and |B| denotes the Lebesgue measure of
B ∈ B(R). Let now

Fn(t) =
1

n
]{1 ≤ k ≤ n : λ

(n)
k ≤ t} and F (t) =

1

2π
|{x ∈ [0, 2π] : g(x) ≤ t}|

These are cumulative distribution functions (or simply “distributions”): Fn is the distribution of an

eigenvalue λ(n) picked uniformly at random among the eigenvalues λ
(n)
1 , . . . , λ

(n)
n of T (n), while F is

called the asymptotic eigenvalue distribution of the sequence of matrices T (n) 1. The precise mathematical
statement is now that the sequence Fn converges weakly towards F , i.e. that

lim
n→∞

Fn(t) = F (t) ∀t ∈ R continuity point of F

The rigorous proof of this statement follows from Carleman’s theorem and the following observation: the
moments of Fn are given by∫

R
ym dFn(y) = E

((
λ(n)

)m)
=

1

n

n∑
k=1

(
λ
(n)
k

)m
→

n→∞

1

2π

∫ 2π

0

(g(x))m dx

for all m ≥ 0, by Lemma 2.2. As g is a bounded function, these moments satisfy Carleman’s condition,
which implies the weak convergence of the sequence Fn towards the unique distribution F whose moments
are given by the above expression. Notice that Assumption H is implicitly used here, as it ensures that
the distributions are supported on the real line (for distributions on the complex plane, convergence of
moments alone does not guarantee weak convergence of the corresponding distributions).

Example 3.1. Let l0 = 1, t0 = 2 and t1 = t−1 = −1. In this case,

g(x) = 2− eitx − e−itx = 2(1− cos(x)) = 4 sin2(x/2)

so a = 0 and b = 4 here. The corresponding asymptotic eigenvalue distribution F is given by

F (t) =
1

2π
|{x ∈ [0, 2π] : g(x) ≤ t}

An easy way to compute F is to observe that for any continuous function f : [0, 4]→ R, we should have∫ 4

0

f(y) dF (y) =
1

2π

∫ 2π

0

f
(
4 sin2(x/2)

)
dx =

1

π

∫ π

0

f
(
4 sin2(x/2)

)
dx

Performing the change of variable y = 4 sin2(x/2), we obtain

dy = 4 sin(x/2) cos(x/2) dx i.e. dx =
1√

y(4− y)
dy

so finally, ∫ 4

0

f(y) dF (y) =

∫ 4

0

f(y)
1

π

1√
y(4− y)

dy

i.e. F admits the pdf

p(y) =
1

π

1√
y(4− y)

1]0,4[(y)

1F may also be interpreted as the distribution of an eigenvalue of the infinite-dimensional operator T (∞) picked uniformly
at random, whatever that means...
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Random matrices and communication systems: WEEK 9

In this lecture, we first give a quick reminder regarding distributions on the real line; we then recall the
notion of weak convergence of sequences of distributions and finally move to various characterizations of
this weak convergence, more particularly in terms of moments and Stieltjes transform.

1 Distributions without random variables

1.1 Distributions on the real line

Let B(R) be the Borel σ-field on R, that is, the smallest σ-field on R that contains all the open sets
in R; its elements B ∈ B(R) are called the Borel sets.1 Recall that a mapping f : R → R is said to
be Borel-measurable if for all B ∈ B(R), f−1(B) = {x ∈ R : f(x) ∈ B} ∈ B(R). In particular, any
continuous function is Borel-measurable.2

Definition 1.1. A (probability) distribution on R is a mapping µ : B(R)→ [0, 1] such that

µ(∅) = 0, µ(R) = 1 and if (Bn, n ≥ 1) ∈ B(R) are disjoint, then µ

⋃
n≥1

Bn

 =
∑
n≥1

µ(Bn)

Definition 1.2. The cumulative distribution function (cdf) associated to a distribution µ is the mapping
Fµ : R→ [0, 1] defined as

Fµ(t) = µ((−∞, t]), t ∈ R

Fact. The knowledge of the cdf Fµ is equivalent to that of the distribution µ.

There are two well known particular classes of distributions.

Discrete distributions, for which there exists a countable set C such that µ(C) = 1. In this case,

µ(B) =
∑

x∈B∩C
µ({x}) ∀B ∈ B(R)

and Fµ is a step function.

Continuous distributions, for which there exists a probability density fiunction (pdf) pµ : R → R+

such that

µ(B) =

∫
B

pµ(x) dx ∀B ∈ B(R)

In this case, Fµ is a continuous function.

1.2 Lebesgue’s integral

The Lebesgue integral of a Borel-measurable function f : R → R with respect to a distribution µ is
defined in three steps as follows.

1. First suppose f is of the form

f(x) =
∑
j≥1

yj 1Bj
(x), where yj ≥ 0 and Bj ∈ B(R) (1)

Then the integral is defined as ∫
R
f(x) dµ(x) =

∑
j≥1

yj µ(Bj)

1If one is not familiar with this notion, one may think of B(R) as being simply the set of (nearly!) all subsets of R.
2Again, one may simply consider that (nearly!) all functions are Borel-measurable.
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2. Next, suppose that f is Borel-measurable and non-negative (i.e. f(x) ≥ 0 for all x ∈ R). Define then
for n ≥ 1

fn(x) =
∑
j≥1

j − 1

2n
1{x∈R : j−1

2n ≤f(x)<
j

2n }(x), x ∈ R

Then one can check that for all n ≥ 1 and x ∈ R, fn(x) ≤ fn+1(x) as well as limn→∞ fn(x) = f(x). As
fn is of the form (1), we may define∫

R
f(x) dµ(x) = lim

n→∞

∫
R
fn(x) dµ(x) = lim

n→∞

∑
j≥1

j − 1

2n
µ
({
x ∈ R : j−1

2n ≤ f(x) < j
2n

})
Notice that as fn ≤ fn+1, the above sequence is increasing, so the limit always exists, but may take the
value +∞.

3. Assume now that f is any Borel-measurable function. In this case case, we say that the integral is
well defined only if ∫

R
|f(x)| dµ(x) <∞ (2)

and we set ∫
R
f(x) dµ(x) =

∫
R
f+(x) dµ(x)−

∫
R
f−(x) dµ(x)

where f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0).

It is worth noticing that condition (2) is satisfied for any distribution µ when f is Borel-measurable and
bounded, as ∫

R
|f(x)| dµ(x) ≤ sup

x∈R
|f(x)|

∫
R
dµ(x) = sup

x∈R
|f(x)|µ(R) = sup

x∈R
|f(x)| <∞

by assumption. In particular, let us consider, for a given t ∈ R, ft(x) = 1{x≤t}: ft is Borel-measurable
and bounded, and ∫

R
ft(x) dµ(x) =

∫ t

−∞
dµ(x) = µ((−∞, t]) = Fµ(t)

For discrete and continuous distributions, the Lebesgue integral simply reads:

For µ discrete,

∫
R
f(x) dµ(x) =

∑
x∈C

f(x)µ({x}). For µ continuous,

∫
R
f(x) dµ(x) =

∫
R
f(x) pµ(x) dx.

1.3 Objects associated to a distribution

The cdf is an example of object associated to a distribution (that moreover characterizes completely the
distribution). Here are other examples.

Moments.

Definition 1.3. Let µ be a distribution on R and k ≥ 0. If
∫
R |x|

k dµ(x) < ∞, we then define the
moment of order k associated to the distribution µ as

mk =

∫
R
xk dµ(x)

Here are some easy facts:

- As f(x) = xk is not a bounded function, the moment of order k of a distribution is not always well
defined (with the exception of discrete distributions supported on a finite set: all their all moments are
always finite).
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- If µ has a finite moment of order k, then all its moments of lower order l ≤ k are also finite. In general,
there is a limiting value k0 below which all moments are finite and above which all moments are infinite
(but k0 may of course take the value ∞).

- If there exists C > 0 such that µ([−C,C]) = 1 (we then say that µ is supported on a compact set), then
all the moments of µ are finite and

|mk| ≤
∫
R
|x|k dµ(x) =

∫ C

−C
|x|k dµ(x) ≤ Ck

∫ C

−C
dµ(x) = Ck

There are of course other examples of distributions which are not supported on a compact set and whose
moments are all finite (such as e.g. the Gaussian or the log-normal distributions).

In general, an important question is to decide whether a distribution is completely characterized by its
moments (which can only possibly happen when all the moments of the distribution are finite). The
answer is given by Carleman’s theorem.

Theorem 1.4. (Carleman) Let µ be a distribution and (mk, k ≥ 0) be the sequence of its moments. If
in addition ∑

k≥1

(m2k)−
1
2k =∞ (3)

then the distribution µ is the unique distribution with the sequence of moments (mk, k ≥ 0).

Condition (3) is actually a condition on the growth of the moments mk. It is satisfied in particular if
|mk| ≤ Ck for some C > 0 (which occurs e.g. for distributions supported on a compact set, as just seen
above). Indeed, in this case,

m2k ≤ C2k so (m2k)−
1
2k ≥ 1

C
, so

∑
k≥1

(m2k)−
1
2k =∞

More generally, if |mk| ≤ C exp(k log k), then condition (3) holds. This is the case for example for the
Gaussian distribution (in which case mk ∼ k!), but not for the log-normal distribution (in which case
mk ∼ exp(k2))

Stieltjes (or Cauchy) transform.

Definition 1.5. Let µ be a distribution on R and z ∈ C\R. The Stieltjes transform of µ is the mapping
gµ : C\R→ C defined as

gµ(z) =

∫
R

1

x− z
dµ(z), z ∈ C\R

Notice that for z ∈ C\R, the function x 7→ fz(x) = 1
x−z is bounded and continuous on the real line, so

gµ(z) is always well defined.

Basic properties.

• gµ is analytic on C\R

• Im gµ(z) > 0 for all z ∈ C such that Im z > 0

• limv→∞ v |gµ(iv)| = 1

Moreover, it turns out that any function g satisfying the above three properties is the Stieltjes transform
of a distribution µ on R. In addition, we have the following inversion formula:

If a < b are continuity points of Fµ, then

Fµ(b)− Fµ(a) = lim
ε↓0

1

π

∫ b

a

Im gµ(u+ iε) du

In the case where µ is a continuous distribution with pdf pµ, the above formula simplifies to

pµ(x) = lim
ε↓0

1

π
Im gµ(x+ iε) ∀x ∈ R

3



2 Weak convergence of sequences of distributions

Definition 2.1. Let (µn, n ≥ 1) be a sequence of distributions and µ be another distribution. The
sequence µn is said to converge weakly to µ as n goes to infinity if

lim
n→∞

Fµn(t) = Fµ(t) ∀t ∈ R continuity point of Fµ

Notation. µn =⇒
n→∞

µ.

So weak convergence of distributions means pointwise convergence of the corresponding cdfs, except in
the points where the limiting cdf makes a jump3. This definition has several equivalents, among which
the following, which is part of the so-called portmanteau theorem.

Proposition 2.2. µn =⇒
n→∞

µ if and only if for every bounded continuous function f : R→ R,

lim
n→∞

∫
R
f(x) dµn(x) =

∫
R
f(x) dµ(x)

Checking either of these criteria in order to prove weak convergence is difficult in general. In the sequel,
we propose other criteria that are easier to apply, in particular in random matrix theory.

2.1 Various characterizations of weak convergence

Via moments. The full version of Carleman’s theorem is given below.

Theorem 2.3. (Carleman) Let (µn, n ≥ 1) be a sequence of distributions and (mk, k ≥ 0) be a sequence
of numbers such that for all k ≥ 0,

lim
n→∞

∫
R
xkdµn(x) = mk

and such that the sequence (mk, k ≥ 0) satisfies condition (3). Then (mk, k ≥ 0) is a sequence of
moments to which corresponds a unique distribution µ, and µn converges weakly to µ.

Via Stieltjes transform.

Theorem 2.4. Let (µn, n ≥ 1) be a sequence of distributions and µ be another distribution. Then
µn =⇒

n→∞
µ if and only if

lim
n→∞

gµn
(z) = gµ(z)

for all z ∈ C+ = {z ∈ C : Im z > 0}.

The above two criteria are very useful for (random) matrices, for the following reason. Let A(n) be an

n× n Hermitian matrix, let λ
(n)
1 , . . . , λ

(n)
n be its real eigenvalues and let µn be the distribution of one of

these eigenvalues picked at random. Then

m
(n)
k =

∫
R
xk dµn(x) =

1

n

n∑
j=1

(
λ
(n)
j

)k
=

1

n
Tr

((
A(n)

)k)
and

gµn
(z) =

∫
R

1

x− z
dµn(x) =

1

n

n∑
j=1

1

λ
(n)
j − z

=
1

n
Tr

((
A(n) − zI

)−1)
In order to compute these quantities, one does actually not need to know what the eigenvalues λ

(n)
j are!

3Notice indeed that asking for pointwise convergence of a sequence of functions towards a limiting discontinuous function
in every point of R would be asking for too much.
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Random matrices and communication systems: WEEK 10

In this lecture, we first introduce the Catalan numbers and then state and prove the Wigner theorem (a
slightly modified version of the original theorem, actually).

1 Preliminary: the Catalan numbers

The Catalan numbers are defined as follows:

ck =
1

k + 1

(

2k
k

)

=
(2k)!

k!(k + 1)!
, k ≥ 0

So the sequence starts as 1, 1, 2, 5, 14, 42, ... These numbers have multiple combinatorial interpretations.
Let us give simply one here. We consider paths that evolve in discrete time over the integer numbers.
These paths go either up or down by one unit in one time step. We are interested in the number of paths
that start from 0 and go back to 0 in 2k time steps, without hitting the negative numbers in the interval.
Such paths are called Dyck paths and are illustrated on Figure 1 below.

0 2k

Figure 1. Dyck path

It turns out that for a given k, the number of Dyck paths of length 2k is equal to the Catalan number
ck. Here is the proof, also known as the reflection principle.

Proof. Let us first make the following trivial observation: the number of Dyck paths of length 2k is equal
to the total number of paths from (0, 0) to (2k, 0), minus the number of paths from (0, 0) to (2k, 0) that
do hit the negative numbers at least once in the interval.

For each of these paths hitting the negative numbers at least once, let us now define T as the first time
the number −1 is hit by the path, as illustrated on Figure 2 below. From T onwards, we can draw a
mirror path with respect to the horizontal axis with vertical coordinate −1, that necessarily lands in
position −2 at time 2k (the mirror position of 0 with respect to −1).

0 2k

−2

−1

T

Figure 2. Reflection principle

1



Counting therefore the number of paths from (0, 0) to (2k, 0) hitting the negative numbers at least once
is the same as counting the number of paths from (0, 0) to (2k,−2) hitting the negative numbers at least
once. But any such path must hit the negative numbers at some point, so the number we are computing
is simply the total number of paths from (0, 0) to (2k,−2).

Finally, we obtain that the number of Dyck paths of length 2k is equal to the total number of paths from
(0, 0) to (2k, 0) minus the total number of paths from (0, 0) to (2k,−2), which is equal to

(

2k
k

)

−
(

2k
k − 1

)

=
(2k)!

(k!)2
− (2k)!

(k − 1)! (k + 1)!
=

(2k)!

(k!)2

(

1− k

k + 1

)

=
1

k + 1

(

2k
k

)

= ck

The Catalan numbers also have the following interpretation. Let µ be the distribution with pdf

pµ(x) =
1

π

√

1

x
− 1

4
1{0 < x < 4} (1)

Then its moments are given by

mk =

∫ 4

0

xkpµ(x) dx =
1

k + 1

(

2k
k

)

= ck

The proof is left as an exercise in the homework. Notice that as the distribution µ is compactly supported
on the interval [0, 4], we know that

|mk| ≤ 4k (this can also be deduced directly from the definition of ck)

So the moments mk satisfy Carleman’s condition seen in the last lecture.

Remark 1.1. The above distribution µ is sometimes called the quarter circle law. Although this ter-
minology is not really appropriate for such a distribution (drawing pµ(x) as a function of x, we do not
see a quarter circle...), here is the reason for this denomination. Say µ is the distribution of a (positive)
random variable X . Then the distribution ν of

√
X has the following pdf:

pν(y) = pµ(y
2) 2y =

1

π

√

1

y2
− 1

4
2y 1{0 < y < 2} =

1

π

√

4− y2 1{0 < y < 2} (2)

which indeed has the form of a quarter circle.

2 Wigner’s theorem

Let H be an n× n random matrix with i.i.d. complex-valued entries such that for all 1 ≤ j, l ≤ n:

(i) E
(

|hjl|2
)

= 1;

(ii) E
(

|hjl|k
)

< ∞ for all k ≥ 0;

(iii) E
(

hk
jl hjl

k′
)

= 0 if k 6= k′.

Notice that these last two assumptions are satisfied in particular when

(ii’) the distribution of hjl is compactly supported;

(iii’) the distribution of hjl is circularly symmetric.

Also, assumptions (i)-(iii) are satisfied when hjl are i.i.d.∼ NC(0, 1) random variables.
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Let us now consider the (rescaled) Wishart random matrix W (n) = 1
n
HH∗; this matrix is positive

semi-definite, so it is unitarily diagonalizable and its eigenvalues λ
(n)
1 , . . . , λ

(n)
n are non-negative. Let also

µn =
1

n

n
∑

j=1

δ
λ
(n)
j

i.e. µn(B) =
1

n
♯{1 ≤ j ≤ n : λ

(n)
j ∈ B}, B ∈ B(R)

µn is called the empirical eigenvalue distribution of the matrix W (n). Notice that it is a random distribu-

tion, because for each n, the eigenvalues λ
(n)
1 , . . . , λ

(n)
n are random. For a given realization of the λ(n)’s,

µn may still be interpreted as the distribution of one of these eigenvalues picked uniformly at random.

Wigner’s theorem is then the following.

Theorem 2.1. Under assumptions (i)-(iii), almost surely, the sequence (µn, n ≥ 1) converges weakly
towards the (deterministic) distribution µ, whose pdf is given by (1).

Before starting with the proof of this theorem, let us mention the following immediate corollary. Let

σ
(n)
1 , . . . , σ

(n)
n be the singular values of the matrix H(n) = 1√

n
H . As W (n) = H(n) (H(n))∗, it holds that

σ
(n)
j =

√

λ
(n)
j . Let also

νn =
1

n

n
∑

j=1

δ
σ
(n)
j

The above theorem can now be rephrased as:

Corollary 2.2. Under assumptions (i)-(iii), almost surely, the sequence (νn, n ≥ 1) converges weakly
towards the (deterministic) distribution ν, whose pdf is given by (2).

Proof of Theorem 2.1. In order to prove the result, we will use Carleman’s theorem, which requires us to
show that almost surely,

m
(n)
k =

∫

R

xkdµn(x) →
n→∞

ck ∀k ≥ 0 (3)

where ck are the Catalan numbers, that is, the moments of the distribution µ. In the sequel, we show
that

∣

∣

∣E

(

m
(n)
k

)

− ck

∣

∣

∣ = O

(

1

n

)

∀k ≥ 0 (4)

Using similar methods (involving slightly more combinatorics, though), it can also be shown that

Var
(

m
(n)
k

)

= O

(

1

n2

)

∀k ≥ 0 (5)

The last two lines imply (3). Indeed, for all ε > 0,

∑

n≥1

P

(∣

∣

∣m
(n)
k − ck

∣

∣

∣ > ε
)

≤ 1

ε2

∑

n≥1

E

(

(

m
(n)
k − ck

)2
)

=
1

ε2

∑

n≥1

E

(

(

m
(n)
k − E

(

m
(n)
k

)

+ E

(

m
(n)
k

)

− ck

)2
)

≤ 2

ε2

∑

n≥1

(

Var
(

m
(n)
k

)

+
(

E

(

m
(n)
k

)

− ck

)2
)

< ∞

as both terms in the series are O(1/n2) by (4) and (5). The Borel-Cantelli lemma allows then to conclude
that for all ε > 0,

P

(∣

∣

∣m
(n)
k − ck

∣

∣

∣ > ε infinitely often
)

= 0

which is saying that m
(n)
k converges almost surely towards ck as n → ∞.
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We now set out to prove (4). Let us first develop

E

(

m
(n)
k

)

= E

(∫

R

xk dµn(x)

)

= E





1

n

n
∑

j=1

(

λ
(n)
j

)k



 = E

(

1

n
Tr

(

(

W (n)
)k

))

=
1

nk+1
E

(

Tr
(

(HH∗)
k
))

=
1

nk+1

n
∑

j1,l1,...,jk,lk=1

E
(

hj1,l1 hj2,l1 · · ·hjk,lk hj1,lk

)

(6)

Let us first look at the cases k = 1 and k = 2 for simplicity. For k = 1, we have

E

(

m
(n)
1

)

=
1

n2

n
∑

j,l=1

E
(

|hjl|2
)

= 1

and for k = 2, because of assumption (iii) on the matrix entries hjl, as well as the independence assump-
tion, we have

E

(

m
(n)
2

)

=
1

n3

n
∑

j1,j2,l1,l2=1

E
(

hj1,l1 hj2,l1hj2,l2 hj1,l2

)

=
1

n3





n
∑

j,l=1

E
(

|hjl|4
)

+
∑

j,l1 6=l2

E
(

|hj,l1 |2 |hj,l2 |2
)

+
∑

j1 6=j2,l

E
(

|hj1,l|2 |hj2,l|2
)





=
1

n3

(

O
(

n2
)

+ n2 (n− 1) + n2 (n− 1)
)

= 2 +O

(

1

n

)

which proves the claim for these two cases. Notice that in the second case, there are a priori n4 terms in
the sum, but only O

(

n3
)

terms bring a non-zero contribution to the overall sum.

The remainder of the proof is left to the next lecture.

Remark 2.3. Notice that equation (5), which is not proven here, could seem a priori quite unexpected.
It indeed says that

Var
(

m
(n)
k

)

= Var





1

n

n
∑

j=1

(

λ
(n)
j

)k



 = O

(

1

n2

)

In case the λ(n)’s were n i.i.d. random variables, one would rather expect this variance to be O(1/n).
But the eigenvalues of a random matrix are far from being i.i.d. in general, as already observed when
computing their joint distribution in Lecture 6 in the Gaussian case. They are actually n random variables
built from a matrix with O(n2) i.i.d. entries, which is in concordance with the fact that the above variance
is O(1/n2).
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Random matrices and communication systems: WEEK 11

1 End of the proof of Wigner’s theorem

Let us first recall equation (6) from last lecture:

E
(
m

(n)
k

)
=

1

nk+1

n∑
j1,l1,...,jk,lk=1

E
(
hj1,l1 hj2,l1 · · ·hjk,lk hj1,lk

)
(1)

Our aim in the following is to deduce from there that∣∣∣E(m(n)
k

)
− ck

∣∣∣ = O

(
1

n

)
(2)

where ck is the kth Catalan number. For a given k ≥ 0, we need to find out which of the terms in (1)
bring a non-negligible contribution to this expression in the large n limit. Observe first that to each term

E
(
hj1,l1 hj2,l1 · · ·hjk,lk hj1,lk

)
corresponds a sequence (j1, l1, j2, l2, . . . , jk, lk), or equivalently a directed bipartite graph from {1, . . . , n}
to {1, . . . , n}, defined pictorially as follows:

jj j

l1 l3 l21

1 3 1 2 n

n

Figure 1. Directed bipartite graph associated to E
(
hj1,l1 hj2,l1 hj2,l2 hj3,l2 hj3,l3 hj1,l3

)
The vertex j1 is called the root of the graph (it is both its starting and ending point). We will say that
two sequences or graphs have the same structure if the order of appearance of new vertices in the sequence
is the same. For example, the two sequences on the left-hand side below have the same structure, while
the two on the right-hand side don’t:

j1 l1 j2 l2 j3 l3 j4 l4
1 7 1 4 3 7 3 2
2 4 2 5 8 4 8 4

j1 l1 j2 l2 j3 l3 j4 l4
1 7 1 4 3 7 3 2
2 4 2 5 8 5 8 4

Because of assumption (iii) on the matrix entries hjl, as well as the independence assumption, we see
that in order for a given sequence to bring a non-zero contribution, it is necessary that whenever an edge
from j to l appears in the graph (possibly a certain number of times), then it should also appear the same
number of times in the opposite direction (that is, from l to j). A sequence or graph with this property
is said to be even. Notice that an even graph with 2k edges can have at most k+ 1 vertices, as each edge
in the graph is doubled.

The question is now: for an even graph with 2k edges, p vertices and a given structure, how many
graphs with the same structure can we possibly have by permuting the positions of the vertices on each
side? Clearly, there are at most n choices for each vertex, so the total number of choices is less than np.
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Therefore,

E
(
m

(n)
k

)
=

1

nk+1

∑
(j1,l1,...,jk,lk) even

E
(
hj1,l1 hj2,l1 · · ·hjk,lk hj1,lk

)
=

1

nk+1

k+1∑
p=2

∑
(j1,l1,...,jk,lk)

even with p vertices

E
(
hj1,l1 hj2,l1 · · ·hjk,lk hj1,lk

)

=
1

nk+1

∑
(j1,l1,...,jk,lk)

even with k + 1 vertices

E
(
hj1,l1 hj2,l1 · · ·hjk,lk hj1,lk

)
+O

(
1

n

)

(Observe also that for a given p, each term is the sum is bounded because of assumption (ii).)

In conclusion, the only graphs that can possibly bring a non-negligible contribution are even graphs with
p = k + 1 vertices. In such graphs, each edge leads to a new vertex, so the resulting graph is actually
a tree. For a tree with a given structure, there are order nk+1 different choices for the positions of the
vertices. To be more precise, as the graph is bipartite, there are

n (n− 1) . . . (n− p1 + 1)n (n− 1) · · · (n− p2 + 1) choices (3)

where p1, p2 are the number of vertices on both sides of the graph, with p1 + p2 = k + 1. In all cases,
the above expression is of order np1+p2 = nk+1 as n grows large and k remains fixed. This factor nk+1

compensates therefore exactly with the 1/nk+1 factor in front of the sum. Notice that in such graphs, each
edge appears exactly once in each direction of the original directed graph, so E

(
hj1,l1 hj2,l1 · · ·hjk,lk hj1,lk

)
is a product of E

(
|hjl|2

)
= 1 by assumption (i), therefore the product itself is equal to 1.

The only question remaining is therefore: how many different structures of even graphs with 2k edges
and k+ 1 vertices do there exist for a given k? In order to answer this question, let us make yet another
identification: starting from the root j1, explore the corresponding directed graph “following the arrows”
and draw next to that a path that goes either up or down by one unit at each time step, according to
the following rule:{
if the current edge is a new edge, then go up by one unit

if the current edge has already been visited (in the other direction, necessarily), then go down by one unit

The path being drawn is nothing but a Dyck path seen at the beginning of this lecture: it starts in 0,
lands in 0 after 2k steps and cannot drop below zero in the meanwhile. Therefore, the number of different
possible tree structures with 2k edges is equal to the number Dyck paths of length 2k, that is, the Catalan
number ck. Gathering all the above observations together, we finally obtain (2):

E
(
m

(n)
k

)
= ck +O

(
1

n

)
�

2 Largest eigenvalue

The results obtained in the previous lecture tell us something about the asymptotic distribution of a
“typical” eigenvalue of the matrix W (n), that is, an eigenvalue picked uniformly at random. What can

we say now on the extreme eigenvalues of such matrices, that is, the largest and the smallest one λ
(n)
max

and λ
(n)
min? It is first important to remember what Wigner’s theorem actually says: the fact that almost

surely, µn converges weakly towards µ means that for all a < b

µn([a, b]) =
1

n
]{1 ≤ j ≤ n : λ

(n)
j ∈ [a, b]} →

n→∞
µ([a, b]) =

∫ b∧4

a∨0
pµ(x)dx

2



Therefore, as soon as the interval [a, b] has a non-empty intersection with the open interval ]0, 4[, the
quantity on the right-hand side is strictly positive. This is saying in turn that the number of eigenvalues
in this interval grows linearly in n as n grows to infinity. This applies in particular to the intervals [0, ε]
and [4− ε, 4], for any fixed ε > 0, implying that almost surely, as n grows to infinity, both

lim
n→∞

λ
(n)
min ≤ ε and lim

n→∞
λ(n)max ≥ 4− ε

and therefore
lim
n→∞

λ
(n)
min ≤ 0 and lim

n→∞
λ(n)max ≥ 4

In the present case, this settles the limiting value of the smallest eigenvalue, as we know on the other

hand that λ
(n)
min ≥ 0 for all n, because W (n) is positive semi-definite.

On the contrary, it is unclear whether limn→∞ λ
(n)
max = 4. Indeed, it could well be that one eigenvalue

diverges from the interval [0, 4] in the large n limit: this would not affect the result of the Wigner theorem.
Indeed, the weight of one eigenvalue in the distribution µn is equal to 1/n, so an isolated eigenvalue cannot
contribute to change the limiting distribution µ.

In order to study the asymptotic behavior of λ
(n)
max, we will again use moments. This is made possible

thanks to the following fact: for all k ≥ 1,

λ(n)max =
(

(λ(n)max)k
)1/k

≤

 n∑
j=1

(λ
(n)
j )k

1/k

=
(

Tr
(

(W (n))k
))1/k

so

λ(n)max ≤ lim
k→∞

(
Tr
(

(W (n))k
))1/k

(and this last bound is actually known to be tight). We now set out to prove that under the following
assumption:

hik = exp(iφjk) where φjk are i.i.d. ∼ U([0, 2π]) random variables (4)

(which implies assumptions (i)-(iii) made in the last lecture), we have

lim
n→∞

E
(
λ(n)max

)
= 4 (5)

Using more refined techniques, one can prove the same result under weaker assumptions, as well as the
almost sure version of the result: let us skip this.

Proof of equation (5). From the explanations above, it is clear that limn→∞ E
(
λ
(n)
max

)
≥ 4, so what

remains to be proven is the upper bound

lim
n→∞

E
(
λ(n)max

)
≤ 4

Notice first that as f(x) = x1/k is concave, we obtain by Jensen’s inequality1,

E
(
λ(n)max

)
= E

(
lim
k→∞

(
Tr
(

(W (n))k
))1/k)

≤ lim
k→∞

E
(

Tr
(

(W (n))k
))1/k

As we have seen before,

E
(

Tr
(

(W (n))k
))

=
1

nk
E
(
Tr
(
(HH∗)k

))
=

1

nk

n∑
j1,l1,...,jk,lk=1

E
(
hj1,l1 hj2,l1 · · ·hjk,lk hj1,lk

)
which is equation (1), up to a factor 1/n. We now perform a similar analysis as before, but notice that
we are interested in a different order of limits here: we first take k →∞ and then n→∞.

1and also by Fatou’s lemma, which is needed here in order to interchange the limit and the expectation

3



Observe that as before, only the sequences (j1, l1, . . . , jk, lk) that correspond to even bipartite graphs
bring a non-zero contribution to the sum, so

E
(

Tr
(

(W (n))k
))

=
1

nk

∑
(j1,l1,...,jk,lk) even

E
(
hj1,l1 hj2,l1 · · ·hjk,lk hj1,lk

)
=

1

nk

k+1∑
p=2

∑
(j1,l1,...,jk,lk)

even with p vertices

E
(
hj1,l1 hj2,l1 · · ·hjk,lk hj1,lk

)

Notice also that for an even graph, the expression

E
(
hj1,l1 hj2,l1 · · ·hjk,lk hj1,lk

)
is the expectation of a product of even powers of |hjl|, which are all equal to 1 here, because of assumption
(4). So we simply have

E
(

Tr
(

(W (n))k
))

=
1

nk

k+1∑
p=2

N(k, p)

where N(k, p) denotes the number of even graphs with 2k edges and p vertices (with 2 ≤ p ≤ k+ 1). We
have seen before that

N(k, k + 1) ∼ ck nk+1

as n gets large. It also holds that
k+1∑
p=2

N(k, p) ≤ ck nk+1

Indeed, when counting the number of graphs with 2k edges and k + 1 vertices, we identified above ck
different structures for such graphs and slightly less than nk+1 graphs with a given structure, because of
the constraint of having disjoint vertices on each side of the graph; see equation (3). Observe now that if
we relax this constraint, we obtain all possible graphs with 2k edges and k + 1 or less vertices. As there
are at most n choices for each vertex, the total number of such graphs does not exceed ck n

k+1.

This finally implies that

E
(
λ(n)max

)
≤ lim
k→∞

(
1

nk
ck n

k+1

)1/k

= lim
k→∞

(nck)1/k ≤ 4, for all n ≥ 1

as we have already seen that ck ≤ 4k (and notice that as we consider first k → ∞ and n fixed, the
multiplicative factor n disappears in the large k limit). This completes the proof. �.
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Random matrices and communication systems: WEEK 12

In this lecture, we reprove the theorem from last time using the Stieltjes transform method.

1 Marčenko-Pastur’s theorem

Let H be an n× n random matrix with i.i.d. complex-valued entries such that for all 1 ≤ j, l ≤ n:

(i) E(hjl) = 0, E
(
|hjl|2

)
= 1;

(ii) the distribution of hjl is compactly supported (this second assumption may be relaxed).

As last time, let us considerW (n) = 1
n HH

∗, λ
(n)
1 , . . . , λ

(n)
n its (non-negative) eigenvalues and the empirical

distribution µn = 1
n

∑n
j=1 δλ(n)

j
. A particular instance of Marčenko-Pastur’s theorem is the following.

Theorem 1.1. Under assumptions (i) and (ii), almost surely, the sequence (µn, n ≥ 1) converges weakly
towards the quarter-circle law µ, whose pdf is given by

pµ(x) =
1

π

√
1

x
− 1

4
1{0<x<4}

As a preliminary to the proof of the theorem, let us consider, for a given z ∈ C\R, the quadratic equation:

z g(z)2 + z g(z) + 1 = 0 (1)

This quadratic equation has two solutions

g±(z) = −1

2
±
√

1

4
− 1

z

It turns out that g+(z) is the Stieltjes transform of the above distribution µ. The proof is left as an
exercise in the homework.

Proof of Theorem 1.1 (sketch).
The strategy for today is to use the characterization of weak convergence via Stieltjes transform: a
sequence of distributions converges weakly towards a limiting distribution if the corresponding sequence
of Stieltjes transforms converges pointwise on C+ = {z ∈ C : Im z > 0} towards the limiting Stieltjes
transform. Thus, we will prove that almost surely, gn(z) converges in the large n limit towards a solution
of equaton (1). As all the gn are by definition Stieltjes transforms, but only one of the two solutions of
this equation is a Stieltjes transform, a continuity argument allows then to conclude that gn can only
converge to g+ and not to g−.

The rule of the game is therefore now to try writing gn(z) on both sides of an equality sign. To this end,
let us compute

gn(z) =

∫
R

1

x− z
dµn(x) =

1

n

n∑
j=1

1

λ
(n)
j − z

=
1

n
Tr

((
W (n) − zI

)−1)
First notice that W (n) = 1

n HH
∗ = 1

n

∑n
k=1 hk h

∗
k, where hk is the kth column of H (and is therefore

n× 1). This way, W (n) is expressed as a sum of rank one n× n matrices. For a given 1 ≤ k ≤ n, let us
define

W
(n)
k = W (n) − 1

n
hk h

∗
k =

1

n

n∑
l=1, l 6=k

hl h
∗
l

as well as the resolvents

G(n)(z) =
(
W (n) − zI

)−1
and G

(n)
k (z) =

(
W

(n)
k − zI

)−1
1



Notice that the object we are interested in is gn(z) = 1
n Tr

(
G(n)(z)

)
. Let us now prove the following two

lemmas.

Lemma 1.2.
1

n
h∗kG

(n)(z)hk =
1
n h
∗
kG

(n)
k (z)hk

1 + 1
n h
∗
kG

(n)
k (z)hk

Proof. Let us compute

h∗kG
(n)
k (z)

(
G(n)(z)

)−1
= h∗kG

(n)
k (z)

(
W (n) − zI

)
= h∗kG

(n)
k (z)

(
W

(n)
k − zI +

1

n
hk h

∗
k

)
= h∗k +

1

n
h∗kG

(n)
k (z)hk h

∗
k =

(
1 +

1

n
h∗kG

(n)
k (z)hk

)
h∗k

Therefore,

h∗kG
(n)
k (z) =

(
1 +

1

n
h∗kG

(n)
k (z)hk

)
h∗kG

(n)(z)

and

h∗kG
(n)
k (z)hk =

(
1 +

1

n
h∗kG

(n)
k (z)hk

)
h∗kG

(n)(z)hk

which concludes the proof.

Lemma 1.3.

gn(z) =
1

n
Tr
(
G(n)(z)

)
= − 1

nz

n∑
k=1

1

1 + 1
n h
∗
kG

(n)
k (z)hk

Proof. Let us compute

1 =
1

n
Tr(I) =

1

n
Tr
((
W (n) − zI

)
G(n)(z)

)
=

1

n
Tr

(
1

n

n∑
k=1

hk h
∗
kG

(n)(z)− z G(n)(z)

)

=
1

n

n∑
k=1

(
1

n
h∗kG

(n)(z)hk

)
− z gn(z) =

1

n

n∑
k=1

(
1
n h
∗
kG

(n)
k (z)hk

1 + 1
n h
∗
kG

(n)
k (z)hk

)
− z gn(z)

by Lemma 1.2. So

z gn(z) =
1

n

n∑
k=1

(
1
n h
∗
kG

(n)
k (z)hk

1 + 1
n h
∗
kG

(n)
k (z)hk

− 1

)
= − 1

n

n∑
k=1

1

1 + 1
n h
∗
kG

(n)
k (z)hk

which concludes the proof.

Notice that so far, these formulas hold for any matrix of the form W (n) = 1
n HH

∗, without any further
assumption on the matrix H. On the contrary, the next lemma relies strongly on the assumptions (i)
and (ii).

Lemma 1.4. Under assumptions (i) and (ii), for all z ∈ C\R and all ε > 0, there exists C > 0 independent
of n such that

P
(∣∣∣∣ 1n h∗kG(n)

k hk −
1

n
Tr
(
G(n)(z)

)∣∣∣∣ ≥ ε) ≤ C

n2

which implies by the Borel-Cantelli lemma that

1

n
h∗kG

(n)
k hk −

1

n
Tr
(
G

(n)
k (z)

)
→

n→∞
0 almost surely

2



We do not prove this lemma, but simply show in the following that for all n ≥ 1,

E
(

1

n
h∗kG

(n)
k hk −

1

n
Tr
(
G

(n)
k (z)

))
= 0

which also requires the use of the assumptions made above:

E
(

1

n
h∗kG

(n)
k hk

)
=

1

n

n∑
j,l=1

E
(
hjk

(
W

(n)
k − zI

)−1
jl

hlk

)

As the matrix W
(n)
k does not “contain” hk, the kth column of H, it is independent of both hjk and hlk,

so

E
(

1

n
h∗kG

(n)
k hk

)
=

1

n

n∑
j,l=1

E
(
hjk hlk

)
E
((

W
(n)
k − zI

)−1
jl

)
(∗)
=

1

n

n∑
j=1

E
((

W
(n)
k − zI

)−1
jj

)

= E
(

1

n
Tr
(
W

(n)
k − zI

))
= E

(
1

n
Tr
(
G

(n)
k (z)

))
where (∗) follows from the fact that E(hjk hlk) = δjl, according to assumption (i) and the independence
assumption.

The actual proof of Lemma 1.4 relies on the use of Chebychev’s inequality with φ(x) = x4 and a similar
analysis of the expectation (except that one must consider the moment of order 4 instead of the first
order moment).

The last lemma is a technicality, which holds again for any matrix of the form W (n) = 1
n HH

∗.

Lemma 1.5. For all z ∈ C\R,∣∣∣∣ 1nTr
(
G

(n)
k (z)

)
− 1

n
Tr
(
G(n)(z)

)∣∣∣∣ ≤ 1

n |Im z|

The proof of this lemma is still rather long for a technicality and is therefore omitted.

Gathering together the results of Lemmas 1.3, 1.4 and 1.5, we obtain that for large values of n,

gn(z) =
1

n
Tr
(
G(n)(z)

)
= − 1

nz

n∑
k=1

1

1 + 1
n h
∗
kG

(n)
k (z)hk

' − 1

nz

n∑
k=1

1

1 + 1
n Tr

(
G

(n)
k (z)

) ' −1

z

1

1 + 1
n Tr

(
G(n)(z)

) = − 1

z (1 + gn(z))

which may be rewritten as
z gn(z)2 + z gn(z) + 1 ' 0

Taking some more precautions, we can conclude that gn(z) converges almost surely towards a solution
of the quadratic equation (1), which should be chosen as g+ for the reasons explained above. This
“completes” the proof of the theorem. �
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Random matrices and communication systems: WEEK 13

1 Capacity of multiple antenna channels

1.1 Finite-size anaylsis

Let us come back the multiple antenna channel considered in Lecture 3:

Y = HX + Z

where H is an n × n random channel matrix with i.i.d. NC(0, 1) entries, varying ergodically over time,
whose realizations are known at the receiver, but not at the transmitter. We have seen in Lecture 3 that
the ergodic capacity of such a system is given by

Cerg = E
(

log det

(
I +

P

n
HH∗

))
= E

 n∑
j=1

log
(

1 + Pλ
(n)
j

)
where the expectation is taken over all possible realizations of the random matrix H and λ

(n)
1 , . . . , λ

(n)
n

are the non-negative eigenvalues of the n × n Wishart matrix W (n) = 1
n HH

∗. This may be further
rewritten as

Cerg = nE
(

log
(

1 + Pλ(n)
))

where λ(n) is one of the eigenvalues λ
(n)
1 , . . . , λ

(n)
n picked uniformly at random. We have seen in Lecture

7 that the distribution of λ(n) is given by

p(n)(λ) = e−nλ
n−1∑
l=0

Ll(nλ)2

where the Ll(·) are the Laguerre polynomials. Therefore,

Cerg = n

∫ ∞
0

dλ p(n)(λ) log(1 + Pλ) = n

n−1∑
l=0

∫ ∞
0

dλ e−nλ Ll(nλ)2 log(1 + Pλ)

1.2 Asymptotic analysis

In order to analyze the behavior of the ergodic capacity in the large n limit, let us rewrite it as

Cerg(n) = E

 n∑
j=1

log
(

1 + Pλ
(n)
j

) = nE
(∫

R
log(1 + Px) dµn(x)

)

where

µn =
1

n

n∑
j=1

δ
λ
(n)
j

is the empirical eigenvalue distribution of the matrix W (n) = 1
n HH

∗. We have seen in Lectures 10-12
that almost surely, µn converges weakly towards the limiting deterministic distribution µ whose pdf is
given by

pµ(x) =
1

π

√
1

x
− 1

4
1{0<x<4}

1



This is saying that almost surely, for any bounded continuous function f : R→ R,

lim
n→∞

∫
R
f(x) dµn(x) =

∫
R
f(x)dµ(x)

Taking expectations on both sides (which is OK here, thanks to the dominated convergence theorem),
we obtain

lim
n→∞

E
(∫

R
f(x) dµn(x)

)
=

∫
R
f(x)dµ(x)

for any bounded continuous function f : R→ R (remember that µ is deterministic). We would like now
to apply this to f(x) = log(1 + Px), which would allow us to conclude that

lim
n∞

Cerg(n)

n
= lim
n→∞

E
(∫

R
log(1 + Px) dµn(x)

)
=

∫ 4

0

log(1 + Px) pµ(x) dx

therefore proving that Cerg(n) is of order n for large values of n and at the same time providing an explicit
expression for the multiplicative factor.

A first concern is that f(x) = log(1 + Px) is not defined for x < −1/P , but as both µn and µ are
supported on [0,∞), this is not a problem. The other worry is that f is unbounded. To this end, let us
define fM (x) = min(f(x),M), which is bounded and continuous for any M > 0. This allows us to write,
for fixed values of n and M∣∣∣∣E(∫ ∞

0

f(x) dµn(x)

)
−
∫ ∞
0

f(x)dµ(x)

∣∣∣∣ ≤ ∣∣∣∣E(∫ ∞
0

f(x) dµn(x)

)
− E

(∫ ∞
0

fM (x) dµn(x)

)∣∣∣∣
+

∣∣∣∣E(∫ ∞
0

fM (x) dµn(x)

)
−
∫ ∞
0

fM (x) dµ(x)

∣∣∣∣+

∣∣∣∣∫ ∞
0

fM (x) dµ(x)−
∫ ∞
0

f(x) dµ(x)

∣∣∣∣
≤ E

(∫ ∞
xM

f(x) dµn(x)

)
+

∣∣∣∣E(∫ ∞
0

fM (x) dµn(x)

)
−
∫ ∞
0

fM (x) dµ(x)

∣∣∣∣+

∫ ∞
xM

f(x) dµ(x)

where xM = inf{x > 0 : f(x) ≥M} = 1
P (eM − 1). By the weak convergence result above, we know that

the term in the middle converges to zero for any value of M , so

lim
n→∞

∣∣∣∣E(∫ ∞
0

f(x) dµn(x)

)
−
∫ ∞
0

f(x)dµ(x)

∣∣∣∣ ≤ lim
n→∞

E
(∫ ∞

xM

f(x) dµn(x)

)
+

∫ ∞
xM

f(x) dµ(x)

for any M > 0. We also know that
∫∞
xM

f(x) dµ(x) = 0 for xM > 4 (as µ is supported on [0, 4]), so there

remains to prove that (also for xM > 4)

lim
n→∞

E
(∫ ∞

xM

f(x) dµn(x)

)
= 0

Notice that

E
(∫ ∞

xM

f(x) dµn(x)

)
=

1

n

n∑
j=1

E
(
f(λ

(n)
j ) 1{λ(n)

j ≥xM}

)
≤ E

(
f(λ(n)max) 1{λ(n)

max≥xM}

)
As f(x) = log(1 + Px) ≤ Px, this is further bounded above by

P E
(
λ(n)max 1{λ(n)

max≥xM}

)
In Lecture 11, we have seen (under slightly different assumptions, though) that limn→∞ E(λ

(n)
max) ≤ 4.

Similar refined estimates on λ
(n)
max allow to conclude that the above expression converges to zero as n→∞

for xM > 4.

2



2 Diversity-multiplexing tradeoff

Consider now the same scenario as above, except for the fact that H is fixed over time (see Lecture 4).
In this case, the capacity of the multiple antenna channel is equal to zero, and the outage probability is
given by

Pout(R) = inf
Q≥0 : Tr(Q)≤P

P(log det(I +HQH∗) < R)

where again, the probability is taken over all possible realizations of the random matrix H. For a fixed
value of n, we would like to characterize the behavior of this outage probability in the high SNR regime
(that is, as P gets large), with the idea that it can be made vanishingly small in this regime. In the
ergodic case, we have seen that for large P (see Lecture 3),

Cerg = sup
Q≥0 : Tr(Q)≤P

E(log det(I +HQH∗)) ' n logP

So in order to obtain a small outage probability, the target rate R chosen in the above expression should
not be higher than n logP . Let us therefore choose R = r logP , where 0 ≤ r ≤ n: r is called the target
multiplexing gain.

A priori, the analysis of the outage probability is particularly difficult, as the above minimization problem
remains unsolved. But notice that

P(log det(I + PHH∗) < r logP ) ≤ Pout(r logP ) ≤ P
(

log det

(
I +

P

n
HH∗

)
< r logP

)
Indeed, Q = P

n I is a possible candidate for the minimization problem, which explains the inequality on
the right-hand side. On the other hand, any matrix Q ≥ 0 satisfying Tr(Q) ≤ P also satisfies Q ≤ PI,
which implies the inequality on the left-hand side. Observe now that as P →∞,

P
(

log det

(
I +

P

n
HH∗

)
< r logP

)
.
= P(log det(I + PHH∗) < r log(nP ))

= P(log det(I + PHH∗) < r (log n+ logP ))
.
= P(log det(I + PHH∗) < r logP )

where the notation f(P )
.
= g(P ) stands for limP→∞

log(f(P ))
logP = limP→∞

log(g(P ))
logP . This together with the

previous inequalities allows us to conclude that

Pout(r logP )
.
= P(log det(I + PHH∗) < r logP )

As mentioned above, by choosing the multiplexing gain r smaller than n, we expect the outage probability
to converge to zero as P gets large. Our aim in the following is to discover at which speed, depending on
r, does this probability converge to zero, namely to find the exponent d(r) satisfying

Pout(r logP )
.
= P−d(r)

More formally, this exponent, also known as the diversity order, is defined as

d(r) = lim
P→∞

− log(Pout(r logP ))

logP

which the above analysis allows us to rewrite as

d(r) = lim
P→∞

− log(P(log det(I + PHH∗) < r logP ))

logP

The computation of d(r), which requires the knowledge of the joint eigenvalue distribution of the matrix
HH∗, will be the subject of the next lecture.
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Random matrices and communication systems: WEEK 14

1 Diversity-multiplexing tradeoff (cont’d)

Remember from last lecture that we are after computing the diversity order of a multiple antenna channel:

d(r) = lim
P→∞

− log(Pout(r logP ))

logP
= lim
P→∞

− log(P(log det(I + PHH∗) < r logP )))

logP

where H is an n× n matrix with i.i.d.∼ NC(0, 1) entries (and n is fixed). The above probability can be
rewritten as

P(log det(I + PHH∗) < r logP ) = P
(∑n

j=1 log(1 + Pλj) < r logP
)

where λ1, . . . , λn are the eigenvalues of the matrix HH∗, which are all non-negative. In Lecture 6, we
have seen that the joint distribution of these eigenvalues is given by

p(λ1, . . . , λn) = cn

n∏
j=1

e−λj
∏
j<k

(λk − λj)2 for λ1, . . . , λn ≥ 0

where cn is some positive constant. Using this, the above probability can be further rewritten as an
n-fold integral:

P(log det(I + PHH∗) < r logP ) =

∫
Dλ(r)

p(λ1, . . . , λn) dλ1 · · · dλn

where

Dλ(r) =

0 ≤ λ1 ≤ . . . ≤ λn :

n∑
j=1

log(1 + Pλj) < r logP


(notice that the eigenvalues λ1, . . . , λn are ordered in increasing order here). The explicit computation
of this integral remains a challenge, because of the highly correlated nature of the eigenvalues. We will
see below that taking the high SNR limit (P →∞) in the above expression allows to drastically simplify
the analysis. To this end, let us make the change of variables:

λj = P−αj = exp(−αj logP ), so dλj = −(logP ) exp(−αj logP ) dαj

This change of variable, even though depending on P , is perfectly valid for given value of P , and therefore
also in the limit P → ∞ (provided some care is taken here). This gives rise to the following expression
for the above probability:

P(log det(I + PHH∗) < r logP ) =

∫
Dα(r)

q(α1, . . . , αn) dα1 · · · dαn

where

q(α1, . . . , αn) = cn exp

− n∑
j=1

P−αj

∏
j<k

(
P−αj − P−αk

)2
(logP )n exp

− n∑
j=1

αj logP


and

Dα(r) =

α1 ≥ . . . ≥ αn (αj ∈ R) :

n∑
j=1

log
(
1 + P 1−αj

)
< r logP


So far, these are exact expressions. We will now make a series of approximations which are valid in the
limit P →∞ (and which can all be rigorously justified by taking upper and lower bounds).
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First observe that

exp
(
−P−αj

) {decays super-polynomially to zero if αj < 0

tends to 1 if αj ≥ 0

so we may restrict the domain of integration Dα(r) to its positive part where α1 ≥ . . . ≥ αn ≥ 0.

Next, observe that

log
(
1 + P 1−αj

)
'

{
(1− αj) logP if αj ≤ 1

0 if αj > 1

so log
(
1 + P 1−αj

)
' (1− αj)+ logP . We can therefore replace the domain of integration Dα(r) by

D̃α(r) =

α1 ≥ . . . ≥ αn ≥ 0 :

n∑
j=1

(1− αj)+ ≤ r


and the above probability can be rewritten as

P(log det(I + PHH∗) < r logP )
.
=

∫
D̃α(r)

q̃(α1, . . . , αn) dα1 · · · dαn

where

q̃(α1, . . . , αn) = cn
∏
j<k

(
P−αj − P−αk

)2
(logP )n exp

− n∑
j=1

αj logP


Furthermore, let us notice that cn(logP )n

.
= 1, as limP→∞

log(cn (logP )n)
logP = 0. Here comes now the

“magic” trick: for α1 > . . . > αn, we have

∏
j<k

(
P−αj − P−αk

)2 .
=
∏
j<k

P−2αk =

n∏
k=1

P−2(k−1)αk = exp

(
−

n∑
k=1

2(k − 1)αk logP

)

This implies that

q̃(α1, . . . , αn)
.
= exp

− n∑
j=1

(2j − 1)αj logP


In this expression, we see that in the limit P →∞, the exponents αj become so to speak “independent”.
Finally, we obtain

P(log det(I + PHH∗) < r logP )
.
=

∫
D̃α(r)

exp

− n∑
j=1

(2j − 1)αj logP

 dα1 · · · dαn

This expression can in turn be rewritten as

P(log det(I + PHH∗) < r logP )
.
=

∫
D̃α(r)

P−f(α) dα1 · · · dαn

where

f(α) =

n∑
j=1

(2j − 1)αj

Using then Laplace’s integration method, we obtain

P(log det(I + PHH∗) < r logP )
.
= P−d(r)
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where the diversity order d(r) is given by

d(r) = inf
D̃α(r)

f(α) = inf
α1≥...≥αn≥0∑n
j=1(1−αj)

+<r

n∑
j=1

(2j − 1)αj

Doing this, we have therefore transformed the initial problem of evaluating an n-fold integral (in the limit
P →∞) into a simple linear optimization probelem.

For n = 2, the problem reads
d(r) = inf

α1≥α2≥0
(1−α1)

++(1−α2)
+≤r

α1 + 3α2

whose solution is given by {
0 ≤ r ≤ 1 : α1 = 1, α2 = 1− r, d(r) = 4− 3r

1 ≤ r ≤ 2 : α1 = 2− r, α2 = 0, d(r) = 2− r

For low multiplexing gain (0 ≤ r ≤ 1), outage occurs when both eigenvalues λ1, λ2 of HH∗ are small
(more precisely, λ1 ' P−1 and λ2 ' P r−1), while for higher multiplexing gain (1 ≤ r ≤ 2), outage occurs
when only the smallest eigenvalue λ2 is small (more precisely λ1 ' 1 and λ2 ' P r−2). As expected,
the diversity drops to zero for values of r larger than or equal to 2 (as in this case, the target rate is
higher than the ergodic capacity). On the figure below, the diversity order is drawn as a function of the
multiplexing gain r, which illustrates the tradefoff between diversity and multiplexing.

1 2

1

4

0

d(r)

r

For general values of n, the curve d(r) is the piecewise linear curve such that d(k) = (n− k)2 at integer
values of r (so d(0) = n2 and d(n) = 0). Notice that the maximum diversity d = n2 corresponding to
r = 0 matches the number of independent random variables in the channel matrix H.
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