
Random matrices and communication systems: WEEK 13

1 Capacity of multiple antenna channels

1.1 Finite-size anaylsis

Let us come back the multiple antenna channel considered in Lecture 3:

Y = HX + Z

where H is an n × n random channel matrix with i.i.d. NC(0, 1) entries, varying ergodically over time,
whose realizations are known at the receiver, but not at the transmitter. We have seen in Lecture 3 that
the ergodic capacity of such a system is given by

Cerg = E
(

log det

(
I +

P

n
HH∗

))
= E

 n∑
j=1

log
(

1 + Pλ
(n)
j

)
where the expectation is taken over all possible realizations of the random matrix H and λ

(n)
1 , . . . , λ

(n)
n

are the non-negative eigenvalues of the n × n Wishart matrix W (n) = 1
n HH

∗. This may be further
rewritten as

Cerg = nE
(

log
(

1 + Pλ(n)
))

where λ(n) is one of the eigenvalues λ
(n)
1 , . . . , λ

(n)
n picked uniformly at random. We have seen in Lecture

7 that the distribution of λ(n) is given by

p(n)(λ) = e−nλ
n−1∑
l=0

Ll(nλ)2

where the Ll(·) are the Laguerre polynomials. Therefore,

Cerg = n

∫ ∞
0

dλ p(n)(λ) log(1 + Pλ) = n

n−1∑
l=0

∫ ∞
0

dλ e−nλ Ll(nλ)2 log(1 + Pλ)

1.2 Asymptotic analysis

In order to analyze the behavior of the ergodic capacity in the large n limit, let us rewrite it as

Cerg(n) = E

 n∑
j=1

log
(

1 + Pλ
(n)
j

) = nE
(∫

R
log(1 + Px) dµn(x)

)

where

µn =
1

n

n∑
j=1

δ
λ
(n)
j

is the empirical eigenvalue distribution of the matrix W (n) = 1
n HH

∗. We have seen in Lectures 10-12
that almost surely, µn converges weakly towards the limiting deterministic distribution µ whose pdf is
given by

pµ(x) =
1

π

√
1

x
− 1

4
1{0<x<4}
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This is saying that almost surely, for any bounded continuous function f : R→ R,

lim
n→∞

∫
R
f(x) dµn(x) =

∫
R
f(x)dµ(x)

Taking expectations on both sides (which is OK here, thanks to the dominated convergence theorem),
we obtain

lim
n→∞

E
(∫

R
f(x) dµn(x)

)
=

∫
R
f(x)dµ(x)

for any bounded continuous function f : R→ R (remember that µ is deterministic). We would like now
to apply this to f(x) = log(1 + Px), which would allow us to conclude that

lim
n∞

Cerg(n)

n
= lim
n→∞

E
(∫

R
log(1 + Px) dµn(x)

)
=

∫ 4

0

log(1 + Px) pµ(x) dx

therefore proving that Cerg(n) is of order n for large values of n and at the same time providing an explicit
expression for the multiplicative factor.

A first concern is that f(x) = log(1 + Px) is not defined for x < −1/P , but as both µn and µ are
supported on [0,∞), this is not a problem. The other worry is that f is unbounded. To this end, let us
define fM (x) = min(f(x),M), which is bounded and continuous for any M > 0. This allows us to write,
for fixed values of n and M∣∣∣∣E(∫ ∞

0

f(x) dµn(x)

)
−
∫ ∞
0

f(x)dµ(x)

∣∣∣∣ ≤ ∣∣∣∣E(∫ ∞
0

f(x) dµn(x)

)
− E

(∫ ∞
0

fM (x) dµn(x)

)∣∣∣∣
+

∣∣∣∣E(∫ ∞
0

fM (x) dµn(x)

)
−
∫ ∞
0

fM (x) dµ(x)

∣∣∣∣+

∣∣∣∣∫ ∞
0

fM (x) dµ(x)−
∫ ∞
0

f(x) dµ(x)

∣∣∣∣
≤ E

(∫ ∞
xM

f(x) dµn(x)

)
+

∣∣∣∣E(∫ ∞
0

fM (x) dµn(x)

)
−
∫ ∞
0

fM (x) dµ(x)

∣∣∣∣+

∫ ∞
xM

f(x) dµ(x)

where xM = inf{x > 0 : f(x) ≥M} = 1
P (eM − 1). By the weak convergence result above, we know that

the term in the middle converges to zero for any value of M , so

lim
n→∞

∣∣∣∣E(∫ ∞
0

f(x) dµn(x)

)
−
∫ ∞
0

f(x)dµ(x)

∣∣∣∣ ≤ lim
n→∞

E
(∫ ∞

xM

f(x) dµn(x)

)
+

∫ ∞
xM

f(x) dµ(x)

for any M > 0. We also know that
∫∞
xM

f(x) dµ(x) = 0 for xM > 4 (as µ is supported on [0, 4]), so there

remains to prove that (also for xM > 4)

lim
n→∞

E
(∫ ∞

xM

f(x) dµn(x)

)
= 0

Notice that

E
(∫ ∞

xM

f(x) dµn(x)

)
=

1

n

n∑
j=1

E
(
f(λ

(n)
j ) 1{λ(n)

j ≥xM}

)
≤ E

(
f(λ(n)max) 1{λ(n)

max≥xM}

)
As f(x) = log(1 + Px) ≤ Px, this is further bounded above by

P E
(
λ(n)max 1{λ(n)

max≥xM}

)
In Lecture 11, we have seen (under slightly different assumptions, though) that limn→∞ E(λ

(n)
max) ≤ 4.

Similar refined estimates on λ
(n)
max allow to conclude that the above expression converges to zero as n→∞

for xM > 4.
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2 Diversity-multiplexing tradeoff

Consider now the same scenario as above, except for the fact that H is fixed over time (see Lecture 4).
In this case, the capacity of the multiple antenna channel is equal to zero, and the outage probability is
given by

Pout(R) = inf
Q≥0 : Tr(Q)≤P

P(log det(I +HQH∗) < R)

where again, the probability is taken over all possible realizations of the random matrix H. For a fixed
value of n, we would like to characterize the behavior of this outage probability in the high SNR regime
(that is, as P gets large), with the idea that it can be made vanishingly small in this regime. In the
ergodic case, we have seen that for large P (see Lecture 3),

Cerg = sup
Q≥0 : Tr(Q)≤P

E(log det(I +HQH∗)) ' n logP

So in order to obtain a small outage probability, the target rate R chosen in the above expression should
not be higher than n logP . Let us therefore choose R = r logP , where 0 ≤ r ≤ n: r is called the target
multiplexing gain.

A priori, the analysis of the outage probability is particularly difficult, as the above minimization problem
remains unsolved. But notice that

P(log det(I + PHH∗) < r logP ) ≤ Pout(r logP ) ≤ P
(

log det

(
I +

P

n
HH∗

)
< r logP

)
Indeed, Q = P

n I is a possible candidate for the minimization problem, which explains the inequality on
the right-hand side. On the other hand, any matrix Q ≥ 0 satisfying Tr(Q) ≤ P also satisfies Q ≤ PI,
which implies the inequality on the left-hand side. Observe now that as P →∞,

P
(

log det

(
I +

P

n
HH∗

)
< r logP

)
.
= P(log det(I + PHH∗) < r log(nP ))

= P(log det(I + PHH∗) < r (log n+ logP ))
.
= P(log det(I + PHH∗) < r logP )

where the notation f(P )
.
= g(P ) stands for limP→∞

log(f(P ))
logP = limP→∞

log(g(P ))
logP . This together with the

previous inequalities allows us to conclude that

Pout(r logP )
.
= P(log det(I + PHH∗) < r logP )

As mentioned above, by choosing the multiplexing gain r smaller than n, we expect the outage probability
to converge to zero as P gets large. Our aim in the following is to discover at which speed, depending on
r, does this probability converge to zero, namely to find the exponent d(r) satisfying

Pout(r logP )
.
= P−d(r)

More formally, this exponent, also known as the diversity order, is defined as

d(r) = lim
P→∞

− log(Pout(r logP ))

logP

which the above analysis allows us to rewrite as

d(r) = lim
P→∞

− log(P(log det(I + PHH∗) < r logP ))

logP

The computation of d(r), which requires the knowledge of the joint eigenvalue distribution of the matrix
HH∗, will be the subject of the next lecture.
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