
Random matrices and communication systems: WEEK 12

In this lecture, we reprove the theorem from last time using the Stieltjes transform method.

1 Marčenko-Pastur’s theorem

Let H be an n× n random matrix with i.i.d. complex-valued entries such that for all 1 ≤ j, l ≤ n:

(i) E(hjl) = 0, E
(
|hjl|2

)
= 1;

(ii) the distribution of hjl is compactly supported (this second assumption may be relaxed).

As last time, let us considerW (n) = 1
n HH

∗, λ
(n)
1 , . . . , λ

(n)
n its (non-negative) eigenvalues and the empirical

distribution µn = 1
n

∑n
j=1 δλ(n)

j
. A particular instance of Marčenko-Pastur’s theorem is the following.

Theorem 1.1. Under assumptions (i) and (ii), almost surely, the sequence (µn, n ≥ 1) converges weakly
towards the quarter-circle law µ, whose pdf is given by

pµ(x) =
1

π

√
1

x
− 1

4
1{0<x<4}

As a preliminary to the proof of the theorem, let us consider, for a given z ∈ C\R, the quadratic equation:

z g(z)2 + z g(z) + 1 = 0 (1)

This quadratic equation has two solutions

g±(z) = −1

2
±
√

1

4
− 1

z

It turns out that g+(z) is the Stieltjes transform of the above distribution µ. The proof is left as an
exercise in the homework.

Proof of Theorem 1.1 (sketch).
The strategy for today is to use the characterization of weak convergence via Stieltjes transform: a
sequence of distributions converges weakly towards a limiting distribution if the corresponding sequence
of Stieltjes transforms converges pointwise on C+ = {z ∈ C : Im z > 0} towards the limiting Stieltjes
transform. Thus, we will prove that almost surely, gn(z) converges in the large n limit towards a solution
of equaton (1). As all the gn are by definition Stieltjes transforms, but only one of the two solutions of
this equation is a Stieltjes transform, a continuity argument allows then to conclude that gn can only
converge to g+ and not to g−.

The rule of the game is therefore now to try writing gn(z) on both sides of an equality sign. To this end,
let us compute

gn(z) =

∫
R

1

x− z
dµn(x) =

1

n

n∑
j=1

1

λ
(n)
j − z

=
1

n
Tr

((
W (n) − zI

)−1)
First notice that W (n) = 1

n HH
∗ = 1

n

∑n
k=1 hk h

∗
k, where hk is the kth column of H (and is therefore

n× 1). This way, W (n) is expressed as a sum of rank one n× n matrices. For a given 1 ≤ k ≤ n, let us
define

W
(n)
k = W (n) − 1

n
hk h

∗
k =

1

n

n∑
l=1, l 6=k

hl h
∗
l

as well as the resolvents

G(n)(z) =
(
W (n) − zI

)−1
and G

(n)
k (z) =

(
W

(n)
k − zI

)−1
1



Notice that the object we are interested in is gn(z) = 1
n Tr

(
G(n)(z)

)
. Let us now prove the following two

lemmas.

Lemma 1.2.
1

n
h∗kG

(n)(z)hk =
1
n h
∗
kG

(n)
k (z)hk

1 + 1
n h
∗
kG

(n)
k (z)hk

Proof. Let us compute

h∗kG
(n)
k (z)

(
G(n)(z)

)−1
= h∗kG

(n)
k (z)

(
W (n) − zI

)
= h∗kG

(n)
k (z)

(
W

(n)
k − zI +

1

n
hk h

∗
k

)
= h∗k +

1

n
h∗kG

(n)
k (z)hk h

∗
k =

(
1 +

1

n
h∗kG

(n)
k (z)hk

)
h∗k

Therefore,

h∗kG
(n)
k (z) =

(
1 +

1

n
h∗kG

(n)
k (z)hk

)
h∗kG

(n)(z)

and

h∗kG
(n)
k (z)hk =

(
1 +

1

n
h∗kG

(n)
k (z)hk

)
h∗kG

(n)(z)hk

which concludes the proof.

Lemma 1.3.

gn(z) =
1

n
Tr
(
G(n)(z)

)
= − 1

nz

n∑
k=1

1

1 + 1
n h
∗
kG

(n)
k (z)hk

Proof. Let us compute

1 =
1

n
Tr(I) =

1

n
Tr
((
W (n) − zI

)
G(n)(z)

)
=

1

n
Tr

(
1

n

n∑
k=1

hk h
∗
kG

(n)(z)− z G(n)(z)

)

=
1

n

n∑
k=1

(
1

n
h∗kG

(n)(z)hk

)
− z gn(z) =

1

n

n∑
k=1

(
1
n h
∗
kG

(n)
k (z)hk

1 + 1
n h
∗
kG

(n)
k (z)hk

)
− z gn(z)

by Lemma 1.2. So

z gn(z) =
1

n

n∑
k=1

(
1
n h
∗
kG

(n)
k (z)hk

1 + 1
n h
∗
kG

(n)
k (z)hk

− 1

)
= − 1

n

n∑
k=1

1

1 + 1
n h
∗
kG

(n)
k (z)hk

which concludes the proof.

Notice that so far, these formulas hold for any matrix of the form W (n) = 1
n HH

∗, without any further
assumption on the matrix H. On the contrary, the next lemma relies strongly on the assumptions (i)
and (ii).

Lemma 1.4. Under assumptions (i) and (ii), for all z ∈ C\R and all ε > 0, there exists C > 0 independent
of n such that

P
(∣∣∣∣ 1n h∗kG(n)

k hk −
1

n
Tr
(
G(n)(z)

)∣∣∣∣ ≥ ε) ≤ C

n2

which implies by the Borel-Cantelli lemma that

1

n
h∗kG

(n)
k hk −

1

n
Tr
(
G

(n)
k (z)

)
→

n→∞
0 almost surely
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We do not prove this lemma, but simply show in the following that for all n ≥ 1,

E
(

1

n
h∗kG

(n)
k hk −

1

n
Tr
(
G

(n)
k (z)

))
= 0

which also requires the use of the assumptions made above:

E
(

1

n
h∗kG

(n)
k hk

)
=

1

n

n∑
j,l=1

E
(
hjk

(
W

(n)
k − zI

)−1
jl

hlk

)

As the matrix W
(n)
k does not “contain” hk, the kth column of H, it is independent of both hjk and hlk,

so

E
(

1

n
h∗kG

(n)
k hk

)
=

1

n

n∑
j,l=1

E
(
hjk hlk

)
E
((

W
(n)
k − zI

)−1
jl

)
(∗)
=

1

n

n∑
j=1

E
((

W
(n)
k − zI

)−1
jj

)

= E
(

1

n
Tr
(
W

(n)
k − zI

))
= E

(
1

n
Tr
(
G

(n)
k (z)

))
where (∗) follows from the fact that E(hjk hlk) = δjl, according to assumption (i) and the independence
assumption.

The actual proof of Lemma 1.4 relies on the use of Chebychev’s inequality with φ(x) = x4 and a similar
analysis of the expectation (except that one must consider the moment of order 4 instead of the first
order moment).

The last lemma is a technicality, which holds again for any matrix of the form W (n) = 1
n HH

∗.

Lemma 1.5. For all z ∈ C\R,∣∣∣∣ 1nTr
(
G

(n)
k (z)

)
− 1

n
Tr
(
G(n)(z)

)∣∣∣∣ ≤ 1

n |Im z|

The proof of this lemma is still rather long for a technicality and is therefore omitted.

Gathering together the results of Lemmas 1.3, 1.4 and 1.5, we obtain that for large values of n,

gn(z) =
1

n
Tr
(
G(n)(z)

)
= − 1

nz

n∑
k=1

1

1 + 1
n h
∗
kG

(n)
k (z)hk

' − 1

nz

n∑
k=1

1

1 + 1
n Tr

(
G

(n)
k (z)

) ' −1

z

1

1 + 1
n Tr

(
G(n)(z)

) = − 1

z (1 + gn(z))

which may be rewritten as
z gn(z)2 + z gn(z) + 1 ' 0

Taking some more precautions, we can conclude that gn(z) converges almost surely towards a solution
of the quadratic equation (1), which should be chosen as g+ for the reasons explained above. This
“completes” the proof of the theorem. �
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