
Random matrices and communication systems: WEEK 3

In this lecture and in the subsequent ones, we adopt the following notations: small letters refer to scalars
(deterministic or random) and deterministic vectors, while capital letters refer to matrices (deterministic
or random) and random vectors. In some cases, this rule will not be followed strictly, but what is actually
meant will be clear from the context.

Summary of last lecture and single-letter characterization

- We saw first that when the fading coefficient h0 is fixed over time and deterministic, the capacity of the
channel is given by

C = log(1 + P |h0|2)

This result can also be seen as the solution of the following single-letter characterization of the channel
capacity (that remains valid in the more general context of multiple antenna systems):

C = sup
pX :E(|X|2)≤P

I(X;Y )

- Then, we saw that when the fading coefficients Hk are random and i.i.d. over time, known at both the
transmitter and the receiver, the ergodic capacity of the channel is given by

Cerg = sup
Q(·)≥0

EH(Q(H))≤P

EH(log(1 +Q(H) |H|2))

while when they are known at the receiver but not at the transmitter,

Cerg = EH(log(1 + P |H|2))

Again, in this second case (which we will mainly focus on in the following), this ergodic capacity expression
may be found as the result of the more general single-letter characterization:

Cerg = sup
pX :E(|X|2)≤P

I(X;Y,H)

- Finally, when the fading coefficient H is random and fixed over time, known at both the transmitter
and the receiver, the capacity of the channel is a random variable given by

C = log(1 + P |H|2)

while when H is not known at the transmitter, the capacity is equal to zero and the outage probability
is given by

Pout(R) = PH(log(1 + P |H|2) < R)

for a target rate R > 0. Again, in this second case, this expression may be viewed as the result of the
more general single-letter characterization:

Pout(R) = inf
pX : E(|X|2)≤P

PH(I(X;Y ) < R)

(notice that in this case, I(X;Y ) is a random variable depending on the realization of H).

Preliminaries for this lecture

- An n-variate complex-valued random vector X = (X1, . . . , Xn) is (jointly) continuous if it admits a
joint pdf pX = pX!,...,Xn , i.e.

P(X ∈ B) =

∫
B

dx pX(x) ∀B ⊂ Cn Borel set
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Its mean vector is defined as µ = (E(X1), . . . ,E(Xn)) and its covariance matrix is defined as (QX)jk =
E(Xj Xk) (when they exist).

- Let X be a complex Gaussian random vector with mean 0 and positive definite covariance matrix QX

(notation: X ∼ NC(0, QX)). This random vector admits the following joint pdf:

pX(x) =
1

πndet(QX)
exp

(
−x∗ (QX)−1 x

)
, x ∈ Cn

Notice that E(Xj) = 0, E(Xj Xk) = (QX)jk and also that X1, . . . , Xn are independent if and only if QX

is diagonal.

- The differential entropy of a continuous random vector X is defined as

h(X) = −
∫
Cn

dx pX(x) log(pX(x))

One can check that

h(X) ≤
n∑

j=1

h(Xj)

with equality if and only if the Xj are independent, and also that

sup
pX :E(XX∗)=QX

h(X) = log det(πeQX)

is achieved by taking X ∼ NC(0, QX).

Multiple antenna systems

We now consider the multiple antenna system (only one time-slot is considered here):

Y = HX + Z

where X,Y, Z are n-variate vectors and H is an n× n matrix. More precisely,

• X is the input vector submitted to the average power constraint E(‖X‖2) ≤ P ;
(notice that E(‖X‖2) = E(X∗X) = E(Tr(XX∗)) = Tr(QX))

• Z ∼ NC(0, I) is the noise vector, independent of X;

• Y is the output vector;

• H is the channel fading matrix (to be specified below).

1 H = H0 is deterministic and fixed over time

In this case, the single-letter characterization of the capacity reads

C = sup
pX : Tr(QX)≤P

I(X;Y ) = sup
pX :Tr(QX)≤P

h(Y )− h(Y |X)

Notice that h(Y |X) = h(H0X + Z |X) = h(Z), so

C =

(
sup

pX : Tr(QX)≤P
h(H0X + Z)

)
− h(Z)
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The above expression is maximized when H0X+Z is Gaussian, which happens when X itself is Gaussian.
In this case, H0X + Z ∼ NC(0, I +H0QX H∗0 ), so

C =

(
sup

QX : Tr(QX)≤P
log det(πe(I +H0QX H∗0 ))

)
− log det(πeI) = sup

QX : Tr(QX)≤P
log det(I +H0QX H∗0 )

In order to proceed further, we need the following inequality, whose proof is left as an exercise in the
homework.

Hadamard’s inequality. Let A be a positive semi-definite n× n matrix. Then det(A) ≤
∏n

j=1 ajj .

A second ingredient is the singular value decomposition of H0, stating that there exist unitary matrices
U, V and Σ = diag(σ1, . . . , σn), with σj ≥ 0 for all j, such that H0 = U ΣV ∗. Therefore,

log det(I +H0QX H∗0 ) = log det(I + U ΣV ∗QX V Σ∗ U∗) = log det(I + ΣV ∗QX V Σ∗)

Let now Q̃X = V ∗QX V . Notice that Q̃X also satisfies the above constraints:

Q̃X ≥ 0 and Tr(Q̃X) = Tr(QX) ≤ P

so
C = sup

QX : Tr(QX)≤P
log det(I +H0QX H∗0 ) = sup

Q̃X : Tr(Q̃x)≤P
log det(I + Σ Q̃X Σ∗)

Using now Hadamard’s inequality, we obtain

det(I + Σ Q̃X Σ∗) ≤
n∏

j=1

(
1 + (Σ Q̃X Σ∗)jj

)
=

n∏
j=1

(
1 + (Q̃X)jj σ

2
j

)
and the equality is met by taking Q̃X diagonal, say Q̃X = diag(d1, . . . , dn). The above expression for the
capacity can therefore be rewritten as

C = sup
d1,...,dn≥0∑n

j=1 dj≤P

n∑
j=1

log(1 + dj σ
2
j )

The solution of this optimization problem is again obtained via water-filling:

C =

n∑
j=1

(
log(ν σ2

j )
)+

where
n∑

j=1

(
ν − 1

σ2
j

)+

≤ P

As an example, let us consider the following simple case: (H0)jk = 1 for all j, k. In this case, σ1 = n,
σ2 = . . . = σn = 0, so

C = log(νn2) such that

(
ν − 1

n2

)
≤ P

i.e. ν = P + 1
n2 and C = log(1 + P n2).

2 H is random and varying ergodically over time (fast fading)

We assume now that the matrix H admits the pdf pH(·) and that its realizations over time are i.i.d. (or
ergodic), known at the receiver but not at the transmitter (so that X and H are independent). In this
case, the single-letter characterization of the capacity reads:

Cerg = sup
pX : Tr(QX)≤P

I(X;Y,H) = sup
pX : Tr(QX)≤P

I(X;H) + I(X;Y |H)
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by the chain rule. Because of the independence of X and H, the first term is zero, so

Cerg = sup
pX : Tr(QX)≤P

∫
Cn2

dGpH(G) I(X;Y |H = G)

Notice that for any fixed matrix G,

I(X;Y |H = G) = I(X;GX + Z) ≤ log det(I +GQX G∗)

and the equality is met when X ∼ N(0, QX) (which does not depend of the specific value of G). So

Cerg = sup
QX≥0 : Tr(QX)≤P

∫
Cn2

dGpH(G) log det(I +GQX G∗)

which can be rewritten as

Cerg = sup
QX≥0 : Tr(QX)≤P

EH(log det(I +H QX H∗))

Remark. It is not because the realizations of H are not known at the transmitter that the optimal
QX should be a multiple of identity; it is indeed always possible to optimize over the distribution of H.
Notice also that the solution is not the water-filling solution, as the singular values and vectors of H are
not known at the transmitter.

Nevertheless, under symmetry conditions on the distribution of H, something more can be said on the
optimal input covariance matrix QX . This is illustrated in the following lemmas, whose respective proofs
are left as exercises in the homework.

Lemma 2.1. If hjk are i.i.d. random variables, then the optimal input covariance matrix is of the form

QX =
P

n


1 c · · · c c
c 1 c c
...

. . .
. . .

. . .
...

c c 1 c
c c · · · c 1


where − 1

n−1 ≤ c ≤ 1 is some real parameter.

Lemma 2.2. If hjk are independent random variables such that hjk ∼ −hjk for all j, k, then the optimal
input covariance matrix QX is diagonal.

Lemma 2.3. If hjk are i.i.d random variables such that hjk ∼ −hjk for all j, k, then the optimal input
covariance matrix QX = P

n I.

Notice that the third lemma is simply a combination of the first two. It holds true in particular when
hjk are i.i.d.∼ NC(0, 1) random variables, in which case

Cerg = EH

(
log det

(
I +

P

n
HH∗

))
We will analyze this expression further in the next lecture.
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