
Random matrices and communication systems: WEEK 14

1 Diversity-multiplexing tradeoff (cont’d)

Remember from last lecture that we are after computing the diversity order of a multiple antenna channel:

d(r) = lim
P→∞

− log(Pout(r logP ))

logP
= lim
P→∞

− log(P(log det(I + PHH∗) < r logP )))

logP

where H is an n× n matrix with i.i.d.∼ NC(0, 1) entries (and n is fixed). The above probability can be
rewritten as

P(log det(I + PHH∗) < r logP ) = P
(∑n

j=1 log(1 + Pλj) < r logP
)

where λ1, . . . , λn are the eigenvalues of the matrix HH∗, which are all non-negative. In Lecture 6, we
have seen that the joint distribution of these eigenvalues is given by

p(λ1, . . . , λn) = cn

n∏
j=1

e−λj
∏
j<k

(λk − λj)2 for λ1, . . . , λn ≥ 0

where cn is some positive constant. Using this, the above probability can be further rewritten as an
n-fold integral:

P(log det(I + PHH∗) < r logP ) =

∫
Dλ(r)

p(λ1, . . . , λn) dλ1 · · · dλn

where

Dλ(r) =

0 ≤ λ1 ≤ . . . ≤ λn :

n∑
j=1

log(1 + Pλj) < r logP


(notice that the eigenvalues λ1, . . . , λn are ordered in increasing order here). The explicit computation
of this integral remains a challenge, because of the highly correlated nature of the eigenvalues. We will
see below that taking the high SNR limit (P →∞) in the above expression allows to drastically simplify
the analysis. To this end, let us make the change of variables:

λj = P−αj = exp(−αj logP ), so dλj = −(logP ) exp(−αj logP ) dαj

This change of variable, even though depending on P , is perfectly valid for given value of P , and therefore
also in the limit P → ∞ (provided some care is taken here). This gives rise to the following expression
for the above probability:

P(log det(I + PHH∗) < r logP ) =

∫
Dα(r)

q(α1, . . . , αn) dα1 · · · dαn

where

q(α1, . . . , αn) = cn exp

− n∑
j=1

P−αj

∏
j<k

(
P−αj − P−αk

)2
(logP )n exp

− n∑
j=1

αj logP


and

Dα(r) =

α1 ≥ . . . ≥ αn (αj ∈ R) :

n∑
j=1

log
(
1 + P 1−αj

)
< r logP


So far, these are exact expressions. We will now make a series of approximations which are valid in the
limit P →∞ (and which can all be rigorously justified by taking upper and lower bounds).

1



First observe that

exp
(
−P−αj

) {decays super-polynomially to zero if αj < 0

tends to 1 if αj ≥ 0

so we may restrict the domain of integration Dα(r) to its positive part where α1 ≥ . . . ≥ αn ≥ 0.

Next, observe that

log
(
1 + P 1−αj

)
'

{
(1− αj) logP if αj ≤ 1

0 if αj > 1

so log
(
1 + P 1−αj

)
' (1− αj)+ logP . We can therefore replace the domain of integration Dα(r) by

D̃α(r) =

α1 ≥ . . . ≥ αn ≥ 0 :

n∑
j=1

(1− αj)+ ≤ r


and the above probability can be rewritten as

P(log det(I + PHH∗) < r logP )
.
=

∫
D̃α(r)

q̃(α1, . . . , αn) dα1 · · · dαn

where

q̃(α1, . . . , αn) = cn
∏
j<k

(
P−αj − P−αk

)2
(logP )n exp

− n∑
j=1

αj logP


Furthermore, let us notice that cn(logP )n

.
= 1, as limP→∞

log(cn (logP )n)
logP = 0. Here comes now the

“magic” trick: for α1 > . . . > αn, we have

∏
j<k

(
P−αj − P−αk

)2 .
=
∏
j<k

P−2αk =

n∏
k=1

P−2(k−1)αk = exp

(
−

n∑
k=1

2(k − 1)αk logP

)

This implies that

q̃(α1, . . . , αn)
.
= exp

− n∑
j=1

(2j − 1)αj logP


In this expression, we see that in the limit P →∞, the exponents αj become so to speak “independent”.
Finally, we obtain

P(log det(I + PHH∗) < r logP )
.
=

∫
D̃α(r)

exp

− n∑
j=1

(2j − 1)αj logP

 dα1 · · · dαn

This expression can in turn be rewritten as

P(log det(I + PHH∗) < r logP )
.
=

∫
D̃α(r)

P−f(α) dα1 · · · dαn

where

f(α) =

n∑
j=1

(2j − 1)αj

Using then Laplace’s integration method, we obtain

P(log det(I + PHH∗) < r logP )
.
= P−d(r)
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where the diversity order d(r) is given by

d(r) = inf
D̃α(r)

f(α) = inf
α1≥...≥αn≥0∑n
j=1(1−αj)

+<r

n∑
j=1

(2j − 1)αj

Doing this, we have therefore transformed the initial problem of evaluating an n-fold integral (in the limit
P →∞) into a simple linear optimization probelem.

For n = 2, the problem reads
d(r) = inf

α1≥α2≥0
(1−α1)

++(1−α2)
+≤r

α1 + 3α2

whose solution is given by {
0 ≤ r ≤ 1 : α1 = 1, α2 = 1− r, d(r) = 4− 3r

1 ≤ r ≤ 2 : α1 = 2− r, α2 = 0, d(r) = 2− r

For low multiplexing gain (0 ≤ r ≤ 1), outage occurs when both eigenvalues λ1, λ2 of HH∗ are small
(more precisely, λ1 ' P−1 and λ2 ' P r−1), while for higher multiplexing gain (1 ≤ r ≤ 2), outage occurs
when only the smallest eigenvalue λ2 is small (more precisely λ1 ' 1 and λ2 ' P r−2). As expected,
the diversity drops to zero for values of r larger than or equal to 2 (as in this case, the target rate is
higher than the ergodic capacity). On the figure below, the diversity order is drawn as a function of the
multiplexing gain r, which illustrates the tradefoff between diversity and multiplexing.
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For general values of n, the curve d(r) is the piecewise linear curve such that d(k) = (n− k)2 at integer
values of r (so d(0) = n2 and d(n) = 0). Notice that the maximum diversity d = n2 corresponding to
r = 0 matches the number of independent random variables in the channel matrix H.
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