
Random matrices and communication systems: WEEK 9

In this lecture, we first give a quick reminder regarding distributions on the real line; we then recall the
notion of weak convergence of sequences of distributions and finally move to various characterizations of
this weak convergence, more particularly in terms of moments and Stieltjes transform.

1 Distributions without random variables

1.1 Distributions on the real line

Let B(R) be the Borel σ-field on R, that is, the smallest σ-field on R that contains all the open sets
in R; its elements B ∈ B(R) are called the Borel sets.1 Recall that a mapping f : R → R is said to
be Borel-measurable if for all B ∈ B(R), f−1(B) = {x ∈ R : f(x) ∈ B} ∈ B(R). In particular, any
continuous function is Borel-measurable.2

Definition 1.1. A (probability) distribution on R is a mapping µ : B(R)→ [0, 1] such that

µ(∅) = 0, µ(R) = 1 and if (Bn, n ≥ 1) ∈ B(R) are disjoint, then µ

⋃
n≥1

Bn

 =
∑
n≥1

µ(Bn)

Definition 1.2. The cumulative distribution function (cdf) associated to a distribution µ is the mapping
Fµ : R→ [0, 1] defined as

Fµ(t) = µ((−∞, t]), t ∈ R

Fact. The knowledge of the cdf Fµ is equivalent to that of the distribution µ.

There are two well known particular classes of distributions.

Discrete distributions, for which there exists a countable set C such that µ(C) = 1. In this case,

µ(B) =
∑

x∈B∩C
µ({x}) ∀B ∈ B(R)

and Fµ is a step function.

Continuous distributions, for which there exists a probability density fiunction (pdf) pµ : R → R+

such that

µ(B) =

∫
B

pµ(x) dx ∀B ∈ B(R)

In this case, Fµ is a continuous function.

1.2 Lebesgue’s integral

The Lebesgue integral of a Borel-measurable function f : R → R with respect to a distribution µ is
defined in three steps as follows.

1. First suppose f is of the form

f(x) =
∑
j≥1

yj 1Bj
(x), where yj ≥ 0 and Bj ∈ B(R) (1)

Then the integral is defined as ∫
R
f(x) dµ(x) =

∑
j≥1

yj µ(Bj)

1If one is not familiar with this notion, one may think of B(R) as being simply the set of (nearly!) all subsets of R.
2Again, one may simply consider that (nearly!) all functions are Borel-measurable.
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2. Next, suppose that f is Borel-measurable and non-negative (i.e. f(x) ≥ 0 for all x ∈ R). Define then
for n ≥ 1

fn(x) =
∑
j≥1

j − 1

2n
1{x∈R : j−1

2n ≤f(x)<
j

2n }(x), x ∈ R

Then one can check that for all n ≥ 1 and x ∈ R, fn(x) ≤ fn+1(x) as well as limn→∞ fn(x) = f(x). As
fn is of the form (1), we may define∫

R
f(x) dµ(x) = lim

n→∞

∫
R
fn(x) dµ(x) = lim

n→∞

∑
j≥1

j − 1

2n
µ
({
x ∈ R : j−1

2n ≤ f(x) < j
2n

})
Notice that as fn ≤ fn+1, the above sequence is increasing, so the limit always exists, but may take the
value +∞.

3. Assume now that f is any Borel-measurable function. In this case case, we say that the integral is
well defined only if ∫

R
|f(x)| dµ(x) <∞ (2)

and we set ∫
R
f(x) dµ(x) =

∫
R
f+(x) dµ(x)−

∫
R
f−(x) dµ(x)

where f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0).

It is worth noticing that condition (2) is satisfied for any distribution µ when f is Borel-measurable and
bounded, as ∫

R
|f(x)| dµ(x) ≤ sup

x∈R
|f(x)|

∫
R
dµ(x) = sup

x∈R
|f(x)|µ(R) = sup

x∈R
|f(x)| <∞

by assumption. In particular, let us consider, for a given t ∈ R, ft(x) = 1{x≤t}: ft is Borel-measurable
and bounded, and ∫

R
ft(x) dµ(x) =

∫ t

−∞
dµ(x) = µ((−∞, t]) = Fµ(t)

For discrete and continuous distributions, the Lebesgue integral simply reads:

For µ discrete,

∫
R
f(x) dµ(x) =

∑
x∈C

f(x)µ({x}). For µ continuous,

∫
R
f(x) dµ(x) =

∫
R
f(x) pµ(x) dx.

1.3 Objects associated to a distribution

The cdf is an example of object associated to a distribution (that moreover characterizes completely the
distribution). Here are other examples.

Moments.

Definition 1.3. Let µ be a distribution on R and k ≥ 0. If
∫
R |x|

k dµ(x) < ∞, we then define the
moment of order k associated to the distribution µ as

mk =

∫
R
xk dµ(x)

Here are some easy facts:

- As f(x) = xk is not a bounded function, the moment of order k of a distribution is not always well
defined (with the exception of discrete distributions supported on a finite set: all their all moments are
always finite).
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- If µ has a finite moment of order k, then all its moments of lower order l ≤ k are also finite. In general,
there is a limiting value k0 below which all moments are finite and above which all moments are infinite
(but k0 may of course take the value ∞).

- If there exists C > 0 such that µ([−C,C]) = 1 (we then say that µ is supported on a compact set), then
all the moments of µ are finite and

|mk| ≤
∫
R
|x|k dµ(x) =

∫ C

−C
|x|k dµ(x) ≤ Ck

∫ C

−C
dµ(x) = Ck

There are of course other examples of distributions which are not supported on a compact set and whose
moments are all finite (such as e.g. the Gaussian or the log-normal distributions).

In general, an important question is to decide whether a distribution is completely characterized by its
moments (which can only possibly happen when all the moments of the distribution are finite). The
answer is given by Carleman’s theorem.

Theorem 1.4. (Carleman) Let µ be a distribution and (mk, k ≥ 0) be the sequence of its moments. If
in addition ∑

k≥1

(m2k)−
1
2k =∞ (3)

then the distribution µ is the unique distribution with the sequence of moments (mk, k ≥ 0).

Condition (3) is actually a condition on the growth of the moments mk. It is satisfied in particular if
|mk| ≤ Ck for some C > 0 (which occurs e.g. for distributions supported on a compact set, as just seen
above). Indeed, in this case,

m2k ≤ C2k so (m2k)−
1
2k ≥ 1

C
, so

∑
k≥1

(m2k)−
1
2k =∞

More generally, if |mk| ≤ C exp(k log k), then condition (3) holds. This is the case for example for the
Gaussian distribution (in which case mk ∼ k!), but not for the log-normal distribution (in which case
mk ∼ exp(k2))

Stieltjes (or Cauchy) transform.

Definition 1.5. Let µ be a distribution on R and z ∈ C\R. The Stieltjes transform of µ is the mapping
gµ : C\R→ C defined as

gµ(z) =

∫
R

1

x− z
dµ(z), z ∈ C\R

Notice that for z ∈ C\R, the function x 7→ fz(x) = 1
x−z is bounded and continuous on the real line, so

gµ(z) is always well defined.

Basic properties.

• gµ is analytic on C\R

• Im gµ(z) > 0 for all z ∈ C such that Im z > 0

• limv→∞ v |gµ(iv)| = 1

Moreover, it turns out that any function g satisfying the above three properties is the Stieltjes transform
of a distribution µ on R. In addition, we have the following inversion formula:

If a < b are continuity points of Fµ, then

Fµ(b)− Fµ(a) = lim
ε↓0

1

π

∫ b

a

Im gµ(u+ iε) du

In the case where µ is a continuous distribution with pdf pµ, the above formula simplifies to

pµ(x) = lim
ε↓0

1

π
Im gµ(x+ iε) ∀x ∈ R
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2 Weak convergence of sequences of distributions

Definition 2.1. Let (µn, n ≥ 1) be a sequence of distributions and µ be another distribution. The
sequence µn is said to converge weakly to µ as n goes to infinity if

lim
n→∞

Fµn(t) = Fµ(t) ∀t ∈ R continuity point of Fµ

Notation. µn =⇒
n→∞

µ.

So weak convergence of distributions means pointwise convergence of the corresponding cdfs, except in
the points where the limiting cdf makes a jump3. This definition has several equivalents, among which
the following, which is part of the so-called portmanteau theorem.

Proposition 2.2. µn =⇒
n→∞

µ if and only if for every bounded continuous function f : R→ R,

lim
n→∞

∫
R
f(x) dµn(x) =

∫
R
f(x) dµ(x)

Checking either of these criteria in order to prove weak convergence is difficult in general. In the sequel,
we propose other criteria that are easier to apply, in particular in random matrix theory.

2.1 Various characterizations of weak convergence

Via moments. The full version of Carleman’s theorem is given below.

Theorem 2.3. (Carleman) Let (µn, n ≥ 1) be a sequence of distributions and (mk, k ≥ 0) be a sequence
of numbers such that for all k ≥ 0,

lim
n→∞

∫
R
xkdµn(x) = mk

and such that the sequence (mk, k ≥ 0) satisfies condition (3). Then (mk, k ≥ 0) is a sequence of
moments to which corresponds a unique distribution µ, and µn converges weakly to µ.

Via Stieltjes transform.

Theorem 2.4. Let (µn, n ≥ 1) be a sequence of distributions and µ be another distribution. Then
µn =⇒

n→∞
µ if and only if

lim
n→∞

gµn
(z) = gµ(z)

for all z ∈ C+ = {z ∈ C : Im z > 0}.

The above two criteria are very useful for (random) matrices, for the following reason. Let A(n) be an

n× n Hermitian matrix, let λ
(n)
1 , . . . , λ

(n)
n be its real eigenvalues and let µn be the distribution of one of

these eigenvalues picked at random. Then

m
(n)
k =

∫
R
xk dµn(x) =

1

n

n∑
j=1

(
λ
(n)
j

)k
=

1

n
Tr

((
A(n)

)k)
and

gµn
(z) =

∫
R

1

x− z
dµn(x) =

1

n

n∑
j=1

1

λ
(n)
j − z

=
1

n
Tr

((
A(n) − zI

)−1)
In order to compute these quantities, one does actually not need to know what the eigenvalues λ

(n)
j are!

3Notice indeed that asking for pointwise convergence of a sequence of functions towards a limiting discontinuous function
in every point of R would be asking for too much.

4


