Random matrices and communication systems: WEEK 14

1 Diversity-multiplexing tradeoff (cont'd)

Remember from last lecture that we are after computing the diversity order of a multiple antenna channel:

$$
d(r)=\lim _{P \rightarrow \infty}-\frac{\log \left(P_{\mathrm{out}}(r \log P)\right)}{\log P}=\lim _{P \rightarrow \infty}-\frac{\left.\log \left(\mathbb{P}\left(\log \operatorname{det}\left(I+P H H^{*}\right)<r \log P\right)\right)\right)}{\log P}
$$

where H is an $n \times n$ matrix with i.i.d. $\sim \mathcal{N}_{\mathbb{C}}(0,1)$ entries (and n is fixed). The above probability can be rewritten as

$$
\mathbb{P}\left(\log \operatorname{det}\left(I+P H H^{*}\right)<r \log P\right)=\mathbb{P}\left(\sum_{j=1}^{n} \log \left(1+P \lambda_{j}\right)<r \log P\right)
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of the matrix $H H^{*}$, which are all non-negative. In Lecture 6 , we have seen that the joint distribution of these eigenvalues is given by

$$
p\left(\lambda_{1}, \ldots, \lambda_{n}\right)=c_{n} \prod_{j=1}^{n} e^{-\lambda_{j}} \prod_{j<k}\left(\lambda_{k}-\lambda_{j}\right)^{2} \quad \text { for } \lambda_{1}, \ldots, \lambda_{n} \geq 0
$$

where c_{n} is some positive constant. Using this, the above probability can be further rewritten as an n-fold integral:

$$
\mathbb{P}\left(\log \operatorname{det}\left(I+P H H^{*}\right)<r \log P\right)=\int_{D_{\lambda}(r)} p\left(\lambda_{1}, \ldots, \lambda_{n}\right) d \lambda_{1} \cdots d \lambda_{n}
$$

where

$$
D_{\lambda}(r)=\left\{0 \leq \lambda_{1} \leq \ldots \leq \lambda_{n}: \sum_{j=1}^{n} \log \left(1+P \lambda_{j}\right)<r \log P\right\}
$$

(notice that the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are ordered in increasing order here). The explicit computation of this integral remains a challenge, because of the highly correlated nature of the eigenvalues. We will see below that taking the high SNR limit $(P \rightarrow \infty)$ in the above expression allows to drastically simplify the analysis. To this end, let us make the change of variables:

$$
\lambda_{j}=P^{-\alpha_{j}}=\exp \left(-\alpha_{j} \log P\right), \quad \text { so } \quad d \lambda_{j}=-(\log P) \exp \left(-\alpha_{j} \log P\right) d \alpha_{j}
$$

This change of variable, even though depending on P, is perfectly valid for given value of P, and therefore also in the limit $P \rightarrow \infty$ (provided some care is taken here). This gives rise to the following expression for the above probability:

$$
\mathbb{P}\left(\log \operatorname{det}\left(I+P H H^{*}\right)<r \log P\right)=\int_{D_{\alpha}(r)} q\left(\alpha_{1}, \ldots, \alpha_{n}\right) d \alpha_{1} \cdots d \alpha_{n}
$$

where

$$
q\left(\alpha_{1}, \ldots, \alpha_{n}\right)=c_{n} \exp \left(-\sum_{j=1}^{n} P^{-\alpha_{j}}\right) \prod_{j<k}\left(P^{-\alpha_{j}}-P^{-\alpha_{k}}\right)^{2}(\log P)^{n} \exp \left(-\sum_{j=1}^{n} \alpha_{j} \log P\right)
$$

and

$$
D_{\alpha}(r)=\left\{\alpha_{1} \geq \ldots \geq \alpha_{n}\left(\alpha_{j} \in \mathbb{R}\right): \sum_{j=1}^{n} \log \left(1+P^{1-\alpha_{j}}\right)<r \log P\right\}
$$

So far, these are exact expressions. We will now make a series of approximations which are valid in the limit $P \rightarrow \infty$ (and which can all be rigorously justified by taking upper and lower bounds).

First observe that

$$
\exp \left(-P^{-\alpha_{j}}\right) \begin{cases}\text { decays super-polynomially to zero } & \text { if } \alpha_{j}<0 \\ \text { tends to } 1 & \text { if } \alpha_{j} \geq 0\end{cases}
$$

so we may restrict the domain of integration $D_{\alpha}(r)$ to its positive part where $\alpha_{1} \geq \ldots \geq \alpha_{n} \geq 0$.
Next, observe that

$$
\log \left(1+P^{1-\alpha_{j}}\right) \simeq \begin{cases}\left(1-\alpha_{j}\right) \log P & \text { if } \alpha_{j} \leq 1 \\ 0 & \text { if } \alpha_{j}>1\end{cases}
$$

so $\log \left(1+P^{1-\alpha_{j}}\right) \simeq\left(1-\alpha_{j}\right)^{+} \log P$. We can therefore replace the domain of integration $D_{\alpha}(r)$ by

$$
\widetilde{D}_{\alpha}(r)=\left\{\alpha_{1} \geq \ldots \geq \alpha_{n} \geq 0: \sum_{j=1}^{n}\left(1-\alpha_{j}\right)^{+} \leq r\right\}
$$

and the above probability can be rewritten as

$$
\mathbb{P}\left(\log \operatorname{det}\left(I+P H H^{*}\right)<r \log P\right) \doteq \int_{\widetilde{D}_{\alpha}(r)} \widetilde{q}\left(\alpha_{1}, \ldots, \alpha_{n}\right) d \alpha_{1} \cdots d \alpha_{n}
$$

where

$$
\widetilde{q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=c_{n} \prod_{j<k}\left(P^{-\alpha_{j}}-P^{-\alpha_{k}}\right)^{2}(\log P)^{n} \exp \left(-\sum_{j=1}^{n} \alpha_{j} \log P\right)
$$

Furthermore, let us notice that $c_{n}(\log P)^{n} \doteq 1$, as $\lim _{P \rightarrow \infty} \frac{\log \left(c_{n}(\log P)^{n}\right)}{\log P}=0$. Here comes now the "magic" trick: for $\alpha_{1}>\ldots>\alpha_{n}$, we have

$$
\prod_{j<k}\left(P^{-\alpha_{j}}-P^{-\alpha_{k}}\right)^{2} \doteq \prod_{j<k} P^{-2 \alpha_{k}}=\prod_{k=1}^{n} P^{-2(k-1) \alpha_{k}}=\exp \left(-\sum_{k=1}^{n} 2(k-1) \alpha_{k} \log P\right)
$$

This implies that

$$
\widetilde{q}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \doteq \exp \left(-\sum_{j=1}^{n}(2 j-1) \alpha_{j} \log P\right)
$$

In this expression, we see that in the limit $P \rightarrow \infty$, the exponents α_{j} become so to speak "independent". Finally, we obtain

$$
\mathbb{P}\left(\log \operatorname{det}\left(I+P H H^{*}\right)<r \log P\right) \doteq \int_{\widetilde{D}_{\alpha}(r)} \exp \left(-\sum_{j=1}^{n}(2 j-1) \alpha_{j} \log P\right) d \alpha_{1} \cdots d \alpha_{n}
$$

This expression can in turn be rewritten as

$$
\mathbb{P}\left(\log \operatorname{det}\left(I+P H H^{*}\right)<r \log P\right) \doteq \int_{\widetilde{D}_{\alpha}(r)} P^{-f(\alpha)} d \alpha_{1} \cdots d \alpha_{n}
$$

where

$$
f(\alpha)=\sum_{j=1}^{n}(2 j-1) \alpha_{j}
$$

Using then Laplace's integration method, we obtain

$$
\mathbb{P}\left(\log \operatorname{det}\left(I+P H H^{*}\right)<r \log P\right) \doteq P^{-d(r)}
$$

where the diversity order $d(r)$ is given by

$$
d(r)=\inf _{\substack{\widetilde{D}_{\alpha}(r)}} f(\alpha)=\inf _{\substack{\alpha_{1} \geq \ldots \geq \alpha_{n} \geq 0 \\ \sum_{j=1}^{n}\left(1-\alpha_{j}\right)^{+}<r}} \sum_{j=1}^{n}(2 j-1) \alpha_{j}
$$

Doing this, we have therefore transformed the initial problem of evaluating an n-fold integral (in the limit $P \rightarrow \infty)$ into a simple linear optimization probelem.
For $n=2$, the problem reads

$$
d(r)=\inf _{\substack{\alpha_{1} \geq \alpha_{2} \geq 0 \\\left(1-\alpha_{1}\right)^{+}+\left(1-\alpha_{2}\right)^{+} \leq r}} \alpha_{1}+3 \alpha_{2}
$$

whose solution is given by

$$
\begin{cases}0 \leq r \leq 1: & \alpha_{1}=1, \alpha_{2}=1-r, d(r)=4-3 r \\ 1 \leq r \leq 2: & \alpha_{1}=2-r, \alpha_{2}=0, d(r)=2-r\end{cases}
$$

For low multiplexing gain $(0 \leq r \leq 1)$, outage occurs when both eigenvalues λ_{1}, λ_{2} of $H H^{*}$ are small (more precisely, $\lambda_{1} \simeq P^{-1}$ and $\lambda_{2} \simeq P^{r-1}$), while for higher multiplexing gain ($1 \leq r \leq 2$), outage occurs when only the smallest eigenvalue λ_{2} is small (more precisely $\lambda_{1} \simeq 1$ and $\lambda_{2} \simeq P^{r-2}$). As expected, the diversity drops to zero for values of r larger than or equal to 2 (as in this case, the target rate is higher than the ergodic capacity). On the figure below, the diversity order is drawn as a function of the multiplexing gain r, which illustrates the tradefoff between diversity and multiplexing.

For general values of n, the curve $d(r)$ is the piecewise linear curve such that $d(k)=(n-k)^{2}$ at integer values of r (so $d(0)=n^{2}$ and $d(n)=0$). Notice that the maximum diversity $d=n^{2}$ corresponding to $r=0$ matches the number of independent random variables in the channel matrix H.

