Random matrices and communication systems: WEEK 14

1 Diversity-multiplexing tradeoff (cont’d)

Remember from last lecture that we are after computing the diversity order of a multiple antenna channel:
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where H is an n X n matrix with i.i.d.~ Ng(0,1) entries (and n is fixed). The above probability can be

rewritten as
P(logdet(I + PHH") <rlogP) =P (2?21 log(1+ PX;) < r log P)

where A1,...,\, are the eigenvalues of the matrix HH*, which are all non-negative. In Lecture 6, we
have seen that the joint distribution of these eigenvalues is given by
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where ¢, is some positive constant. Using this, the above probability can be further rewritten as an
n-fold integral:

P(logdet(I + PHH™) < r log P) = / P(A1y - An) dAy - dAy
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(notice that the eigenvalues Aq,..., A, are ordered in increasing order here). The explicit computation

of this integral remains a challenge, because of the highly correlated nature of the eigenvalues. We will
see below that taking the high SNR limit (P — 00) in the above expression allows to drastically simplify
the analysis. To this end, let us make the change of variables:

Aj = P7% =exp(—a; logP), so d\; = —(logP) exp(—a; log P) do;

This change of variable, even though depending on P, is perfectly valid for given value of P, and therefore
also in the limit P — oo (provided some care is taken here). This gives rise to the following expression
for the above probability:
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where
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So far, these are exact expressions. We will now make a series of approximations which are valid in the
limit P — oo (and which can all be rigorously justified by taking upper and lower bounds).



First observe that

s decays super-polynomially to zero if o; <0
exp (—P J) .
tends to 1 if a; >0

so we may restrict the domain of integration D, (r) to its positive part where ay > ... > a;, > 0.
Next, observe that
(1—-aj)logP ifa; <1
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so log (1+ P'=%) ~ (1 — ;)" log P. We can therefore replace the domain of integration Dq(r) by

Dy(ry=Ra1>...>2a,>0: Z(l—aj)+§r
j=1

and the above probability can be rewritten as
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where
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Tog P = 0. Here comes now the

Furthermore, let us notice that ¢, (log P)” = 1, as limp_, o
“magic” trick: for a; > ... > ay,, we have

H (P~ — P*O‘k)2 = H P2 = ﬁ p2k=har — oxp ( iQ(kz —1) oy, log P>

i<k j<k k=1 k=1

This implies that

glag,...,a,) =exp —Z(Qj —1)a; log P
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In this expression, we see that in the limit P — oo, the exponents «; become so to speak “independent”.

Finally, we obtain

n
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This expression can in turn be rewritten as

P(logdet( + PHH?) < r log P) = / P day - day,
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where

fla)y=> (2 - 1)y

j=1

Using then Laplace’s integration method, we obtain

P(logdet(I + PHH*) < r log P) = P4



where the diversity order d(r) is given by

n
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Doing this, we have therefore transformed the initial problem of evaluating an n-fold integral (in the limit
P — o0) into a simple linear optimization probelem.

For n = 2, the problem reads
d(r) = inf 3
(T) aéI(lszO a1t s
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whose solution is given by

1<r<2: ag=2-r,a2=0,4d(r) r

0<r<1l: as=1l,aa=1—-r,d(r)=4-3r
=92

For low multiplexing gain (0 < r < 1), outage occurs when both eigenvalues A1, Ao of HH* are small
(more precisely, A\; >~ P~! and Ay ~ P"~ 1), while for higher multiplexing gain (1 < r < 2), outage occurs
when only the smallest eigenvalue Ay is small (more precisely A\; ~ 1 and Ay ~ P"~2). As expected,
the diversity drops to zero for values of r larger than or equal to 2 (as in this case, the target rate is
higher than the ergodic capacity). On the figure below, the diversity order is drawn as a function of the
multiplexing gain r, which illustrates the tradefoff between diversity and multiplexing.

d(r)

For general values of n, the curve d(r) is the piecewise linear curve such that d(k) = (n — k)? at integer
values of 7 (so d(0) = n? and d(n) = 0). Notice that the maximum diversity d = n? corresponding to
r = 0 matches the number of independent random variables in the channel matrix H.



