
Random matrices and communication systems: WEEK 6

1 Wishart random matrices: joint eigenvalue distribution

1.1 Real case

Recall first from previous lecture that if W = HHT , where H is an n ×m random matrix with i.i.d.∼
NR(0, 1) entries and m ≥ n, then the joint distribution of the entries of W is given by

pW (W ) = cn,m det(W )
m−n−1

2 exp

(
−1

2
Tr(W )

)
1{W≥0}

By the spectral theorem, the matrix W is orthogonally diagonalizable, that is, there exist V an n × n
orthogonal matrix (i.e. V V T = I) and Λ = diag(λ1, . . . , λn) such that λj ≥ 0 for all 1 ≤ j ≤ n and
W = V ΛV T , i.e.

wjk =

n∑
l=1

λl vjl vkl, 1 ≤ j, k ≤ n

Again, this can be viewed as a change of variables; on the left-hand side, there are n diagonal free

parameters wjj and n(n−1)
2 off-diagonal free parameters wjk, j < k in the matrix W (the remaining off-

diagonal parameters are fixed, as W is symmetric); on the right-hand side, there are n free parameters

in the matrix Λ and (n − 1) + (n − 2) + . . . + 1 + 0 = n(n−1)
2 free parameters in the matrix V . So the

number of free parameters on both sides coincide. The joint distribution of Λ and V is then given by

pΛ,V (Λ, V ) = pW
(
V ΛV T

)
|J(Λ, V )|

where, according to the above formula,

pW
(
V ΛV T

)
= cn,m det

(
V ΛV T

)m−n−1
2 exp

(
−1

2
Tr
(
V ΛV T

))
= cn,m det(Λ)

m−n−1
2 exp

(
−1

2
Tr(Λ)

)
and J(Λ, V ) is the Jacobian of the transformation W 7→ (Λ, V ). We now set out to compute this Jacobian.

Let N = n(n−1)
2 and let us denote by p1, . . . , pN the N free parameters in the matrix V (leaving aside

the explicit description of what these N parameters are: we will see in the following that this is actually
not needed). The Jacobian is then given by

J(Λ, V ) = det


{
∂wjj

∂λi

}
i,j

{
∂wjk

∂λi

}
i,j<k{

∂wjj

∂pi

}
i,j

{
∂wjk

∂pi

}
i,j<k


where the blocks in the above matrix are respectively of size n × n, n × N , N × n and N × N . As
W = V ΛV T , the computation of the above partial derivatives gives, in matrix form:

∂W

∂λi
= V∆(i)V T , where ∆

(i)
jk = δij δik

∂W

∂pi
=

∂V

∂pi
ΛV T + V Λ

∂V T

∂pi

Multiplying both these equations by V T and V and the left-hand and right-hand side, we obtain

V T
∂W

∂λi
V = ∆(i)

V T
∂W

∂pi
V =

(
V T

∂V

∂pi

)
Λ + Λ

(
∂V T

∂pi
V

)
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Let now S(i) = V T ∂V∂pi . As V TV = I, we also obtain

V T
∂V

∂pi
+
∂V T

∂pi
V = 0, i.e.

∂V T

∂pi
V = −S(i)

which allows us to rewrite V T ∂W∂pi V = S(i)Λ−ΛS(i). Component-wise, the two equations for the deriva-
tives with respect to λi and pi therefore read:

n∑
l,m=1

∂wlm
∂λi

vlj vmk = δij δik

n∑
l,m=1

∂wlm
∂pi

vlj vmk = S
(i)
jk (λk − λj)

(1)

With the help of these formulas, let us now compute the Jacobian J(Λ, V ) when V = I. In this case, the
above two formulas boil down to

∂wjk
∂λi

= δij δik and
∂wjk
∂pi

= S
(i)
jk (λk − λj)

so

J(Λ, V ) = det

(
I 0

0
{
S

(i)
jk (λk − λj)

}
i,j<k

)
= det

({
S

(i)
jk (λk − λj)

}
i,j<k

)
=

∏
j<k

(λk − λj) det
({
S

(i)
jk

}
i,j<k

)
=
∏
j<k

(λk − λj) f(V )

for some function f , as the matrix elements S
(i)
jk possibly only depend on V . We claim that the same

conclusion holds in the case where V 6= I. To this end, let us consider

J̃(Λ, V ) = det



{
∂wll

∂λi

}
i,l

{
∂wlm

∂λi

}
i,l<m{

∂wll

∂pi

}
i,l

{
∂wjk

∂pi

}
i,l<m


 {

v2
lj

}
l,j

{vljvlk}l,j<k
{2vljvmj}l<m,j {2vljvmk}l<m,j<k




Using the fact that det(AB) = det(A) det(B) and observing that the second term on the right-hand side

only depends on V , we deduce that J̃(Λ, V ) = J(Λ, V ) g(V ) for some function g. On the other hand,
performing the matrix multiplication inside the determinant gives for matrix element i, (jk) in the first
n rows:

n∑
l=1

∂wll
∂λi

vlj vlk + 2
∑
l<m

∂wlm
∂λi

vlj vmk =

n∑
l,m=1

∂wlm
∂λi

vlj vmk

and likewise for the matrix element i, (jk) in the last N rows:

n∑
l=1

∂wll
∂pi

vlj vlk + 2
∑
l<m

∂wlm
∂pi

vlj vmk =

n∑
l,m=1

∂wlm
∂pi

vlj vmk

Using then equation (1), we obtain again

J̃(Λ, V ) = det

(
I 0

0
{
S

(i)
jk (λk − λj)

}
i,j<k

)
=
∏
j<k

(λk − λj) f(V )

which, together with the above observation that J̃(Λ, V ) = J(Λ, V ) g(V ), proves the claim. What can be
deduced so far from all these computations is that

pΛ,V (Λ, V ) = cn,m det(Λ)
m−n−1

2 exp

(
−1

2
Tr(Λ)

) ∏
j<k

|λk − λj | |f(V )|
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for some function f . This is actually saying that pΛ,V (Λ, V ) = pΛ(Λ) pV (V ), so the eigenvalues and
eigenvectors of W are independent! The joint distribution of the eigenvalues is given by

p(λ1, . . . , λn) = cn,m

n∏
j=1

(
λ

m−n−1
2

j exp(−λj/2) 1λj≥0

) ∏
j<k

|λk − λj |

where cn,m is the normalization constant, which can be computed explicitly; it differs from the constant
in the expression for pW (W ), but in order to keep notation simple, we do not change notation here.

The above distribution may also be rewritten in the following form:

p(λ1, . . . , λn) = cn,m exp

− n∑
j=1

(
λj
2
− m− n− 1

2
log(λj)

)
+
∑
j<k

log |λk − λj |

 1λ1≥0,...,λn≥0

and given the following interpretation: it represents the Gibbs distribution of a system of n particles
in positions λ1, . . . , λn evolving in a potential U(λ) = λ

2 −
m−n−1

2 log(λ) and repelling each other. Two
opposite forces operate here: on one hand, the particles would all like to be in the minimum of the
potential, but as they repel each other, there is not enough room for them, so some are driven away from
this minimum. The fact that eigenvalues repel each other is a common feature to most random matrix
models (essentially because of the term resulting from the above Jacobian computation).

Now, what is the distribution of the eigenvectors? As already seen, for every fixed n × n orthogonal
matrix O ∈ O(n), the matrices H and OH share the same distribution. Therefore, so do the matrices W
and OWOT , which is saying that

V ΛV T and (OV )Λ(OV )T

also share the same distribution. By the independence of Λ and V (and the non-singularity of the distribu-
tion of Λ), this finally implies that V and OV share the same distribution, for every fixed n×n orthogonal
matrix O. This in turn implies that the matrix V is distributed according to the Haar distribution on
O(n), which is the unique distribution on O(n) being invariant under orthogonal transformations.

1.2 Complex case

We shall not repeat here the whole reasoning; we just mention the main steps of the computation. In
this case, W = HH∗, where H is an n×m random matrix with i.i.d.∼ NC(0, 1) entries and m ≥ n. The
joint distribution of the entries of W is given by

pW (W ) = cn,m det(W )m−n exp(−Tr(W )) 1{W≥0}

By the spectral theorem, the matrix W is unitarily diagonalizable, that is, there exist U an n×n unitary
matrix (i.e. UU∗ = I) and Λ = diag(λ1, . . . , λn) such that λj ≥ 0 for all 1 ≤ j ≤ n and W = UΛU∗, i.e.

wjk =

n∑
l=1

λl ujl ukl, 1 ≤ j, k ≤ n

On the left-hand side, there are n diagonal free real parameters and 2 n(n−1)
2 = n2 − n off-diagonal free

real parameters in the matrix W ; on the right-hand side, there are n free real parameters in the matrix Λ
and n2 free real parameters in the matrix U . So here we see that there is a mismatch. The mismatch can
be resolved by observing that in the complex case, an eigenvector rotated by eiφ remains an eigenvector.
So it is possible to set the first component of each eigenvector of W to be a real number, which reduces
by n the numbers of free real parameters in U , so that the number of free real parameters on both sides
coincide. The joint distribution of Λ and U is then given by

pΛ,U (Λ, U) = pW (UΛU∗) |J(Λ, U)|
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where
pW (UΛU∗) = cn,m det(Λ)m−n exp(−Tr(Λ))

and the computation of the Jacobian gives

J(Λ, U) =
∏
j<k

(λk − λj)2 f(U)

for some function f . Therefore, Λ and U are also independent in this case, and

p(λ1, . . . , λn) = cn,m

n∏
j=1

(
λm−nj exp(−λj) 1λj≥0

) ∏
j<k

(λk − λj)2

where cn,m is the normalization constant, which differs from the previous cn,m and can be computed
explicitly. Finally, similarly to the previous section, U is distributed according to the Haar distribution
on U(n), which is the unique distribution on U(n) being invariant under unitary transformations.
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