
Random matrices and communication systems: WEEK 2

In this lecture, we adopt the following (temporary) notations: small letters refer to scalar numbers and
capital letters refer to scalar random variables.

Single antenna systems

Let us consider the additive white Gaussian noise (AWGN) channel:

Yk = HkXk + Zk

where k ∈ {1, . . . , N} is the time index and

• (X1, . . . , XN ) is the input vector submitted to the average power constraint E
(

1
N

∑N
k=1 |Xk|2

)
≤ P ;

• (Z1, . . . , ZN ) is the noise vector, whose components are i.i.d.∼ NC(0, σ2) random variables, inde-
pendent of X1, . . . , XN ;

• (Y1, . . . , YN ) is the output vector;

• H1, . . . ,HN are the fading coefficients (to be specified below).

The signal-to-noise ratio (SNR) of the system is defined as SNR = P/σ2. In order to simplify notation,
we will assume in the following that the noise variance σ2 = 1, so that SNR = P .

The general question we would like to address in the present lecture is the following. Assume that
two users wish to communicate over the above channel; what is then the maximum rate R at which
communication can be established reliably? The answer depends of course on the specific model chosen
for the fading coefficients Hk. We will review in the following various possible assumptions.

1 Hk = hk, k = 1, . . . , N are deterministic coefficients

We start by considering the case of deterministic (complex-valued) fading coefficients, as an “appetizer”
to the random case, which is the case of interest for this course.

In the deterministic case, the maximum rate at which one may possibly communicate over the time
interval [1, . . . , N ] is given by

maxR ≤ sup
pX1,...,XN

E( 1
N

∑N
k=1 |Xk|2)≤P

1

N
I(X1, . . . , XN ;Y1, . . . , YN )

Let us compute

I(X1, . . . , XN ;Y1, . . . , YN ) = h(Y1, . . . , YN )− h(Y1, . . . , YN |X1, . . . , XN )

= h(h1X1 + Z1, . . . , hN XN + ZN )− h(h1X1 + Z1, . . . , hN XN + ZN |X1, . . . , XN )

= h(h1X1 + Z1, . . . , hN XN + ZN )− h(Z1, . . . , ZN |X1, . . . , XN )

= h(h1X1 + Z1, . . . , hN XN + ZN )− h(Z1, . . . , ZN )

as X1, . . . , XN and Z1, . . . , ZN are independent by assumption. Using now the fact that for jointly
continuous random variables U1, . . . , UN ,

h(U1, . . . , UN ) ≤
N∑

k=1

h(Uk)
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with equality if and only if the Uk are independent, we obtain

I(X1, . . . , XN ;Y1, . . . , YN ) ≤
N∑

k=1

(h(hkXk + Zk)− h(Zk))

with equality if and only if the Xk are independent. Using then the fact

sup
pU :E(|U |2)≤P

h(U) = log(πeP )

where the supremum is attained for U ∼ NC(0, P ), we further obtain

I(X1, . . . , XN ;Y1, . . . , YN ) ≤
N∑

k=1

(log(πe(Pk |hk|2 + 1))− log(πe)) =

N∑
k=1

log(1 + Pk |hk|2)

by taking Xk ∼ NC(0, Pk) independent with 1
N

∑N
k=1 Pk ≤ P in order to meet the power constraint. This

finally implies

maxR ≤ sup
P1,...,PN≥0

1
N

∑N
k=1 Pk≤P

1

N

N∑
k=1

log(1 + Pk |hk|2)

This optimization problem can be solved analytically; its solution is the well known “water-filling” solu-
tion, but let us not write this down explicitly at this stage. Also, without making any further assumption
on the (arbitrary) sequence of fading coefficients hk, we cannot conclude anything on the capacity of the
channel in the large N limit.

1.1 Hk ≡ h0 for all k = 1, . . . , N

In this particular case, the above optimization problem is symmetric in P1, . . . , PN and has therefore the
following simple solution:

maxR ≤ sup
P1,...,PN≥0

1
N

∑N
k=1 Pk≤P

1

N

N∑
k=1

log(1 + Pk |h0|2) = log(1 + P |h0|2)

Here, as h0 is fixed, the above expression can also be shown to be equal to the capacity of the channel in
the large N limit.

2 Hk, k = 1, . . . , N are random coefficients

In this section, we consider the Hk as random, in order to take into account the uncertainty about the
fading coefficients. We should specify:

- how fast do these coefficients vary over time?

- among the receiver and the transmitter, who knows the realizations of these coefficients?

In the following, we assume that these coefficients have a given distribution and that this distribution is
known to everyone. This is needed in order to be able to describe the statistics of the channel between
X and Y . If even the distribution itself is not known, then the channel becomes an arbitrarily varying
channel, which is out of the scope of the present course.
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2.1 Hk are i.i.d. random variables (fast fading assumption)

This is in some sense an extreme assumption, which could be relaxed to “the coefficients Hk vary er-
godically over time”. By “ergodically”, we actually mean that the empirical distribution of H1, . . . ,HN

converges to a given fixed distribution pH (this holds in particular for an i.i.d. sequence, by the law of
large numbers). But present in this assumption is also the fact that the coefficients Hk should vary
relatively fast with respect to the duration of communication.

We need now to specify who knows the realizations of the coefficients Hk. In the following, we assume
that that receiver is able to track (perfectly) the values of the Hk (by using pilot signals first, e.g.), but
we make two different assumptions regarding the transmitter.

2.1.1 The transmitter knows the realizations of the coefficients Hk

This assumption is justified when feedback is easy to obtain at the transmitter. In this case, as everyone
knows the channel realizations, it is as if these were actually deterministic, so the maximum rate achievable
over the time interval [1, . . . , N ] is bounded above by

maxR ≤ sup
P1,...,PN≥0

1
N

∑N
k=1 Pk≤P

1

N

N∑
k=1

log(1 + Pk |Hk|2)

This leads to the definition of ergodic capacity:

Cerg = lim
N→∞

sup
P1,...,PN≥0

1
N

∑N
k=1 Pk≤P

1

N

N∑
k=1

log(1 + Pk |Hk|2) = sup
Q(·)≥0∫

C dh pH(h)Q(h)≤P

∫
C
dh pH(h) log(1 +Q(h) |h|2)

This can in turn be rewritten as

Cerg = sup
Q(·)≥0

EH(Q(H))≤P

EH(log(1 +Q(H) |H|2))

The solution of this optimization problem is given by the water-filling solution:

Cerg = EH

((
log(ν |H|2)

)+)
where ν satisfies EH

((
ν − 1

|H|2

)+)
≤ P (1)

and a+ = max(a, 0) denotes the positive part of a ∈ R.

2.1.2 The transmitter does not know the realizations of the coefficients Hk

This assumption is justified when feedback is difficult, or even impossible, to obtain at the transmit-
ter. In this case, the input vector (X1, . . . , XN ) cannot be tuned according to the channel realizations
H1, . . . ,HN , which we model mathematically by saying that X1, . . . , XN and H!, . . . ,HN are independent.

As we assume on the other hand that the receiver knows the Hk, the channel between the trans-
mitter and the receiver can be seen in this case as the channel with input (X1, . . . , XN ) and output
(Y1, . . . , YN , H1, . . . ,HN ); it is as if a genie were revealing the channel coefficients Hk to the receiver. So
the mutual information of this channel is given by

I(X1, . . . , XN ;Y1, . . . , YN , H1, . . . ,HN )

= I(X1, . . . , XN ;H1, . . . ,HN ) + I(X1, . . . , XN ;Y1, . . . , YN |H1. . . . ,HN )

= 0 + h(Y1, . . . , YN |H1, . . . ,HN )− h(Y1, . . . , YN |X1, . . . , XN , H1, . . . ,HN )
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where the chain rule was used in the first inequality and the independence of the Hk and Xk in the second
inquality. As Yk = HkXK + ZK we further obtain

I(X1, . . . , XN ;Y1, . . . , YN , H1, . . . ,HN )

= h(Y1, . . . , YN |H1, . . . ,HN )− h(Z1, . . . , ZN )

=

∫
CN

dh1 · · · dhN pH1,...,HN
(h1, . . . , hN )h(h1X1 + Z1, . . . , hN XN + ZN )− h(Z1, . . . , ZN )

where we have used the fact that the Hk, Xk, Zk are independent. This can in turn be bouded above by

I(X1, . . . , XN ;Y1, . . . , YN , H1, . . . ,HN ) ≤
N∑

k=1

∫
C
dhk pHk

(hk) (h(hkXk + Zk)− h(Zk))

≤
N∑

k=1

∫
C
dhk pHk

(hk) log(1 + Pk |hk|2)

by chosing Xk ∼ NC(0, Pk) independent with 1
N

∑N
k=1 Pk ≤ P (and notice that this choice of Xk max-

imzing the mutal information does not depend on the particular realizations of the fading coefficients
Hk). The ergodic capacity of the channel is therefore given in this case by

Cerg = lim
n→∞

sup
pX1,...,XN

E( 1
N

∑N
k=1 |Xk|2)≤P

1

N
I(X1, . . . , XN ;Y1, . . . , YN , H1, . . . ,HN )

= lim
N→∞

sup
P1,...,PN≥0

1
N

∑N
k=1 Pk≤P

1

N

N∑
k=1

∫
C
dhk pHk

(hk) log(1 + Pk |hk|2) =

∫
C
dh pH(h) log(1 + P |h|2)

because again of the symmetry of the optimization problem. This can in turn be rewritten as

Cerg = EH(log(1 + P |H|2)) (2)

Remarks. - Comparing this expression with (1), we see the impact on the capacity of not knowing the
channel coefficients at the transmitter.

- By Jensen’s inequality, we obtain

Cerg = EH(log(1 + P |H|2)) ≤ log(1 + P EH(|H|2))

so the ergodic capacity is less than or equal to the capacity of the channel with fixed and deterministic
fading coefficient h0 satisfying |h0|2 = EH(|H|2), which leads to the conclusion that fading degrades
capacity in single antenna channels. We will see that the situation differs in multiple antenna channels.

2.2 Hk ≡ H for all k = 1, . . . , N (slow fading assumption)

This is again an extreme assumption, which could be relaxed to “the variations of the coefficients Hk

are sufficiently small over the duration of communication”. We again assume that the receiver is able to
track the fading coefficients and make two different assumptions on the transmitter.

2.2.1 The transmitter knows the realization of H

In this case, as H is fixed over time and known to everyone, it is as if we were in the fixed and determinisitc
scenariio (see paragraph 1.1), so the capacity of the channel is given by

C = log(1 + P |H|2)

which is a random variable here, depending on the given realization of H.
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2.2.2 The transmitter does not know the realization of H

In this case, let us moreover assume that the distribution of H admits a continuous pdf pH whose support
contains the point 0 (this is in particular verified for Rayleigh fading, that is, when H ∼ NC(0, 1)). This
is implying that whatever ε > 0, P(|H|2 < ε) > 0. As a consequence, whatever the rate chosen by the
transmitter for communication (who does not know the value of H), there is always a non-zero probability
that the chosen rate is above the actual capacity of the channel. Therefore, the capacity in this case is
strictly speaking equal to zero. We therefore shift our attention to another performance measure: the
outage probability, defined as, for a given target rate R > 0,

Pout(R) = PH(log(1 + P |H|2) < R)

The outage probability is a lower bound on the error probability achieved by any scheme on this channel
(exactly like the capacity is an upper bound on the rate achieved by any scheme on a given channel). As
long as the assumption on pH made at the beginning of this paragraph is verified, the outage probability
is always strictly positive.

Considering the high SNR regime (i.e. P → ∞), this probability can still be made vanishingly small.
First, observe that as P →∞,

Cerg = EH(log(1 + P |H|2)) ' logP

So if one wants Pout(R) to decrease to zero as P → ∞, one should not choose the target rate R higher
than logP . Let us therefore choose R = r logP , with 0 ≤ r ≤ 1. In the case where H ∼ NC(0, 1), we
obtain

Pout(r logP ) = PH(log(1 + P |H|2) < r logP ) = PH

(
1 + P |H|2 < P r

)
= PH

(
|H|2 < P r − 1

P

)
' PH

(
|H|2 < P r−1) ' P r−1

So the decay is polynomial in P . In addition, we observe the following tradeoff: the lower the target rate
r logP , the higher the speed of decrease to zero of the outage probability.
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