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DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES

V. A. MARCENKO AND L. A. PASTUR UDC: 519-21

In this paper we study the distribution of eigenvalues for two sets of random Hermitian matrices

and one set of random unitary matrices. The statement of the problem as well as its method of investi-

gation go back originally to the work of Dyson [i] and I. M. Lifsic [2], [3] on the energy spectra of

disordered systems, although in their probability character our sets are more similar to sets studied by

Wigner [4].

Since the approaches to the sets we consider are the same, we present in detail only the most

typical case. The corresponding results for the other two cases are presented without proof in the last

section of the paper.

§ 1 . Statement of the problem and survey of results

We shall consider as acting in iV-dimensional unitary space ///v, a selfadjoint operator BN (re) of

the form

BN (n) = AN + | ] tli7«>(.,<?«>). ( l . l )
1 = 1

Here AN is a nonrandom selfadjoint operator; re is a nonrandom number; the r; are independent

identically distributed real random variables and the ql ace mutually independent random vectors in

//jy, independent also of the r;.

The operators ςτ ( ιΗ·, <jr(l)) = Lt act on vectors χ € Η^ according to the formula L;U) =

q(l){x, <7(1>), where (x, <7(1)) is the scalar product in HN.

Thus the operators BN (n) we consider are sums of a nonrandom operator and a number of inde-

pendent random one-dimensional operators. Each set of numbers τ^, · · · , τη and vectors q , · · · , q ,

which for brevity we denote by Tn, Qn, gives a realization of the random operator BN(n).

We shall be interested in the function ΐ/(λ; ΒΝ {n)) giving the ratio of the number of eigenvalues

of fijy (re) lying t o t n e 1 ε ^ °f λ to the dimension of the space. From now on we call this the normal-

ized spectral function of the operator. It is clear that for any realization Tn, Qn the function

ι/(λ; Bpj (re)) is a nondecreasing left continuous and piecewise constant function of λ, and

0 <v(k, BN) < 1.

For fixed λ the function ^(λ; ΒΝ(η)) is a random quantity determined in a complicated manner by

the random numbers Τγ, · • · , τη and random vectors <J(1\ · · · , qin\ The search for the probability
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458 V. A. MARCENKO AND L. A. PASTUR

distribution of this random quantity is one of the fundamental problems in the spectral analysis of

random operators. Of particular interest is the case of very large Ν and n, since it often appears that

for Ν —> °o the random quantity uiX; Β ρ/ (η)) converges in probability to a nonrandom number.

We assume the following conditions are satisfied for Ν —> <χ>.

I. The limit litnp/^mn/N = c, which for brevity we call the concentration, exists.

II. The sequence of normalized spectral functions vi\; Ap/) of the operators Ap/ converges to

some function vo(\) at all points of continuity:

lim ν (λ;ΑΝ) = v0(λ). (1-2)

Assuming that these conditions are satisfied, it is necessary, first of all, to make clear how the

stochastic properties of operators BN {n) of the form in (1-1) ensure the convergence in probability of

the sequences ν {λ; Βpj (n)) to nonrandom numbers, i.e. to explain when a nondecreasing function

!/(λ; c) exists such that at all of its points of continuity

Ρ{|ν(λ; £*(«)) —v(X;c)|>-e} = 0, (1-3)
Λ'—κχ>

irrespective of e > 0.

The main problem for such a set of random operators consists, finally, in discovering the limit

function v(k, c).

The case of physical interest is when all the τι are equal to the nonrandom variable τ and the

vectors q^1^ are selected from a given orthonormal system e ( 1 ' , · · • , e ' ' with equal probabilities.

In [2] and [3] I. M. Lifsic worked out a method for the approximate calculation of v{\\ c) for small

values of c in this case.

We point out one specific peculiarity of this case. Since the random vectors ς»'1' are chosen from

a given orthonormal basis, the problem is not invariant under unitary transformations of the operator

Ap], and therefore the answer depends not only on the normalized spectral functions v(X; Apj) of this

operator, but also on all its eigenvectors. This remains the case as Ν —* <χ>.

In this paper we consider another type of problem which as Ν —> oo becomes invariant with respect

to unitary transformations of Ap/. For the formulation of the conditions to be placed on the random

vectors, it is convenient to select in the space Η^ any orthonormal basis e γ, · · · , eρ/ and express

the vectors in this coordinate system, writing q = {q \, · · · , <]pi), where qj = (q, e ; ). In the remainder

of this paper we assume the following conditions are satisfied.

III. The stochastic vectors q = (q^, ··· , qp/) which enter into (1.1) have absolute moments to

fourth order, inclusively, and the even moments Mq^j, Mq^qjqiqm can be put in the form '

= ΛΤ16,, + a(, (N), ( L 4 }

= N~2 (6U blm + bim δ,,) + φ Λ (Ν) φ~(Ν)+ biilm (N), (1.5)

where δ α « is the Kronecker symbol and the quantities

1) We denote the expectation of the stochastic variable χ by Mx.
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8 l- ' ι
U

tend to infinity as Ν —> <χ>.

IV. The stochastic variables rt- which enter into (1.1) are independent and have the same proba-

bility distribution σ{χ)·

It is not difficult to prove that condition III on the stochastic vectors q is unitarily invariant,

i.e. if they are satisfied for some one choice of orthonormal basis in ///y (N = 1, 2» · • · ) then they are

satisfied for any choice of basis.

The most typical example of stochastic vectors satisfying III is the set consisting of all unit

vectors of Η^ with each assigned the same probability (i.e. uniformly distributed on the unit sphere).

In this case

Mqiqi = Λ/~χ δ ; /, Mq^jq^m = {δι7 δί/η + bim δ//},
Ν (Ν + 1)

which clearly ensures that III is satisfied.

We present two other examples of sets of random vectors for which HI is satisfied.

a) The set of real unit vectors whose probability density ρ (q1, • · · , q^) is a symmetric and even

function of all its arguments. For such vectors

(δ(·/ δ//η 4" δ,-/ bjm-\-b;m bjt) -f- (a2—2>ct̂ ) δζ/· bim δ,-/,

where a1 = Mq2q2 = Mq2q2(i £ k), a2 = Mqf = Mq^ (i = 1, • · • , N). By making use of the relation

1 = Na2 + Ν {Ν - ΐ )α χ , following from the normalization of all vectors of the set, it is not difficult to

show that for III to be satisfied it is sufficient to have Oj = Mq\q\ = ff2 + o(/V~5/ 2) as Μ —> <*>.

For example, for real vectors uniformly distributed on the unit sphere (Zj = [M(N + l)]~ . Hence real

stochastic vectors uniformly distributed on the unit sphere satisfy III.

b) The set of random vectors having, in some basis, the form q = Ν (fj, · · · , ζ^), where the

ξι are identically distributed independent random quantities, with mean value zero, unit dispersion

and finite fourth moment μ4. In this case α;;- (Λ0 = 0, φα(Ν) = Ν 8n and among the numbers

i> i j i m (JV) only biui(N) = Ν~2(μ4 - 3) differs from zero. Consequently (1(N) = 0, c2(N) = N~1,

63 (N) = N~l/l \μ4 - 3|, from which it follows that the stochastic vectors of this set also satisfy III.

As we pointed out, the main problem is to prove that the function ι/(λ; c) defined by (1.3) exists

and to go about finding it. It is more convenient, however, to find instead of vik, c) its Stieltjes

transform

—CO

a knowledge of which gives the desired function at all points of continuity by means of the well-known

inversion formula

ν ( λ 2 ; ο ) — v(X1;c)= lira — C I m m ( | + , ι η ; c )d | . (1-8)
T)->+0 Jt ύ

λ,
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For simplicity we shall denote the function m(z; θ), whose existence is ensured by condition II,

by m0(z), SO

*.<*)= ? i M , ( L 9 )
ύ Λ — Ζ

—oo

where vo{\) is defined by (1.2).

Our basic result is contained in the following theorem.

Theorem 1. Let I—IV be fulfilled. Then the following assertions are valid.

1) The sequence of normalized spectral functions ΐ/(λ; Β^ (η)) of the operators β/γ (n) for Ν—> oo

converges in probability to a nondecreasing function viX; c) at all points of continuity. Moreover,

v(-°°; c) = vo(-°°), i/(+°°; c) = ΐ/0(+<χ>), where the function ν ο (λ) is defined in (1.2)· Hence at all

points of continuity the function viX; c) is given in terms of its Stieltjes transform m(,z; c) by the

formula

λ

ν(λ; c) = v o(— 00)4- lim (lim — C lmm(x + iy\ c)dx].
μ-*—oo Ιίί-»·+ο π J J

μ

2) The Stieltjes transform m(z; c) of the function ν(λ; c) is equal to the solution at t = 1 of the

equation
t

u(z, t) = mo{z)-c[ τ ( ξ ) iu(z, I)d%, (1.10)
J 1 + τ(1)u(z, l)dz

η

where mQ(z) is defined in (1.9) and τ{ζ) (the generalized inverse of the probability distribution func-

tion σ{χ) of the stochastic variable r) is defined by the formuL· '

τ(ξ) = ίηί{τ;σ(τ)>ξ}. (1.11)

3) The solution to (1.10) exists and is unique. Equation (1.10) is equivalent to the first order

partial differential equation

du(z-] " V r ^ = ο: «<*.ο> = *.(*), <ι·»)

whose solution by the method of characteristics leads to the following implicit expression for u(z, t):

t

0

To avoid misunderstanding we point out that the solution of equations (1.10) and (1-12) is to be

analytic in ζ and continuous in t in the region Im ζ > 0 and t 6 [0, l]·

Note further that from the definition of τ{ξ) it follows that

1) It is not difficult to verify that r(i) is a left continuous and nondecreasing function. Where r(£) and
σχχ) are strictly increasing, they are inverse to each other. Where a(x) is constant τ(ζ) has jumps, and where
σ(χ) has jumps r ( i ) is piecewise constant.
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}ΐ + τ(ξ)«(ζ, 1) J 1
xda(x)

( '

whence by (1.13), since m (z; c) = u (z; l ) , we conclude that the Stieltjes transform m (z; c) of ι/(λ;

satisfies the equation

—OO
1 + tm (z; c)

(1.14)

where a(r) is the probability distribution for the stochastic variable r.

We examine three examples.

1) The sum of random independent and equally probable projections. Let ΒN (n) - rX"_ Ρ£,

where each Pj is a projection operator on the random vector q^l\ independent and uniformly dis-

tributed on the unit sphere, and τ is a nonrandom number. It was shown above that III is satisfied in

this case. Since A^ = 0 and τ is nonrandom, I and IV are also fulfilled and mQ(z) = - z~l, da{0 =

δ(ζ- r)d£. Therefore, if n/N—> c as Ν—> °°, I—IV are also satisfied and m(z; c) satisfies (1.14),

which in this case is

m iy /Λ — Ι ν\£j is) I &

1 + xm (z; c)

By solving this quadratic equation for m(z; c), we find that

m(z;c) = — -Q-
+ ^

where for Im ζ > 0 that branch of the square root must be taken for which lmm(z; c) > 0 (since m (z; c)

is the Stieltjes transform of a nondecreasing function).

Hence, using the inversion formula (1.8), we find that u(\; c) = I/J(\ ; c) + v2ih c), where

(λ; c) (1—ε)δ(λ) for 0 < c < l ,

i (λ; c)

0 for C > 1 ,

V4cra—(λ — ex — τ)2

for ( λ — ί ΐ —T)2<4CT2,

0 for (λ — CX — T ) 2 > 4 c t 2 .

From these formulas for c > 1 it follows, in particular, that the normalized spectral functions of the

stochastic operators
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as Ν —> oo converge in probability to the function ν(λ; c) whose derivative is

dv\;c K—-—-— Π + — — for λ 2 < 4 η ; 2 ,
= { 2ncx% \ xc

0 for λ 2 > 4 « 2 .

As c —> °o the right-hand side of this formula becomes the semicircle law obtained by Wigner for

a Gaussian set of random matrices [4], Of course, this is what is expected since K^ in) is the sum of

independent identically distributed random matrices:

and, by the central limit theorem, the probability distribution for the random matrices Kjy (re) should be

nearly Gaussian, if η» Ν.

This is one of the similarities of our set with Wigner's set explicitly mentioned above.

2) The sum of random independent and equally probable projections with random bounded coef-

ficients. Let Β/ν (η) = Σ?_ τι Ρ ι, where the P,· are projections just as before, and the coefficients r;

are independent identically distributed random quantities with probability density [77(1 — τ r1 ] .

Conditions I—IV are clearly satisfied if lim/v^coi/A/ = c exists, if A^ = 0, and if

mo(z)=-Z-> and C i i
J l + 1 -r-TH

—oo — ι

Therefore in this case (1.14) has the form

m(z; c) = — \z —

Hence after some elementary manipulation we obtain

z^m* + 2 (1 — c) zm3 -j- [(1 — cf — z2] m2 — 2z (1 — c) m ~ 1 + 2c = 0,

where for simplicity we have set m (z; c) = m. In particular, for c = 1 we obtain a biquadratic equa-

tion, which we solve (taking into account that m(z; l) —» 0 for Imz —» oo and 1mm {z; l) > 0 for

Imz > θ) by finding m(z; l) and then (by (1.8)) ιΛλ; l):

0 for | λ | > 2 .

3) The sum of random independent and equally probable projections with random unbounded coef-

ficients. Let Bpjin) be the same type of operators as in the preceding example, except that the

probability density of the random quantities τι we take as n~^a/(a2 + r 2 ) .

In this case Μ β

τ da (τ) _ 1 f τ α ,. _ —ia

J 1 + Xu η J 1 + xu α2 + τ 2 1 — iau
— 0 0 —OO

and equation (1.14) has the form
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tac —ι
m = —jz- | :—1 (m = m(z;c)).

1 — iamj

By solving this quadratic equation for m{z; c) we obtain, by (1.8), the following expression for

vik, c):

where

for 0 ̂ C <

0 for C > 1 ,

d ^ 0 = r 2^ ν.+λ0(λ' + λ3+λ'-:

2αλ

From these formulas we see that in this case the spectrum occupies the entire axis, as was to be ex-

pected from the unboundedness of τ·

We note in conclusion that it is, as a rule, impossible to find m(z; c), and even more so to find

v(Xi c), in explicit form, since (1.14) is, generally speaking, not explicitly solvable for m (z; c). In

this sense the above examples are exceptional. Nevertheless, it is frequently possible to obtain a

qualitative picture of the spectrum: the number and arrangement of its connected components, and also

the behavior of Αλί c) near the boundary of the spectrum. We have in mind the following: on the

intervals complementary to the spectrum on the real axis the function m (x + iO; c) exists and is con-

tinuous, real and montonically increasing. Hence, the inverse function exists on these intervals-also

real and monotonically increasing. Furthermore, its range of values is clearly just the complement of

the spectrum. By denoting this inverse function by x{m; c) and using (1.14) we obtain

-f- xm ( L 1 5 )

where * „ ( « ) is the function inverse to «„(*) . Thus we have the following rule for determining the

spectrum: it is necessary to locate the intervals where the function on the right-hand side of (1.15)

is monotonically increasing and then to determine the set of its values on these intervals. The

spectrum is the complement of this set.

Therefore if a is the endpoint of one of the intervals on which the right-hand side of (1.15) is

monotonically increasing, then

( L 1 6 )

is the endpoint of one of the connected components of the spectrum. Suppose that in the neighborhood
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of α the right-hand side of (1.15) is analytic, and consequently has local extremum at this point

(a maximum if a is the right end point, a minimum if a is the left endpoint of such an interval). Since

at a local extremum the first nonvanishing derivative must be of even order, the Taylor expansion of

the right-hand side of (1.15) has the form

χ (m; c) =

and hence near the point Xa we have

"2ft

(2*)!
(m-

ik

m (z;c) —a=l/
2-λη

where that branch of the root is taken which has positive imaginary part for Im ζ > 0 and is real in a

neighborhood of λο not containing any points of the spectrum. Thus by the inversion formula (1.8) it

follows that in a neighborhood of λα the function v(X; c) has a derivative, and as λ —• λα

d%
-(2*)!

2k (1-17)

Therefore the rule for finding the singularities of the function v(k, c) may be formulated as follows.

The boundaries of some of the connected components of the spectrum may be found by formula

(1.16), where the local extrema of the right-hand side of (1.15) are taken to be the points o; near

these boundary points the function v(k, c) has algebraic singularities, the principal parts of which

are found by using (1.17)·

λ_

\

Figure 1

We shall illustrate this rule in the case of example (1) above. Here

v ' m 1 + xm

The graph of this function is shown in Figure 1, where the dashes denote where the right-hand

side of (1.18) is decreasing (this part must be discarded).

(1-18)
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It is clear from the graph that the spectrum consists of the interval [λ_, λ+] and the point 0 for

c < 1, and the interval [λ_, Aj alone for c > 1. The extrema of the right hand side of (1.18) are

m±= — l/r( l + \/c), from which, according to (1.16), we find the boundaries of the spectrum

λ_ = ril - φ)2 and λ+ = r(l + V^)2·

The second derivative of the right-hand side of formula (1.18) at the extrema m are

d ( « = ± ^ τ · ( ΐ ± y^) 2 = ±

Vc

where by (1.17) it follows that near the points λ.

in complete agreement with the exact results found above.

§2. Auxiliary considerations

Consider the linear operator A mapping the space ΗΝ into itself. Denote the matrix of A relative

to some orthonormal basis in this space by | |/4^||.

Lemma 1. If the stochastic vector q = (q1, ? 2 ' " " ' ' iN^ obeys condition III, then

where \\A\\ is the norm of A, the quantity eiN) does not depend on A and tends to zero as Ν —> °o.

Proof. Letting η = (Aq, q) = Σ ^ ; = t Αί;· ~q;· q; for simplicty, by (1.14) we shall have

i = N~l Σ A" 6i' + 2 A" a'si

i.i

whence, using the obvious inequality

2 I Au I2 < Ν max 2 1 Atj |2 < Ν || ,4 \\\ (2.1)

we obtain by (1.6) that

Similarly, from (1-5) we get

~ ~ ~Δ, h- , IM\
ilnlm "jilmV'1 )·

We estimate the second and fourth terms on the right-hand side by means of the inequality (2-1):
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I 2 A'i A"n b,am(N) I < ( 2 I A£i |21 Alm ff ( ^ I btJlm (N) |2

We estimate the third term:

= \\Α\\*ε2(Ν).
Thus,

In addition we have

Λίηη-Λ

Μ | η — Λ̂

= {Μηη - N~21 Sp A |2 - 2 Re Λ ^

Hence using inequalities (2-2) and (2-3) and noting that |AT'1Sp/4| < \\A\\, we obtain

Μ | η -Ν'1 Sp Λ | < || Λ || {ΛΓ1 + β,(^) + ε3(Ν) f

Therefore, setting £(1Ϋ) = i/V"1 + ̂ (iV) + e (N) + 2e1(/V)!'/2, we have M\(Aq, q)-PT1SpA\ <

where e(N) does not depend on A and, by condition III, tends to zero as η —-» <χ. Q.E.D.

Lemma 2· Let the Hermitian operators A and A, acting in the space H^, be related by

(2-3)

f(/V),

where τ is a real number and q is a stochastic vector which obeys condition III. Then for the dif-

ference of the traces of the resolvents Rz and Rz of these operators we have

| + δ(ζ, q, N),

where 8{z, q, N) is a random quantity satisfying the inequality

X

y\ lSp Rz)
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where e(N) does not depend on A, z, r, and vanishes as Ν —> oo.

Proof. Since the determinant of the matrix of any operator is equal to the product of its eigen-

values, the identity

R2 = (A - ζΙΓ1 = {(A - zl) + (A- A)}'1 = {I + RZ (A- A)} ~x Rz

shows that

JJ (λ* - ζΓ1 = Π (λ*- ζΓ 1 {det [/ + RZ(A- A)]}~\
1 1

where \ k and \k are eigenvalues of A and A.

Taking the logarithmic derivative with respect to ζ of both sides of this equation, we find the

well-known formula for the difference of the resolvent traces:

—Sp/?z = — £ In det [/ + RZ(A — A)\.

In particular, if A - A = r(· , q)q it is easily seen that

d e t [I + R z ( A — A)] = l+x ( R z q , q),

and consequently in this case Sp /ζ - Sp Rz = - (d/dz)\n [l + r(Rz q, q)], or

Ufe now evaluate the right-hand side of the formula. For this purpose, denote by Ε (λ) the decom-

position of the identity for the operator A and introduce the nondecreasing function α(λ) = (E(\)q, q).

Then

OO OO

( A 2 U , fl)= \ , (tiz q, q) = \ ,
J λ — ζ J (λ—ζ) 2

—OO — 0 0

whence it follows that for ζ - χ + ίγ

OO

I l+x(Rzq,q)\>\rlm(Rzq, q)\ = \xy\ f d a ( W

[λ - xf +..
— 0 0

00
rda (λ)

(λ - χ? + ι/2

— 0 0
so that

(Rl g, 1)

i+x(Rzq,q)

To complete the proof of the lemma we rewrite (2.4) as follows:

tJV-1 Sp R

^\y\' (2-5)

1 + τ#- 1 Sp R.
6(z,q,N), (2.6)
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6(z,q,N) =
X(R\q,q)

, q)

and we evaluate the expectation value |δ(ζ> q, N)\. We have

X(Rz

zq,q) X{(Rzq,q)-N-1SpR2}
b(z,q,N) =

i+X{Rzq,q)

whence, applying (2·5)> w e obtain

[\(Rzq,q)-N-1SpRz\

+ \y\-\(Rlq,q)-N-lSpR2\}.

Since the stochastic vector q obeys condition III, from this inequality and Lemma 1 we have

Since A is Hermitian, it follows that \\RZ\\ < \γ\ r and \\R}\\ < \y\ J- Therefore

(2.7)

which was to be proved.

Consider now the quantities Γ;. By hypothesis, these are independent quantities with one and the

same distribution function σ(χ). Let Tn be some realization of η of these random quantities. We

number the quantities in Tn in order of their size τ^ < τ2 < • · · < τη and construct an experimental

distribution function a{x, Tn) corresponding to this realization by setting

0 for X ^ Xv

— for τ(· < * < τ / + 1 ,
η

0 for T r t<Ai.

By Glivenko's theorem [5], as η —» <χ> the function a(x, Tn) almost certainly converges to

σ(χ) uniformly on the entire axis.

We shall have use for the analogue of this theorem for functions inverse to σ(χ, Tn) and σ(χ).

Here by the inverse functions we mean functions r(£, Tn) and τ(ζ) defined on the interval (0, 1) by

>· (2.8)

(2.8')

Note that as a consequence of the definition of σ(χ, Τη) we have
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r(t,Tn) = tl+1 for 1 < ε < ί ± 1 ( i = =o, 1 n-1). (2-9)
η η

Lemma 3. // the probability distribution σθκ) for the random quantity τ has a first absolute

moment, then for η —> <» the sequence of functions τ(ξ, Τη) almost certainly converges in the metric

of Ll\Q, l ] to the function r(0, i.e. the sequence

\

0

almost certainly converges to zero.

Proof. Note first that by assumption f™^ \x\daix) < °°, and from the definition of τ{ξ) it follows

that $\\τ(.ζ)\άξ = /"(jj |ac|eicr(A;) < •». Therefore the function τ(ξ) is summable on the interval [θ, l]·

By Glivenko's theorem the sequence βη = ε\ιρ_α><χ<ιχί\σ(χ, ΤΝ) - abc)\ almost certainly converges

to zero. It follows from the definition of βη that if akx, Tn) > ξ then σ(χ) > ξ- βη and if σ{χ) >

ξ+βη then σ(χ, Τη)>ξ. Therefore

{χ: σ (χ) > Ι + β*} c {χ: σ (χ, Τη) > ξ} c {χ: σ (χ) > ξ - βΛ},

whence for ξ € (/3η, 1 - /3η), by definition of r(f, Tn) and r(^), we obtain τ(ξ+ βη) > τ(ξ, Τη)>

τ(ξ— βη)· Since τ(ξ) is nondecreasing these inequalities imply that \τ(ξ, Τη)- τ(£)\ < τ(ξ+ βη)-

Λξ- βη) if β η < ξ < 1 - βη. H e n c e

ι - β

ι-βη ο

and hence [Κ™ \τ(ζ, Τη) - r(0\d£ for η —» χ almost certainly tends to zero, by Glivenko's
Pn

theorem and the summability of τ (ξ). In addition,
β - ° βη

Let /4 be any positive number and define the random quantities τ ι in terms of rj as follows:

0, if \xt\<A,
Χι —

Then from (2-9) we obtain

(l|t(i,rl,)|d£< I

and consequently

βη

( = 1
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From the strong law of large numbers we find that as re —> oo we almost certainly have

η~1Ση_ τι —* /ι yA \x\da(x), whence, by the preceding inequality, Glivenko's theore

summability of τ(ζ), we conclude that, as η —» °o, almost certainly

\x\da(x)+
ο U\>A

for any A > 0. But this means that _F« \τ(ξ, Tn) - τ(ξ)\<1ξ almost certainly tends to zero for η —> <χ>.

Similarly, we find that /}_ „ \τ(ξ, Tn) - τ(φ\άξ almost certainly tends to zero as η —* °°. Q.E.D.

Remark. This lemma is required below only for the case where the random quantity τ is bounded.

§ 3. Deduction of the basic equation

We shall prove Theorem 1 by first assuming the random quantities rj are bounded, i.e. there is a

number Τ > 0 so that any realization of the r; satisfies

(3-0)

This restriction will be lifted by going to a limit. But in the next two sections (3-0) is assumed to

hold.

Suppose that Tn , Qn is a realization of τ and q entering in (1.1). In this realization we number

the pairs r;, <7(Ι) in order of increasing r;:

f i < T 2 < . . . <T n ,

and construct a chain of operators BN(i) (i = I, 2, · · · , n) by setting

ί

BN(i)=^AN+^ τα</<«>(.,?«»), (3.1)

O = l

so that BN(o)= Aft, and the ΒΝ (n) are the operators (1.1) that interest us. Denote the resolvents of

the operators BN U) by Rz {i). For each realization Tn, Qn we form the function u (ζ, ξ; Ν, Τη, Qn)

defined for all nonreal ζ and real ξ£ [θ, l] by

u (z, I; N, Tn, Qn) = Λ/"1 Sp fl2 (i) + nN~l Sp {Rz (i + 1) — Rz (/)} ( ξ _ L

Note that u{z, 0; A', Tn, Qn) and u (z, 1; N, Tn, Qn) ate the Stieltjes transforms of the normalized

spectral functions of the operators A^ and BN (n):
CO

u (z, 0; N, Tn, Qn) = A r x S p RZ(Q) = ( V ( λ : Ν) , (3-3)
J λ —ζ

—OO

u(z,l;N,Tn,Qn) = N-*Sp/?,(„)= C
ι)

For the remaining values of ζ € [θ, l] the function u(z, ξ; Ν, Τη, Qn) is the Stieltjes transform of
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the nondecreasing function

ν (λ, ξ; ΒΝ (η)) = [ 1 — nl + i] ν (λ; ΒΝ (/)) 4- [ηξ — i] ν (λ; θ * (i + 1)),

£±J

where ι/(λ, ΒΝ (i)) denotes the normalized spectral function of the operator BN(i). By the definition

(3.2) of u (ζ, ξ; Ν, Τη, Qn) it is clear that it is continuous in the entire range of definition, holo-

morphic in 2 and piecewise linear in ζ.

We shall prove the set of functions u{z, ξ, Ν, Τη, Qn) and the set of their derivatives

uz'(z, ξ-, Ν, Tn, Qn) are compact with respect to uniform convergence in ξ 6 [θ, l] and z € F, where

F is any bounded set lying a positive distance from the real axis. From the inequalities (imz = y)

dz^

which hold for the resolvent of any selfadjoint operator, and from (3-2), we have

I "(2, l\N, Tn, Qn)

(3-4)

(3-5)

Since the operators BN(i + l) and Β N (i) differ by the one-dimensional operator TJ+JO , ςτ ( ί + 1 ))^ ( ΐ + 1>,

formula (2-4) can be applied to their resolvents RZU + l) and Rz (i). Therefore

so by (2-5) we find that

and consequently

ff\y\

(3-6)

(3-7)

Since the function (d/d$u (z, ξ, Ν, Tn, Qn)= {n/N){SpRz (i + l ) - Sp Rz (i)\, i/n < ξ < (i + l)/n, is

holomorphic in z, using the Cauchy estimate for the derivative of a holomorphic function at the center

of a circle in terms of its maximum modulus on the circumference, we find by (3-6) that

-uz(z,t;N,Tn,Qn)
An

(3-8)

The inequalities (3-5), (3-7) and (3-8) clearly demonstrate the compactness of the sets

\u(z, ξ, Ν, Tn, Qn)} and \uz'(z, ξ; Ν, Τη, Qn)\ which we require. Note that so far we have not made

use of the boundedness of the rt·.

We shall now consider the function u (z, ξ, Ν, Τη, Qn) for z lying in the halfplane |lmz| > 3̂ >

where Γ is a number bounding the modulus of the r; (see (3-0))·
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Let T{0 be the generalized inverse of the probability distribution aix) for the random quantities

τ defined in (2.8), and let G be any bounded set lying in the halfplane Imz > 3^·

Lemma 4· // I—IV and (3-0) are satisfied, then as Ν —» oo the expectation value of

t

= sup
<e[o.i
zee

u(z; E; N, Tn, Qn)-mo{z)
+X(t)u(z,t;N,Tn,Qn)

S

tends to zero: limjy-x» Μφ^ = 0·

Proof. From (3.2) and (3.6) we find that for ξ € [i/n, {i + l)/n]

| u (ζ, ξ; Ν, Tn, Qn) - Ν'1 Sp Rz (ι) | < ± (3- 9)

Using this inequality and the Cauchy estimate for the derivative of a holomorphic function, we like-

wise obtain

u, (z, I; N, Tn, Qn) ~ ΛΓ1 Sp Rl (i) | < —
Ny*

(3-10)

The operators Bj^U + l) and Bp/{i) differ by the one-dimensional operator r, + l ( ·, g ( 1 + 1 ^ ^ l +

and consequently Lemma 2 is applicable to their resolvents Rz (i + l) and Rz (£). Using this lemma

we may transform (3-2) into the form

Ν l+ri+1N-lSPRz(C)\ n)

+ Ν'1 β, (ζ) δι (ζ, qV+H, Ν), (3-11)

where 0 < θι (ξ) = η (ξ- i/n) < 1 and

ε (Ν),

and f (Λ/) —» 0 as /V —* ». For Im ζ > 3Γ the estimate (3.4) and the inequality \ri+ x | < Γ imply that

and, ία particular,

ΜI tn (z, <?<'+«, iV) I < 3Γε (Λ^).

By formula (2-9), ri + i = ^(6 Tn) for f € [i/ra, (i + l)/re], where

in (2.8). Thus for ξ € [i/n, (t + l)/n] we have

(3-13)

Γη) is the function defined
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n\ Χ ̂  Τn) N~^ Sp R\ (ΐ)
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Replacing τ(ξ, Tn) on the right side of this equation by τ {ξ), Ν 1SpRz (i) by u (ζ, ξ, Ν, Τη, Qn)

and /V-lSp/?|(t) by uz'{z, ξ, Ν, Τη, Qn), and estimating the error with the aid of (3.9), (3.10) and

(3-12), we find that

t
>SpR*(i) , t x n f . x(l)uz(z,l;N, Tn,

Τ^ρ/ϊ,ίΟ V «/ Af }ΐ+τ(ξ)«(2,ξ;^,Γη,

which holds for all ί € [i/n, (i + l)/n] and all 2 in the halfplane Im ζ > 3Γ. Since u(z, i/n; N, Tn, Qn)

N~1SpRz (i), it follows from the last inequality and (3-11) that

u(z,f, N, Tn, Qn)-u(Z, 1 ; N,Tn, Qn) + JL

_ 1 Γ + 1 δ Ι . ( Ζ )

for all t G [ί'/re, (i + l)/n] and all ζ in the halfplane Im ζ > 3Γ. By combining the inequalities we

have obtained, we find for the function

φ (ζ, ί; tf, Γη, Qrt) = u (ζ, t\ Ν, Tn, Qn) — m0 (ζ) + c C

the estimate
1

\ψ(ζ, t; N, Tn, Qn)\ < JL· ξ | τ(ξ, T n ) - t ( ξ ) |

x{l)u'z{z,l-N,Tn,Qn)

i+X(l)u(z,l;N,Tn,Qn)

)- w (z, 0; iV, 7Λ >

(3-14)

+ £ + F
ί=ι

Hence from (3.13) it follows that
ι

Ι φ (z, t; Ν, Tn, Qn) I < JL· ξ | χ (ξ, Tn) -χ (ξ) | dg + | m0 (z)-u(z, 0; Λ/, Γ», Qn)|

C — -

Ν

3nT
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This inequality, equation (3-3), conditions I, II and Lemma 3 imply that

Vim\<f(z,t;N,Tn, Qn)\ = 0 ( 3 . 1 5

for each z, t (imz > 3Γ, t € [0, l]).

Now note that from (3.5), (3.7) and (3.8) it follows that u(z, t; N, Tn, Qn), u'z{z, t; Ν, Tn, Qn),

and consequently also φ\ζ, t; N, Tn, Qn), are uniformly bounded and equicontinuous. Hence, on the

set ίθ < ί < 1; ζ €. G\ for the function φ{ζ, t; N, Tn, Qn) we can find a generalized e-net

t\, 2 i ; · · · ; i m j . zm(, SO t h a t

t' *' N' Tn' Qn) I < ε + m a X I «P &> Z'' N> Tn< Qn) I,

and consequently

< ε + ^ Λί Ι φ (ζ,, ί(·, iV, T«, Qn) I.
1 = 1

From this inequality, for any e > 0 we find by (3· 15) that limyy->co Λ/ςά/ν < e, so, since e > 0 is

a arbitrary, lim^-,οο Μφ/γ = 0, which is what was to be proved.

It clearly follows from the above lemma that there must exist a realization Ί'η, Q'n for which

lirn sup Ι φ (ζ, t; Ν, T'n, Q'n) I = 0. (3-16)
JV-«o i6[o,i]

We proved above that the sets of functions u (z, t; <Y, Tn, Qn) and u'z (2, t; N, Tn, Qn) are com-

pact. Therefore from the sequence u(z, Τ; Ν, Tn, Qn) we can select a subsequence which converges

to some function u{z, t) uniformly in ί € [θ, l] and ζ € F, for any closed and bounded set F lying

in the upper halfplane. It follows from (3.16) that for ζ G G and t € [θ, l] the function u(z, t)

satisfies the equation

Since the function u{z, ξ) is holomorphic in the upper halfplane and has positive imaginary part, both

sides of this equation are holomorphic in the upper halfplane and consequently coincide everywhere

there. Thus (3-17) has at least one solution continuous in ί and ζ (ί G [θ, l ] , Imz > θ) and holo-

morphic in ζ (im ζ > θ) for fixed t.

Let Κ (Γ, Ζ Q, R) denote the set of functions f{z, t), continuous in z, t lying in some cylinder

0 < t < 1, \z - ζ & I < R, holomorphic in ζ (\z - ζ 0 | < R) for any t G [θ, l] and obeying the inequality

sup
i 6 [ ]

\z—zal<R

x ( t )

(3-18)
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We note, for example, that all functions f(z, t) with strictly positive imaginary part belong to the set

K(r,z0, R).

By a slight variation of Haar's method [6], we shall show that equation (3-17) can possess only

one solution in the set Κ{τ, ζ 0 , /?). To this end we assume that τ(ξ) is raonotonic, but not necessarily

bounded.

Lemma 5· Equation (3-17) cannot have two distinct solutions in the set K(r, z 0 , R).

Proof. Let iij(z, i) and u2(z, t) be any two solutions to (3-17) which belong to Κ(τ, ζ 0, R). Let

ξϋ be that upper bound of the set of ξ G [0, l] which has the property that the difference of the solu-

tions u j (z, t) - u2iz, t) = v{z, t) is identically zero for < R and all t € [θ, ζ\· We must show

that ξ= 1. Assume that the opposite is true. Then the function ν (ζ, t) vanishes in the cylinder

o\ ̂  ^> D u t f°r a n v ^ > 0 in the cylinder ξ0 < t < ξ0

point where ν (ζ, ί) ^ 0· Moreover, from (3.17) we have that

[A{l)v(z,l) + B(z,l)vl(z,.l)]dl for ξο

h, \z - ζ
0\ < R there is a

where the function

A(z,l)=
, ξ)] (ξ)«, (ζ, ξ)]

holomorphic in ζ, is uniformly bounded in the cylinder 0 < ξ< 1, |z - ζQ\ < /?/2, as follows from

(3-18), which both Uj(z, 0 and «2( z> f) a r e assumed to satisfy. Let L denote the upper bound of

the modulus of Α (ζ, ξ), Β {ζ, ξ) and consider the function υ (ζ, ί) in the cone

Δη

where Η = min \l/2 R/{\ + L), 1 - ^ 0 1 . It connot vanish identically in this cone, for then, due to

< ί < + Η,
0\ << R, which contradicts theanalyticity in z, it would vanish in the cylinder

definition of ξΰ.

Therefore in this cone the function e~2 υ (ζ, ί) has a positive maximum value at some point

Zj, t j . For sufficiently small s > 0 and any complex a , | a | < L + 1, the points Zj - as and

ij - s lie in the cone (3-19)» a Q d consequently the modulus of the function e~2 *·£ 1 s ' f ( z j - a s , tl-s)

does not exceed the modulus of e~2Lt^v{zl, i j). Since ν (ζ, ί) is continuous throughout the initial

cylinder, it follows from Cauchy's integral formula for the derivative that v'z (ζ, ί) is certainly con-

tinuous in the cone (3-19)- Thus for s —> 0

υ & — as, t1s) = . — s) — as[ v'z (zv /J + ο (1)]. (3-20)

In addition, we have

i. h) - υ (zv tx - s) = j [A (zlt Ι) ν (Ζι> ξ) + Β (ζν ξ) D; (Z l, l)\
tl—S
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whence for s —> + 0 we get

υ (zv tx) - υ (zv ^—5) = $ [Au (zlf tx) + Βυ'ζ (zv tj + ο (1)], (3-21)

where A = l i m s ^ + 0 /l (z 1 ; t λ - s), Β = lims^+0B(z 1 ? 7\ - s). The existence of these limits is

guaranteed by the monotonicity of τ(ξ) and the continuity of U; (z, t ) , u/ z (z, i) (f = 1, 2). We have

from (3-20) and (3.21) that, for s —> 0,

^- s ) {(1 - Si4) ο (Zl, y + s (o + θ) t»z' (zv tj + s ο

2Ls
L 2L

±* v'
2L υ (zlt

and, if we let α = - β - e'^0, where 0 O = arg (wz '(zj, i ^ / ^ i z j , ij)), then

e-iH^-s) v (Z i _ CCS) ^ __ s j

Since |/4| < L, for small enough s > 0 the real part of the expression in curly brackets becomes larger

that 1 + 2^ί/3 a n d therefore so does its modulus, and hence

| e-iitf,-.) ν (Z l - as, <! — s) I > | e-*ul v ^ g | ( 3 . 2 2 )

for small enough s > 0. On the other hand, since \B\ < L, \a\ < L + I and consequently z1 - as, we

see that t1 - s lies in the cone (3-19) for small s > 0, which is inconsistent with (3.22), on whose

right-hand side stands the maximum modulus of e~2Lt ν (ζ, t) in this cone. This contradiction shows

that the assumption £ 0 < 1 is incorrect. Q.E.D.

§4- Proof of Theorem 1

In the last section we proved the existence of a sequence Ν and a realization Tn, Qn, such

that lim^'^coU (ζ, ί; Ν ', Tn, Q^) = u{z, t), where u(z, t) is the solution of equation (3· 17). Consider

the corresponding sequence of normalized spectral functions ΐ/(λ» t; B^ '(re )). By Helly's theorems

we can pick out a subsequence which converges to a function ι/'(λ) at all points of continuity, and by

(3-3') w e have

'n) = u(z, 1).

From this formula, for y —• + °o we have iv'(+°°) - ι, '(-«>) = - ilimy^+ooyu (iy, l ) , and we see immedi-

ately from (3-17), (3-5) and the definition of mo(z) in (1.9) that - ilimy^myu (iy, l) =

cym0(iy) = v0(+°o) - ],0 (-<*>). Therefore

v ' ( + o o ) — v ' ( — 00) = V 0 ( + 00) —V 0 (—00) . (4.1)
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The inversion formula (1.8) allows us to find, corresponding to u (z, l), the function ι/(λ) exactly

to within a constant term which we do not know. In connection with this we introduce the function

ν (λ; c) = ι/(λ) + v0(-°o), which, first of all, has the same Stieltjes transform u(z, l) as ν ' ( λ ) , and,

secondly, by (4-1) has the same limits at +«> as ν ο (λ):

" dv{X'c) =u{z,\), (4-2)
J λ — 2

—oo

v ( + o o ; c ) = v o (+oo), v(—oo; c) = v f t(—oo). (4-3)

Thus by the inversion formula (L8), at all points of continuity we have

λ

v(£;c) = vo(—oo) + lim j lim— { lmu(x + iy, l)dx\. (4.4)

μ

To prove the first two assertions in Theorem 1 we must prove that as Ν —> °o the sequence

χ/(λ; β^ (re)) converges in probability to v{\; c) at all points of continuity. It is not difficult to see

that for this it is sufficient to prove that for any e > 0

Jim Ρ {| ν (λχ; BN in)) — ν (λ0; BN (η)) — ν (λχ; c) + ν(λ0; c) | < ε} = 1, (4.5)

HmP{vo(— o o ) _ ε < ν ( λ ; Β Λ , ( η ) ) < ν 0 ( + ο ο ) + ε}== 1, (4.6)

where λι and λ 0

 a r e any two points of continuity of the function ι/(λ; c), and λ is any real number.

First we prove (4-5) and then (4-6)·

Suppose, for simplicity that Δ (λ; c) = ν (λ; c) - ι/(λ0; c), Δ(λ ; ΒΝ{η))=ν(\; Β Ν{η)) -

ν{λ0; Bfj(n)), where λ 0 is some point of continuity of ν(λ, c). Assume that (4-5) is false. Then

there is a point Aj where v{\; c) is continuous, and where for some e > 0

lim Ρ {| Δ (λ^ ΒΝ (η)) — Δ (λ; c) \ ]

and consequently a sequence Ν = Ν^ exists for which

δ
Ρ { \^(λι• BN(n))-A (λ; c) \ > ε} > ~ . (4-7)

On the other hand, by Lemma 4, if τ is given, a number Ν (r) can be found such that for Ν > N{r)

sup
Ue[o,i]

t

u(z,t;N,Ta,Qn) —

l\+x{l)u{,z,l;N,Tn,Qn)

Hence a subsequence iVr' can be selected from the sequence Νk such that (4-7) and (4-8) are both

satisfied for Ν = Nr'. Since one always has P\U f] δ ! > Ρ ! « ! + Pi S! - 1, for Ν = /Vr' the probability

of fulfilling the inequalities



478 V. A. MARCENKO AND L. A. PASTUR

ε)|>ε, (4-9)

<|"? \α(Ζ>*'Ν>Τη>Οη) — mo(2) (4-10)
ο η η

at the same time is not less than δ/2 + 1 - δ/4 - 1 = δ/4 > 0· Hence for all Ν = ΝΓ' realizations

Τ", Q" must exist for which (4-9) and (4.10) are both satisfied.

From the compactness of the sets \u(z, ξ, Ν, Tn, Qn)\ and \u'z (ζ, ξ, Ν, Τη, Qn)\ and from

Helly's theorems it follows that a subsequence N" can be selected from Nr' such that

)M (z, t; N", T'l, Q ") = ttj (ζ, ί) uniformly for ί € [θ, l ] , ζ € G and at all points of continuity

r "->oo ν(λ; BN 'r'(n ")) = ν{λ; c). Moreover, by (4.9)

| v ^ ; c) — ν(λ0; c) — ν(λχ; c) + ν(λ0; c ) |>e, (4-H)

by (4.10) the function «j(z, t) satisfies (3.17), and by (3-3') / " ω (λ - ζ Γ 1 ^ ( λ ; z) = u 1 (z, l ) .

Since (3· 17) cannot have two different solutions (Lemma 5), u j (ζ, ί) = Μ (Ζ, ί), so for ί = 1 we

have

λ - * J λ - ;
—°° —00

which contradicts (4-11). Consequently the assumption we made is incorrect and (4.5) is valid.

We turn to the proof of equation (4-6)- The random parts of the operators BN (n) clearly obey the

inequalities

i I ( · . <7(/)) q(i) < 2 τ, ( · , <7(0) <7W < J j J t , J ( · , 9W) ^(0. (4-12)
( = 1

Let £ (λ) be the decomposition of unity corresponding to the nonnegative operator

D = Σ?_ \τι\{· , <7(Ι))ςτ(ί), let / be an arbitrary positive number and let D± = fl \dE(\),

Ό2 = fi XdE (λ) so that D = Dγ + D2· It is clear that \\Dy\\ < I and the number of nonzero eigenvalues

(i.e. the dimension of the range) of the operator D 2 is Ν - Sp Ε (Ζ). Taking this into account in (4-12),

we may write for BN{n) the inequality

AN — U — D2^BN(n)^AN + U + D2. (4.13)

The normalized spectral function of the operators AN + II is v(\± I; /4/y), where v(\; A^) is the

normalized spectral function for the operator Α^. Since the addition of D2 may change the number of

eigenvalues lying in some interval by not more than the dimension of the range of D2, the normalized

1) We write A < Β tot Hermitian matrices if all the eigenvalues of Β — A are nonnegative.
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spectral function of the operator on the left (right) side of (4.13) is no larger than ρ(λ+ I; AN) +

UV - Sp Ε (l))/N (no less than ν(λ- I; AN) - (N - Sp Ε (Ι))/Ν). Thus for the normalized spectral func-

tion ι/(λ; SJV ( n )) °f t n e operator Β ̂  (n) we have the estimate

ν (λ — /; AN) — [ 1 — JV"1 Sp Ε (/)] < ν (λ; ΒΝ {η)) < ν (λ + /; ΑΝ)

+ [1 - ΛΤ1 Sp £(/)]· (4.14)

Furthermore,

f! OO CO

Sp D = V 11,1 (<j«, <7«>)= C Xd Sp £ (λ) > / ξ d Sp Ε (λ) = / [Ν — Sp £ (/)],
i = l 0 I

so that

l - t f - ' S p E i / X - L . i - ^ |τ<1(9<'
1 = 1

whence, since τ is bounded (condition (3-0)), we find that

1 - ΛΤ1 Sp £ (/) < f- - 2 (<7(1), <?(1))·
2/ η

ί = 1

It follows from III that the random quantity ( g ( i ) , g ( i ) ) has expectation value no larger than

[l + f 1 (Λ0] 1 and dispersion no greater than [2 + £2 UV) + e3 UV)] 1 . Since the random quantities

(<7(I), g ( i ) ) are independent, we find from the Cebysev inequality that P\n~l Σ?_ (g ' 1 ' , ? ( 1 ) ) > 2 S <3/n

and consequently P i t l - Λ' ^ p ^ U ) ] < c T/l\ > 1 - 3/ra. Hence we conclude from (4.14) that

Af-*oo \ / ' I ) '

and since by assumption ι/(λ; -4jy) —-• F 0 (λ) for Ν —* <» and i/0 (-<») < ι^0(λ) < i^0(+ t x )); we get

lim Ρ } v o ( — 0 0 ) — — <; ν (λ; ΒΝ(η))^ 1

whence, since / > 0 is arbitrary, we get the necessary formula (4.6) .

Thus the first two assertions of Theorem 1 are proved. The existence and uniqueness of the

solution of (3-17) was established earlier. The equivalence of this equation to the partial differential

equation (1.12) is evident. As for (1.13), l t l s simplest to verify it directly.

Thus Theorem 1 is proved completely for the case where the r; are bounded.

The extension of this theorem to the case of arbitrary random quantities will be given in the

following paragraph.

In connection with this theorem we note that

1) The numbers v(— °°; c) and v{+ °"; c) are equal to the relative number of eigenvalues of the

operators δ/y (re) going off to - <*> and +00, respectively. As was shown earlier, they are also equal
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to the relative number of eigenvalues of the operators A^ going off to -°° and + °°.

2) Instead of I, it is enough to require the convergence of ν(λ; AN) to ι^0(λ) in probability,

assuming that Api is a random operator not depending on r;, <?(Ι).

3) It can be shown that the solution of (1-13) can also be found by the method of successive

approximations wherein each approximation has positive imaginary part for Im ζ > 0·

§5. Generalization

Now let the r be arbitrary independent stochastic variables obeying the same probability dis-

tribution σ(χ)· At the same time we consider stochastic variables τ , defined as follows:

-Τ, if •

χ, if - :
Τ, if

%> =

where T is an arbitrary positive number. The probability distribution σ ix) for the τ and its

inverse ττ(ξ) = iatx\x: σΤ(χ)>ξ\ are expressed in terms of σ(χ) and τ(ξ) = infjx: σ(χ) > ξ\ as

follows:

0 for x < — 7, r — Γ for 0 < | < σ ( — T ) ,

σ(*) for — T < x < f , rT(t)=\ τ (ξ) for σ (— 7>·< ξ < σ (Τ), (5·ΐ)

Let Tn7 Qn be a realization of the random quantities η (and consequently also of τJ ) and

vectors q^\ Just as in §3, we form chains of operators BN(i) and ^ ^ ( f ) . It is clear that the ^

are obtained from B^(i) by replacing TJ by rT in formula (3-1). Therefore ΒN(i) ~ B^{i) =

"^o=i ^τα~ 7 α ^ ( < Χ ) ^ ' ' ? ( α )^' whence it is clear that the dimension of the range of ΒN{i) - B^ii) does

not exceed the number of those TJ whose absolute magnitude is larger than T, i.e. the numbers

n\a(- T, Tn) + 1 - σ{Τ, Tn)\, where a{x, Tn) is the experimental distribution function constructed

with reference to the realization Tn of the TJ. Therefore the normalized spectral functions ν(λ; β^(ι')

and ι/(λ; ^^τ(ί)) of ΒN(i) and B^ii) satisfy the inequality

| ν (λ; BN (0) - ν (λ; BT

N (i)) | < %• {<* ( - T, Tn) + 1 - a (T, Tn)}. ( 5 . 2 )

In addition, let u(z, ξ; Ν, Tn, Qn) and uT(z, ξ; Ν, Tn, Qn) be the functions constructed according to

formula (3-2) for the chains of operator BN(i) and Bj[{i) respectively. It follows by definition, and

from (5-2), that, uniformly in ζ and ξ,

•| u(z, I; N, Tn,-Qn)-ur (ζ, ξ; Ν, Tn, Qn)\ < ± · i {a(-T, Tn)+l-a(T, Tn)}. (5-3)

Since the random quantities rT ate bounded the results of the preceding section are all applicable to

the function u (ζ, ξ; Ν, Τπ, Qn ), so that, in particular, for Ν —» °o it converges in probability to a

function u (ζ, ί) obeying the equation
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uT(z,f) .= mM-c \ τΤω/:(Ζ'Ό dl: (5-4)

By Glivenko's theorem, as Ν —• oo the right-hand side of (5· 3) almost certainly tends to

(c/ny)\a(- T)+l- σ(Τ)\. Therefore if T1 > Τ we get

whence it is clear that as Τ —-> oo the function uT(z, t) tends to some function u (z, t) uniformly for

t € [θ, l ] and ζ lying in the region Im ζ > δ, where δ is any positive number.

As in the proof of (2.5) it is shown that

rT(l)uT

z'(z,l) i

This inequality allows us to go to the limit under the integral sign in (5.4)as .T—> 00. Since uT{z, t) —» u(z, t)

and uj' {z, t) —> u'z (ζ, ί) as Τ —> oo, by (5-1), taking the limit in (5-4), we find that the function

u(z, i) satisfies the equation

Furthermore, we have

I u (z, t; N, Tn, Qn)-u(z,t)\^\u(z,t;N, Tn, Qh) - uF (z, t; N, Tn, Qn) |

whence in view of (5-3) we conclude that as TV —> 00 the function u(z, t; N, Tn, Qn) converges in

probability to u (z, i). It follows immediately from (5-4) that -limy->ooy Im u (z, t) =

-lim^ooylmmQiz, t) = vo(+°°)- j,0(-oo), so that, using (5-2X we conclude that -lim^ccy Im u (ζ, ί) =

^QCOO) - i/0(-oo) > 0, and consequently Im u (ζ, ί) Φ 0 for all t € [θ, l] and ζ lying strictly within the

upper halfplane. This implies that u (ζ, ί) satisfies (3-18)·

We have therefore shown that as Ν —> °c the sequence of functions u(z, t; N, Tn, Qn) converges

in probability to u(z, t), which is the unique solution to equation (5·5) which satisfies (3-18)- Thus

all the results of § 3 are generalized to the case where τ is unbounded. Hence, just as in §4, we

conclude that the increment i/(Xj; BN{n)) - ν(λ0; BN{n)) as JV —> °° tends in probability to

lim —
T)->-t-0 II

λο

and from (5.2) and the results of §4 it follows that for any e > 0

lim P{vo(— 00) — ε < ν ( λ ; β * ( η ) ) < ν 0 ( + ο ο ) + ε } = 1.
N-HX

Therefore Theorem 1 is also proved for unbounded τ.

In conclusion we formulate some results, similar to Theorem 1, for two additional sets of random
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matrices.

Let <?(I) {i - 1, 2, · · · , n) be independent, identically distributed random unit vectors and let

r(i) (θ < t < l) be continuous real functions for which sup i e[ 0 > x] r{t) > - 1. Consider Hermitian

matrices B^(n) of the form

where Pk = (· , q ( 4 ')y (* * is the projection onto ς ( ί ; ) and AN is some random Hermitian operator.

Theorem 2· If conditions I—III from § 1 are satisfied then the normalized spectral functions for

the operators Bpj(n) as Ν —> °° tend in probability to some limit function v(\; c) at all of its

points of continuity. The Stieltjes transformation of the function ?/(λ; c) is equal to the solution of

the equation

u(z,0) = mo(z) = \ <2d», a(t)= IiOI2±l£l

evaluated at t = 1, where ν ο (λ) is iAe iimii of the normalized spectral function of A^, whose

existence is ensured by condition II. The solution to this equation exists, is unique (in the class of

functions having positive imaginary part for Im ζ > 0) and is implicitly given by the formula

[
u (z, t) = z~xwma {w), ade w — ζ exp J c

J 1 - α (ξ)2«for)
I 0

The values of v(\; c) at + oo equal those of VQ (λ): v(+ °o; c) = vo(± oo).

Consider next the set of unitary matrices

UN (n) = VN Π \(I — Pk) + Pk exp j it ( -

where P^ is the same projection as above, r{t) is a function continuous in the segment [θ, 2π\, V^

is a nonrandom unitary operator and the factors in the product are arranged in order of increasing k.

The normalized spectral function of a unitary operator is the function ν(λ) ( 0< λ < 2π) equal to

the number of eigenvalues of this operator lying on the arc 0 < φ < λ of the unit circle divided by the

dimension of the space. Rather than the Stieltjes transform it is more natural here to consider the

function

— ζ
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relative to which ι/(λ) is found by the inversion formula

1 (*2

r->.i_o 2JI J

Theorem 3. If as Ν —-» oo fAe normalized spectral function of V^ tends to a function vQ(\) at

all of its points of continuity and conditions I and III of § 1 are satisfied, then the sequence of normal-

ized spectral functions of the operators UN(n) converges in probability as Ν —» «> ίο a function

v(\; c) at all of its points of continuity. The function n(z; c) corresponding to v(\; c) by (5.6) is

the solution to the equation

*ttt

du(z,t) 2z-l
dt dz

evaluated at t = 1. This equation has a unique solution (in the class of functions with positive real

part for \z\ < l), given implicitly by the formula

t f (ξ)
itg-— ^

- 2 c \ —,ττ-dV
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