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Abstract: In this paper, we give a brief review of the theory of spectral analysis of

large dimensional random matrices. Most of the existing work in the literature has

been stated for real matrices but the corresponding results for the complex case are

also of interest, especially for researchers in Electrical and Electronic Engineering.

Thus, we convert almost all results to the complex case, whenever possible. Only

the latest results, including some new ones, are stated as theorems here. The main

purpose of the paper is to show how important methodologies, or mathematical

tools, have helped to develop the theory. Some unsolved problems are also stated.
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1. Introduction

The necessity of studying the spectra of LDRM (Large Dimensional Ran-
dom Matrices), especially the Wigner matrices, arose in nuclear physics during
the 1950’s. In quantum mechanics, the energy levels of quantums are not di-
rectly observable, but can be characterized by the eigenvalues of a matrix of
observations. However, the ESD (Empirical Spectral Distribution, the empirical
distribution of the eigenvalues) of a random matrix has a very complicated form
when the order of the matrix is high. Many conjectures, e.g., the famous circular
law, were made through numerical computation.

Since then, research on the LSA (Limiting Spectral Analysis) of LDRM has
attracted considerable interest among mathematicians, probabilitists and statis-
ticians. One pioneering work is Wigner’s semicircular law for a Gaussian (or
Wigner) matrix (Wigner (1955, 1958)). He proved that the expected ESD of a
large dimensional Wigner matrix tends to the so-called semicircular law. This
work was generalized by Arnold (1967, 1971) and Grenander (1963) in various
aspects. Bai and Yin (1988a) proved that the ESD of a suitably normalized
sample covariance matrix tends to the semicircular law when the dimension is
relatively smaller than the sample size. Following the work by Marčenko and
Pastur (1967) and Pastur (1972, 1973), the LSA of large dimensional sample
covariance matrices was developed by many researchers, including Bai, Yin and
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Krishnaiah (1986), Grenander and Silverstein (1977), Jonsson (1982), Wachter
(1978), Yin (1986) and Yin and Krishnaiah (1983). Also, Bai, Yin and Krishna-
iah (1986, 1987), Silverstein (1985a), Wachter (1980), Yin (1986) and Yin and
Krishnaiah (1983) investigated the LSD (Limiting Spectral Distribution) of the
multivariate F -matrix, or more generally, of products of random matrices.

Two important problems arose after the LSD was found: bounds on extreme
eigenvalues and the convergence rate of the ESD. The literature on the first
problem is extensive. The first success was due to Geman (1980), who proved that
the largest eigenvalue of a sample covariance matrix converges almost surely to a
limit under a growth condition on all the moments of the underlying distribution.
Yin, Bai and Krishnaiah (1988) proved the same result under the existence of the
fourth moment, and Bai, Silverstein and Yin (1988) proved that the existence of
the fourth moment is also necessary for the existence of the limit. Bai and Yin
(1988b) found necessary and sufficient conditions for the almost sure convergence
of the largest eigenvalue of a Wigner matrix. Bai and Yin (1993), Silverstein
(1985b) and Yin, Bai and Krishnaiah (1983) considered the almost sure limit of
the smallest eigenvalue of a sample covariance matrix. Some related work can be
found in Geman (1986) and Bai and Yin (1986).

The second problem, the convergence rate of the ESD’s of LDRM, is of
practical interest, but had been open for decades. The first success was made in
Bai (1993a,b), in which convergence rates for the expected ESD of a large Wigner
matrix and sample covariance matrix were established. Further extensions of this
work can be found in Bai, Miao and Tsay (1996a,b, 1997).

The most perplexing problem is the so-called circular law that conjectures
that the ESD of a non-symmetric random matrix, after suitable normalization,
tends to the uniform distribution over the unit disc in the complex plane. The
difficulty lies in the fact that two most important tools for symmetric matrices
do not apply to non-symmetric matrices. Furthermore, certain truncation and
centralization techniques cannot be used. The first known result, a partial so-
lution for matrices whose entries are i.i.d. standard complex normal (whose real
and imaginary parts are i.i.d. real normal with mean zero and variance 1/2),
was given in Mehta (1991) and an unpublished result of Silverstein reported in
Hwang (1986). They used the explicit expression of the joint density of the
complex eigenvalues of a matrix with independent standard complex Gaussian
entries, found by Ginibre (1965). The first attempt to prove this conjecture under
some general conditions was made in Girko (1984a,b). However, his proofs have
puzzled many who attempted to understand the arguments. Recently, Edelman
(1997) found the joint distribution of the eigenvalues of a matrix whose entries
are real normal N(0, 1) and proved that the expected ESD of a matrix of i.i.d. real
Gaussian entries tends to the circular law. Under the existence of the (4 + ε)th
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moment and some smoothness conditions, Bai (1997) proved the strong version
of the circular law.

In this paper, we give a brief review of the main results in this area and some
of their applications. We convert most known results for real matrices to complex
matrices. Since some of the extensions are non-trivial, we give brief outlines of
their proofs. The review will be given in accordance with methodologies by which
the results were obtained, rather than in a chronological order. The organization
of the paper is as follows. In Section 2, we give results obtained by the moment
approach. In Section 3, the Stieltjes transform technique is introduced. Recent
achievements on the circular law are presented in Section 4. Some applications
are mentioned in Section 5, and some open problems or conjectures are presented
in Section 6.

2. Moment Approach

Throughout this section, we consider only Hermitian matrices which include
real symmetric matrices as a special case. Let A be a p × p Hermitian matrix
and denote its eigenvalues by λ1 ≤ · · · ≤ λp. The ESD of A is defined by
FA(x) = p−1#{k ≤ p, λk ≤ x}, where #{.} denotes the number of elements in
the set indicated. A simple fact is that the hth moment of FA can be written as

βh(A) =
∫

xhFA(dx) = p−1tr(Ah). (2.1)

This formula plays a fundamental role in the theory of LDRM. Most of the results
were obtained by estimating the mean, variance or higher moments of p−1tr(Ah).

2.1. Limiting spectral distributions

To show that FA tends to a limit, say F , usually the Moment Convergence
Theorem (MCT) is employed, i.e., verifying

βh(A) → βh =
∫

xhF (dx)

in some sense (e.g., almost surely (a.s.) or in probability) and the Carleman’s
condition

∑∞
h=1 β

−1/(2h)
2h = ∞. Note that Carleman’s condition is slightly weaker

than requiring that the characteristic function of the LSD be analytic near 0.
For most cases, the LSD has bounded support and its characteristic function is
analytic. Thus, the MCT can be applied to show the existence of the LSD of a
sequence of random matrices.

2.1.1. Wigner matrix

In this subsection, we first consider the famous semicircular law. A Wigner
matrix W of order n is defined as an n × n Hermitian matrix whose entries
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above the diagonal are i.i.d. complex random variables with variance σ2, and
whose diagonal elements are i.i.d. real random variables (without any moment
requirement). We have the following theorem.

Theorem 2.1. Under the conditions described above, as n → ∞, with probability
1, the ESD F (n−1/2W) tends to the semicircular law with scale-parameter σ, whose
density is given by

pσ(x) =

{
1

2πσ2

√
4σ2 − x2, if |x| ≤ 2σ,

0, otherwise.
(2.2)

The proof of the theorem consists of centralization, truncation and con-
vergence of moments. First, we present two lemmas. Throughout the paper,
‖f‖ = supx |f(x)|.
Lemma 2.2 (Rank Inequality). Let A and B be two n×n Hermitian matrices.
Then

‖FA − FB‖ ≤ 1
n

rank(A− B). (2.3)

Suppose that rank(A − B) = k. To prove (2.3), we may assume that

A =

[
A11 A12

A21 A22

]
and B =

[
B11 A12

A21 A22

]
,

where the order of A22 is (n− k)× (n− k), since (2.3) is invariant under unitary
similarity. Denote the eigenvalues of A, B and A22 by λ1 ≤ · · · ≤ λn, η1 ≤
· · · ≤ ηn and λ̃1 ≤ · · · ≤ λ̃(n−k), respectively. By the interlacing inequality
max(λj , ηj) ≤ λ̃j ≤ min(λ(j+k), η(j+k)) (see Rao (1976, p.64), referred to as
Poincare Separation Theorem), we conclude that for any x ∈ (λ̃(j−1), λ̃j), j−1

n ≤
FA(x), FB(x) < j+k

n , which implies (2.3).

Lemma 2.3 (Difference Inequality). Let A and B be two n × n complex
normal matrices with complex eigenvalues λ1, . . . , λn and η1, . . . , ηn, respectively.
Then

min
π

n∑
k=1

|λk − ηπk
|2 ≤ tr(A− B)(A −B)∗, (2.4)

where π is a permutation of the set {1, . . . , n}. Consequently, if both A and B
are Hermitian, then

L3(FA, FB) ≤ 1
n

tr(A− B)2 (2.5)

where L(F,G) denotes the Levy distance between distribution functions F and G.
This lemma is an improvement to Lemma 2.3 of Bai (1993b), where the power
of the Levy distance is 4.
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To prove (2.4), we may assume, without loss of generality, that A = diag(λ1,
. . . , λn) and B = U∗diag(η1, . . . , ηn)U, where U = (ujk) is a unitary matrix.
Then we have tr(AA∗) =

∑n
k=1 |λ2

k|, tr(BB∗) =
∑n

k=1 |η2
k| and for some per-

mutation π, Re(tr(AB∗)) =
∑

jk Re(λj η̄k)|u2
jk| ≤

∑n
k=1 Re(λkη̄πk

). The last in-
equality holds since the maximum of

∑
jk Re(λj η̄k)ajk, subject to the constraints

ajk ≥ 0 and
∑

j ajk =
∑

k ajk = 1, is equal to
∑n

k=1 Re(λkη̄πk
) for some permu-

tation π. Then (2.4) follows.
If A and B are both Hermitian, their eigenvalues λk’s and ηk’s are real

and hence can be arranged in increasing order. In this case, the solution of the
minimization on the left hand side of (2.4) is πk = k. One can show that

L3(FA, FB) ≤ 1
n

n∑
k=1

|λk − ηk|2,

which, together with (2.4), implies (2.5). The proof of the lemma is then com-
plete.

Now, we outline a proof of Theorem 2.1. Note that E(Re(wjk))= E(Re(wkj)).
Applying Lemma 2.2, we conclude that the LSD’s of n−1/2W and n−1/2(W −
E(Re(w12))11′) exist and are the same if either one of them exists. Thus, we can
remove the real parts of the expectation of off-diagonal entries (i.e., to replace
them by 0). Further, note that the eigenvalues of iE(Im(n−1/2W)) are given by
n−1/2E(Im(w12)) cot(π(2k−1)/2n), k = 1, . . . , n. Thus, applying Lemma 2.2, we
can remove the eigenvalues of iE(Im(n−1/2W)) whose absolute values are greater
than n−1/4 (the number of such eigenvalues is less than 4n3/4|EIm(w12)|), and
by Lemma 2.3, we can also remove the remaining eigenvalues. Therefore, we may
assume that the means of the off-diagonal entries of n−1/2W are zero. Now we
remove the diagonal elements of W by employing Hoeffding’s (1963) inequality,
which states that for any ε > 0,

P(|ξn − η| ≥ ε) ≤ 2 exp(−ε2/(2η + ε)),

where η = E(ξn) and ξn is the sum of n independent random variables taking
values 0 or 1 only.

By this inequality and the fact that P(|w11| ≥ ε
√

n) = o(1), we have

P(
n∑

k=1

I{|n−1/2wkk|≥ε}≥εn)≤P(
n∑

k=1

[
I{|n−1/2wkk|≥ε}−P(|n−1/2w11|≥ε)

]
≥ 1

2
εn)

≤ 2 exp{−n2/(2nP(|w11| ≥ ε
√

n) + εn)} ≤ 2e−bn

for some b > 0 and all large n. Applying Lemma 2.2, one can remove the diagonal
entries greater than ε and, by Lemma 2.3, can also remove those smaller than ε

without altering the limiting distribution of n−1/2W.
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Now we use the truncation and centralization techniques. Let W̃ be the
matrix with zero diagonal entries and off-diagonal entries wjkI(|wjk|≤C) − E(wjk

I(|wjk|≤C)). By Lemma 2.3 and the Law of Large Numbers, with probability 1,

L4(F (n−1/2W), F (n−1/2W̃))

≤ n−2
∑
j,k

|wjkI(|wjk|>C) − E(wjkI(|wjk|>C))|2

→ E|w12I(|w12|>C) − E(w12I(|w12|>C))|2 ≤ E|w12I(|w12|>C)|2. (2.6)

Note that E|w12I(|w12|>C)|2 can be arbitrarily small if C is large enough. Thus,
in the proof of Theorem 2.1, we may assume that the entries of W are bounded
by C.

Next we establish the convergence of moments of the ESD of n−1/2W, see
(2.1). For given integers j1, . . . , jh(≤ n), construct a W -graph G by plotting
j1, . . . , jh on a straight line as vertices and drawing h edges from jr to jr+1 (with
jh+1 = j1), r = 1, . . . , h. An example of a W -graph is given in Figure 1, in
which there are 10 vertices (i1-i10), 4 non-coincident vertices (v1-v4), 9 edges, 4
non-coincident edges and 1 single edge (v4, v3). For this graph, we say the edge
(v1, v2) has multiplicity 2 and the edges (v2, v3) and (v2, v4) have multiplicities
3. An edge (u, v) corresponds to the variable wu,v and a W -graph corresponds
to the product of variables corresponding to the edges making up this W -graph.

v2 = i2 = i4 = i7 = i9

v1 = i1 = i10 v4 = i5 = i8

v3 = i3 = i6

Figure 1. Types of edges in a W-graph.

Note that

1
n

tr((n−1/2W)h) = n−1−h/2
∑

j1,...,jh

wj1j2wj2,j3 . . . wjhj1 := n−1−h/2
∑
G

wG.



METHODOLOGIES IN RANDOM MATRICES 617

Then Theorem 2.1 follows by showing that

1
n

E(tr((n−1/2W)h)) = n−1−h/2
∑
G

E(wG) =

{
(2s)!σh

s!(s+1)! + O(n−1), if h = 2s
O(n−1/2), if h = 2s + 1

(2.7)
and

Var(
1
n

tr((n−1/2W)h)) = n−2−h
∑

G1,G2

[E(wG1wG2) − E(wG1)E(wG2)] = O(n−2),

(2.8)
through the following arguments.

v1 = i9 i2 = i4 = i8 i3 i6 i5 = i7

Figure 2. A W-graph with 8 edges, 4 non-coincident edges and 5 vertices.

To prove (2.7), we note that if there is a single edge in the W -graph, the
corresponding expectation is zero. When h = 2s + 1, there are at most s non-
coincident edges and hence at most s + 1 non-coincident vertices. This shows
that there are at most ns+1 graphs (or non-zero terms in the expansion). Then
the second conclusion in (2.7) follows since the denominator is ns+3/2 and the
absolute value of the expectation of each term is not larger than Ch. When
h = 2s, classify the graphs into two types. The first type, consisting of all
graphs which have at most s non-coincident vertices, gives the estimation of
the remainder term O(n−1). The second type consists of all graphs which have
exactly s + 1 non-coincident vertices and s non-coincident edges. There are no
cycles of non-coincident edges in such graphs and each edge (u, v) must coincide
with and only with the edge (v, u) which corresponds to E|wuv|2 = σ2. Thus,
each term corresponding to a second type W -graph is σh. To complete the proof
of the first conclusion of (2.7), we only need to count the number of second type
W -graphs. We say that two W -graphs are isomorphic if one can be coverted to
the other by a permutation of {1, . . . , n} on the straight line. We first compute
the number of isomorphic classes. If an edge (u, v) is single in the subgraph
[(i1, i2), . . . , (it, it+1)], we say that this edge is single up to the edge (it, it+1) or
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the vertex it+1. In a second type W -graph, there are s edges which are single
up to themselves, and the other s edges coincide with existing edges when they
are drawn. Define a CS (Characteristic Sequence) for a W -graph by ui = 1
(or −1) if the ith edge is single up to its end vertex (or coinciding with an
existing edge, respectively). For example, for the graph in Figure 2, its CS is
1, 1,−1, 1, 1,−1,−1,−1. The sequence u1, . . . , u2s should satisfy

∑j
i=1 ui ≥ 0, for

all j = 1, . . . , 2s.
The number of all arrangements of the ±1’s is (2s)!

s!s! . By the reflection prin-
ciple (see Figure 3), the number of arrangements such that at least one of the
requirements

∑j
i=1 ui ≥ 0 is violated is (2s)!

(s−1)!(s+1)! (see the broken curve which
reaches the line y = −1; reflecting the rear part of the curve across the axis
y = −1 results in the dotted curve which ends at y = −2 and consists of s − 1
ones and s + 1 minus ones). It follows that the number of isomorphic classes
is (2s)!

s!s! − (2s)!
(s−1)!(s+1)! = (2s)!

s!(s+1)! . The number of graphs in each isomorphic class
is n(n − 1) · · · (n − s) = n1+s(1 + O(n−1)). Then the first conclusion in (2.7)
follows. The proof of (2.8) follows from the following observation. When G1

has no edges coincident with any G2-edges, the corresponding term is zero since
E(wG1wG2) = E(wG1) E(wG2), due to independence. If there is a single edge in
G = G1

⋃
G2, the corresponding term is also zero. There are two cases in which

the terms in (2.8) may be non-zero. In the first, both G1 and G2 have no single
edges in themselves and G1 has at least one edge coincident with an edge of G2.
In the second, there is at least one cycle in both G1 and G2. In both cases the
number of non-coincident vertices of G is at most h.

Figure 3. The solid curve represents a CS, the broken curve represents a
non-CS and the dotted curve is the reflection of the broken curve.
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Remark 2.1. The existence of the second moment of the off-diagonal entries
is obviously a necessary and sufficient condition for the semicircular law since
the LSD involves the parameter σ2. It is interesting that there is no moment
requirement on the diagonal elements. This fact makes the proof of Theorem
2.12 much easier than exists in the literature.

Sometimes it is of practical interest to consider the case where, for each n,
the entries above the diagonal of W are independent complex random variables
with mean zero and variance σ2, but which may not be identically distributed
and may depend on n. We have the following result.

Theorem 2.4. If E(w(n)
jk ) = 0, E|w(n)

jk |2 = σ2 and for any δ > 0

lim
n→∞

1
δ2n2

∑
jk

E|w(n)
jk |2I

(|w(n)
jk

|≥δ
√

n)
= 0, (2.9)

then the conclusion of Theorem 2.1 holds.

The proof of this theorem is basically the same as that of Theorem 2.1. At
first, we note that one can select a sequence δn ↓ 0 such that (2.9) is still true
with δ replaced by δn. Then one may truncate the variables at C = δn

√
n. For

brevity, in the proof of Theorem 2.4, we suppress the dependence on n from
entries of Wn. By Lemma 2.2, we have

‖FWn − FW̃n‖ ≤ 1
n

∑
jk

I{|wjk|≥δn
√

n},

where W̃n is the matrix of truncated variables. By Condition (2.9),∑
jk

P{|wjk| ≥ δn

√
n} ≤ 1

δ2
nn

∑
jk

E|wjk|2I(|wjk|≥δn
√

n) = o(n).

Applying Hoeffding’s inequality to the sum of the n(n + 1)/2 independent terms
of I(|wjk|≥δn

√
n), we have

P
(∑

j≤k

I{|wjk|≥δn
√

n}≥εn
)
≤P
(∣∣∣∑

j≤k

[I{|wjk |≥δn
√

n} − P(|wjk| ≥ δn

√
n)]
∣∣∣≥ 1

3
εn
)

≤2 exp
(
− 9−1ε2n2

2[
∑

jk P{|wjk| ≥ δn
√

n} + 3−1εn]

)
≤ 2 exp(−bn),

for some positive constant b. By the Borel-Cantelli Lemma, with probability 1,
the truncation does not affect the LSD of Wn. Then, applying Lemma 2.3, one
can re-centralize the truncated variable and replace the diagonal entries by zero
without changing the LSD.
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Then for the truncated and re-centralized matrix (still denoted by Wn), it
can be shown that, by estimates similar to those given in the proof of Theorem
2.1 and corresponding to (2.7),

1
n

E(tr((n−1/2Wn)h)) =

{
(2s)!σh

s!(s+1)! + o(1), if h = 2s
o(1), if h = 2s + 1.

(2.10)

However, we cannot prove the counterpart for Var( 1
ntr((n−1/2Wn)h)) since its

order is only O( δ2
n
n ), which implies convergence “in probability”, but not “almost

surely”. In this case, we can consider the fourth moment and prove

E
∣∣∣ 1
n

tr((n−1/2Wn)h) − E(
1
n

tr((n−1/2Wn)h))
∣∣∣4

= n−4−2h
∑

G1,...,G4

E
[ 4∏

i=1

(wGi − E(wGi))
]

= O(n−2). (2.11)

In fact, if there is one subgraph among G1, . . . , G4 which has no edge coincident
with any edges of the other three, the corresponding term is zero. Thus, we only
need to estimate those terms for the graphs whose every subgraph has at least
one edge coincident with an edge of other subgraphs. Then (2.11) can be proved
by analyzing various cases. The details are omitted.

Remark 2.2. In Girko’s book (1990), it is stated that condition (2.9) is necessary
and sufficient for the conclusion of Theorem 2.4.

2.1.2. Sample covariance matrix

Suppose that {xjk, j, k = 1, 2, . . .} is a double array of i.i.d. complex ran-
dom variables with mean zero and variance σ2. Write xk = (x1k, . . . , xpk)′

and X = (x1, . . . ,xn). The sample covariance matrix is usually defined by
S = 1

n−1

∑n
k=1(xk − x̄)(xk − x̄)∗. However, in spectral analysis of LDRM, the

sample covariance matrix is simply defined as S = 1
n

∑n
k=1 xkx∗

k = 1
nXX∗.

The first success in finding the LSD of S is due to Marčenko and Pastur
(1967). Subsequent work was done in Bai and Yin (1988a), Grenander and
Silverstein (1977), Jonsson (1982), Wachter (1978) and Yin (1986). When the
entries of X are not independent, Yin and Krishnaiah (1985) investigated the
LSD of S when the underlying distribution is isotropic. The next theorem is a
consequence of a result in Yin (1986), where the real case is considered. Here we
state it in the complex case.

Theorem 2.5. Suppose that p/n → y ∈ (0,∞). Under the assumptions stated
at the beginning of this section, the ESD of S tends to a limiting distribution with
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density

py(x) =

{
1

2πxyσ2

√
(b − x)(x − a), if a ≤ x ≤ b

0, otherwise,
(2.12)

and a point mass 1 − 1/y at the origin if y > 1, where a = a(y) = σ2(1 − y1/2)2

and b = b(y) = σ2(1 + y1/2)2.

The limit distribution of Theorem 2.5 is called the Marčenko — Pastur law
with ratio index y and scale index σ2. The proof relies on the following lemmas.

Lemma 2.6 (Rank Inequality). Let A and B be two p×n complex matrices.
Then

||FAA∗ − FBB∗ || ≤ 1
p
rank(A −B). (2.13)

From Lemma 2.2, one easily derives a weaker result (but enough for applications
to LSA of large sample covariance matrices) that ||FAA∗ −FBB∗|| ≤ 2

prank(A−
B).

To prove Lemma 2.6, one may assume that A′ = (A′
1

...A′
2)

′ and B′ =

(B′
1

...A′
2)

′, where the number of rows of A1 (also B1) is k =rank(A−B). Then, as
in the proof of Lemma 2.2, Lemma 2.6 can be proven by applying the interlacing
inequality to the matrices A2A∗

2, AA∗ and BB∗.

Lemma 2.7 (Difference Inequality). Let A and B be two p × n complex
matrices. Then

L4(F (AA∗), F (BB∗)) ≤ 2
p2

tr((A − B)(A − B)∗)tr(AA∗ + BB∗). (2.14)

This lemma relies on the following:

L4(F (AA∗), F (BB∗))≤
(1
p

p∑
k=1

|λk−ηk|
)2≤ 2

p2

( p∑
k=1

(
√

λk−√
ηk)2

)( p∑
k=1

(λk+ηk)
)
,

tr(AA∗) =
p∑

k=1

λk, tr(BB∗) =
p∑

k=1

ηk,

and for some unitary matrices U = (ujk) and V = (vjk),

Re(tr(AB∗)) =
∑
j,k

√
λjηkRe(ujkv̄jk)

≤
(∑

j,k

√
λjηk|ujk|2

∑
j,k

√
λjηk|vjk|2

)1/2 ≤
p∑

k=1

√
λkηk.

Now we are in a position to sketch a proof of Theorem 2.5. Define x̃jk =
xjkI(|xjk|<C) − E(xjkI(|xjk |<C)) and denote by S̃ the sample covariance matrix
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constructed of the x̃jk. Similar to the proof of (2.6), employing Lemma 2.7, we
can show that with probability 1

lim sup
n→∞

L4(FS, F S̃) ≤ 4σ2E|x2
11|I(|x11|≥C).

Also, E(|x̃jk|2) → σ2 as C → ∞. Therefore, in the proof of Theorem 2.5, we
may assume that the variables xjk are uniformly bounded, since the right hand
side in the above inequality can be arbitrarily small if C is chosen large enough.
Then we use the expression

p−1tr(Sh) = p−1n−h
∑

i1,...,ih

∑
j1,...,jh

xi1j1 x̄i2j1xi2j2x̄i3j2 · · · x̄ihjh−1
xihjh

x̄i1jh

:= p−1n−h
∑
G

xG,

where in the summations, the indices i1, . . . , ih run over 1, . . . , p, the indices
j1, . . . , jh run over 1, . . . , n. An S-graph G is constructed by plotting the i’s and
j’s on two parallel straight lines respectively, drawing h (down) edges from iv
to jv and another h (up) edges from jv to iv+1 (with the convention ih+1 = i1),
v = 1, . . . , h. Finally, we show that

E(p−1tr(Sh)) = p−1n−h
∑
G

E(xG) = σ2h
h−1∑
r=0

yr
n

r+1

(
h

r

)(
h − 1

r

)
+ O(n−1) (2.15)

where yn = p/n, and

Var(p−1tr(Sh)) = p−2n−2h
∑

G1,G2

[E(xG1xG2) − E(xG1)E(xG2)] = O(n−2). (2.16)

Similar to the proof of (2.7), the proof of (2.15) reduces to, for each r =
0, . . . , h− 1, the calculation of the number of graphs which have no single edges,
r+1 non-coincident i-vertices and h−r noncoincident j-vertices. In such graphs,
each down edge (a, b) must coincide with and only with the up-edge (b, a) which
contributes a factor E|xab|2 → σ2 (as C → ∞). We say that two S-graphs are
isomorphic if one can be coverted to the other through a permutation of {1, . . . , p}
on the i-line and a permutation of {1, . . . , n} on the j-line. To compute the
number of isomorphic classes, define d� = −1 if the path of the graph ultimately
leaves an i-vertex (other than the initial i-vertex) after the 	th down edge and
define u� = 1 if the 	th up-edge leads to a new i-vertex. For other cases, define
d� and u� as 0. Note that we always have d1 = 0. It is obvious that u1 +
· · · + u�−1 + d1 + · · · + d� ≥ 0. Ignoring this restriction, we have

(h
r

)(h−1
r

)
ways

to arrange r ones into the h positions of up-edges and r minus ones into the
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h − 1 positions of down-edges (except the first). If 	 is the first integer such
that u1 + · · · + u�−1 + d1 + · · · + d� < 0, then u�−1 = 0 and d� = −1. By
changing u�−1 to 1 and d� to 0, we get a d-sequence with r − 1 minus ones
and a u-sequence with r + 1 ones. Thus, the number of isomorphic classes is(h
r

)(h−1
r

) − ( h
r+1

)(h−1
r−1

)
= 1

r+1

(h
r

)(h−1
r

)
. The number of graphs in each isomorphic

class is obviously p(p−1) · · · (p−r)n(n−1) · · · (n−h+r−1) = pnhyr
n(1+O(n−1)).

Then (2.15) follows. The proof of (2.16) is similar to that of (2.8). This completes
the proof of the theorem.

Remark 2.3. The existence of the second moment of the entries is obviously
necessary and sufficient for the Marčenko-Pastur Law since the LSD involves
the parameter σ2. The condition of zero mean can be relaxed to having a com-
mon mean, since the means of the entries form a rank-one matrix which can be
removed by applying Lemma 2.6.

Remark 2.4. As argued before the statement of Theorem 2.4, sometimes it is of
practical interest to consider the case where the entries of X depend on n, and for
each n they are independent but not identically distributed. Similar to Theorem
2.4, truncating the variables at δn

√
n for some δn ↓ 0 by using Lemma 2.6, and

recentralizing by using Lemma 2.7, one can prove the following generalization.

Theorem 2.8. Suppose that for each n, the entries of Xn are independent
complex variables, with a common mean and variance σ2. Assume that p/n →
y ∈ (0,∞) and that for any δ > 0,

1
δ2np

∑
j,k

E(|x(n)
jk |2I

(|x(n)
jk

|≥δ
√

n)
) → 0. (2.17)

Then FS tends almost surely to the Marčenko-Pastur law with ratio index y
and scale index σ2.

Now we consider the case p → ∞ but p/n → 0 as p → ∞. It is conceivable
that almost all eigenvalues tend to 1 and hence the ESD of S tends to a degen-
erate one. In turn, to investigate the behavior of the eigenvalues of the sample
covariance matrix S, we consider the ESD of the matrix W =

√
n/p(S−σ2Ip) =

1√
np(XX∗ − nσ2Ip). When the entries of X are real, under the existence of the

fourth moment, Bai and Yin (1988a) showed that its ESD tends to the semi-
circular law almost surely as p → ∞. Now we give a generalization of this result.

Theorem 2.9. Suppose that for each n the entries of the matrix Xn are indepen-
dent complex random variables with a common mean and variance σ2. Assume
that for any constant δ > 0, as p → ∞ with p/n → 0,

1
pδ2√np

∑
jk

E(|x(n)
jk |2I

(|x(n)
jk

|≥δ 4
√

np)
) = o(1) (2.18)
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and
1

np2

∑
jk

E(|x(n)
jk |4I

(|x(n)
jk

|≤δ 4
√

np)
) = o(1). (2.19)

Then with probability 1 the ESD of W tends to the semi-circular law with scale
index σ2.

Remark 2.5. Conditions (2.18) and (2.19) hold if the entries of X have bounded
fourth moments. This is the condition assumed in Bai and Yin (1988a).

The proof of Theorem 2.9 consists of the following steps. Applying Lemma
2.6, we may assume that the common mean is zero. Truncate the entries of X
at δp

4
√

np, where δp → 0 such that (2.18) and (2.19) hold with δ replaced by
δp. By Condition (2.18),

∑
jk P(|x(n)

jk | ≥ δp
4
√

np) = o(p). From this and applying
Hoeffding’s inequality, one can prove that the probability that the number of
truncated elements of X is greater than εp is less than Ce−bp for some b > 0.

One needs to recentralize the truncated entries of X. The application of
Lemma 2.7 requires

1
p

∑
jk

|E(x(n)
jk )I

[|x(n)
jk

|≥δp 4
√

np]
|2 = o(1)

and
1

np2

∑
jk

|x(n)
jk |2I

[|x(n)
jk

|≤δp 4
√

np]
= o(1), a.s.

Here, the first assertion is an easy consequence of (2.18). The second can be
proved by applying Bernstein’s inequality (see Prokhorov (1968)).

The next step is to remove the diagonal elements of W. Write y� =
I
{ 1√

np

∣∣∣∑n

j=1
(|x�j |2−σ2)

∣∣∣≥ε}
. Note that by Condition (2.19),

p∑
�=1

E(y�) ≤ 1
ε2√np

∑
�,j

E(|x�j|4I|x�j |≤δp 4
√

np) = o(p).

Applying Hoeffiding’s inequality, we have

P(
p∑

�=1

y� ≥ εp) ≤ 2e−bp (2.20)

for some b > 0. Then applying Lemma 2.2, we can replace the diagonal elements
of W which are greater than ε by zero, since the number of such elements is o(p)
by (2.20). By Lemma 2.3, we can also replace those smaller than ε by zero.
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In the remainder of the proof, we assume that W = ( 1√
np

∑n
j=1 xi1jxi2j(1 −

δi1,i2)), where δjk is the Kronecker delta . Then we need to prove that

E(tr(Wh)) =

{
(2s)!σ2h

s!(s+1)! + o(1), if h = 2s
o(1), if h = 2s + 1

E|tr(Wh) − E(tr(Wh))|4 = O(
1
p2

).

Similar to the proof of Theorem 2.5, construct graphs for estimating E(tr(Wh)).
Denote by r and s the numbers of i and j vertices. Note that the number of non-
coincident edges is not less than twice the number of non-coincident j vertices,
since consecutive i vertices are not equal. It is obvious that the number of non-
coincident edges is not less than r + s − 1. Therefore, the contribution of each
isomorphic class to the sum is not more than

p−1(np)−h/2nspr(δp
4
√

np)2h−4sσ4s = δ2h−4s
p pr−s−1σ4s if s+1 ≥ r,

p−1(np)−h/2nspr(δp
4
√

np)2h−2s−2r+2σ2s+2r

= δ2h−2s−2r+2
p (p/n)r−s−1σ2s+2r if s+1 < r.

The quantities on the right hand sides of the above estimations are o(1) unless
h = 2s = 2r−2. When h = 2s = 2r−2, the contribution of each isomorphic class
is σ2h(1+ O(p−1)) and the number of non-isomorphic graphs is (2s)!/[s!(s + 1)!].
The rest of the proof is similar to that of Theorem 2.4 and hence omitted.

2.1.3. Product of two random matrices

The motivation for studying products of random matrices originates from
the investigation of the spectral theory of large sample covariance matrices when
the population covariance matrix is not a multiple of an identity matrix, and
that of multivariate F = S1S−1

2 matrices. When S1 and S2 are independent
Wishart, the LSD of F follows from Wachter (1980) and its explicit forms can be
found in Bai, Yin and Krishnaiah (1987), Silverstein (1985a) and Yin, Bai and
Krishnaiah (1983). Relaxation of the Wishart assumption on S1 and S2 relies
on the investigation of the strong limit of the smallest eigenvalue of a sample
covariance matrix. Based on the results in Bai and Yin (1993) and Yin (1986),
and using the approach in Bai, Yin and Krishnaiah (1985), one can show that
the LSD of F is the same as if both S1 and S2 were Wishart when the underlying
distribution of S1 has finite second moment and that of S2 has finite fourth
moment. Yin and Krishnaiah (1983) investigated the limiting distribution of a
product of a Wishart matrix S and a positive definite matrix T. Later work was
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done in Bai, Yin and Krishnaiah (1986), Silverstein (1995), Silverstein and Bai
(1995) and Yin (1986). Here we present the following result.

Theorem 2.10. Suppose that the entries of X are independent complex random
variables satisfying (2.17), and assume that T(= Tn) is a sequence of p × p

Hermitian matrices independent of X such that its ESD tends to a non-random
and non-degenerate distribution H in probability (or almost surely). Further
assume that p/n → y ∈ (0,∞). Then the ESD of the product ST tends to a
non-random limit in probability (or almost surely, respectively).

This theorem contains Yin (1986) as a special case. In Yin (1986), the entries
of X are assumed to be real and i.i.d. with mean zero and variance 1, the matrix
T is assumed to be real and positive definite and to satisfy, for each fixed h,

1
p
tr(Th) → αh, (in pr. or a.s., ) (2.21)

where the sequence {αh} satisfies Carleman’s condition.
There are two directions to generalize Theorem 2.10. One is to relax the

independence assumption on the entries of S. Bai, Yin and Krishnaiah (1986)
assume the columns of X are i.i.d. and each column is isotropically distributed
with certain moment conditions, for example. It could be that Theorems 2.1, 2.4,
2.5, 2.8 and 2.10 are still true when the underlying variables defining the Wigner
or sample covariance matrices are weakly dependent, say φ-mixing, although I
have not found any such results yet. It may be more interesting to investigate
the case where the entries are dependent, say the columns of X are i.i.d. and the
entries of each column are uncorrelated but not independent.

Another direction is to generalize the structure of the setup. An example is
given in Theorem 3.4. Since the original proof employs the Stieltjes transforma-
tion technique, we postpone its statement and proof to Section 3.1.2.

To sketch the proof of Theorem 2.10, we need the following lemma.

Lemma 2.11. Let G0 be a connected graph with m vertices and h edges. To
each vertex v(= 1, . . . ,m) there corresponds a positive integer nv, and to each
edge ej = (v1, v2) there corresponds a matrix Tj = (t(j)η,τ ) of order nv1 × nv2 . Let
Ec and Enc denote the sets of cutting edges (those edges whose removal causes the
graph disconnected) and non-cutting edges, respectively. Then there is a constant
C, depending upon m and h only, such that

∣∣∣ ∑
i1,...,im

h∏
j=1

t
(j)
ifini(ej ),ifend(ej )

∣∣∣ ≤ Cn
∏

ej∈Enc

‖Tj‖
∏

ej∈Ec

‖Tj‖0,

where n = max(n1, . . . , nm), ‖Tj‖ denotes the maximum singular value, and
‖Tj‖0 equals the product of the maximum dimension and the maximum absolute
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value of the entries of Tj; in the summation iv runs over {1, . . . , nv}, fini(ej)
and fend(ej) denote the initial and end vertices of the edge ej .

If there are no cutting edges in G0, then the lemma follows from the norm
inequality ‖AB‖ ≤ ‖A‖‖B‖. For the general case, the lemma can be proved by
induction with respect to the number of cutting edges. The details are omitted.

In the proof of Theorem 2.10, we only consider a.s. convergence, since the
case of convergence in probability can be reduced to the a.s. case by using the
strong representation theorem (see Yin (1986) for details).

For given τ0 > 0, define a matrix T̃ by replacing, in the spectral decompo-
sition of T, the eigenvalues of T whose absolute values are greater than τ0 by
zero. Then the ESD of T̃ converges to

Hτ0(x) =
∫ x

−∞
I[−τ0,τ0](u)H(du) + (H(−τ0) + 1 − H(τ0))I[0,∞)(x), a.s.

and (2.21) holds, with α̃h =
∫
|x|≤τ0

xhdH(x). An application of Lemma 2.2

shows that the substitution of T by T̃ alters the ESD of the product by at most
1
p#{j : |λj(T)| ≥ τ0}, which can be arbitrarily uniformly small by choosing τ0

large.
We claim that Theorem 2.10 follows if we can prove that, with probability

1, FST̃ converges to a non-degenerate distribution Fτ0 for each fixed τ0. First,
we can show the tightness of {FST} from FT → H and the inequality

FST(M) − FST(−M) ≥ FST̃(M) − FST̃(−M) − 2||FST − FST̃||
≥ FST̃(M) − FST̃(−M) − 2(FT(−τ0) + 1 − FT(τ0)).

Here, the second inequality follows by using Lemma 2.2. Second, we can show
that any convergent subsequences of {FST} have the same limit by using the
inequality

|F1(x)− F2(x)| ≤
2∑

j=1

[
|Fj(x) − FST

nj
(x)| + ||FST

nj
− FST̃

nj
||
]
+ |FST̃

n1
(x) − FST̃

n2
(x)|,

where F1 and F2 denote the limits of two convergence subsequences {FST
n1

} and
{FST

n2
} respectively. This completes the proof of the assertion.

Consequently, the proof of Theorem 2.10 reduces to showing that {FST̃}
converge to a non-random limit. Again, using Lemma 2.2, we may assume that
the entries of X are truncated at

√
nδn (δn → 0) and centralized. In the sequel,

for convenience, we still use X and T to denote the truncated matrices.
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After truncation and centralization, one can see that |xjk| ≤ δn
√

n and

E|xjk|2 ≤ σ2 with
1
np

∑
jk

E|xjk|2 → σ2. (2.22)

To estimate the moments of the ESD, we have

1
p
E[(ST)h|T] = p−1n−h

∑
G

E((tx)G|T), (2.23)

where
(tx)G = xi1j1xi2j1ti2i3xi3j2xi4j2 · · · xi2h−1jh

xi2hjh
ti2hi1 .

The Q-graphs (named in Yin and Krishnaiah (1983)) are drawn as follows:
as before, plot the vertices i’s and j’s on two parallel lines and draw h (down)
edges from i2u−1 to ju, h (up) edges from ju to i2u and h (horizontal) edges from
i2u to i2u+1 (with the convention i2h+1 = i1). If there is a single vertical edge
in G, then the corresponding term is zero. We split the sum of non-zero terms
in (2.23) into subsums in accordance with isomorphic classes of graphs without
single vertical edges. For a Q-graph G in a given isomorphic class, denote by s the
number of non-coincident j-vertices and by r the number of disjoint connected
blocks of horizontal edges. Glue the coincident vertical edges and denote the
resulting graph by G0. Let the p × p-matrix T correspond to each horizontal
edge of G0 and let the p × n-matrix T(x)

µ,ν = (E(xµ
i,jx

ν
i,j)) correspond to each

vertical edge of G0 that consists of µ down edges and ν up edges of G. Note
that µ + ν ≥ 2 and |E(xµ

i,jx
ν
i,j)| ≤ σ2(δn

√
n)µ+ν−2. It is obvious that ‖T‖ ≤ τ0,

‖T(x)
µ,ν‖ ≤ √

npσ2(δn
√

n)µ+ν−2 and ‖T(x)
µ,ν‖0 ≤ max(n, p)σ2(δn

√
n)µ+ν−2. Also,

every horizontal edge of G0 is non-cutting. Split the right hand side of (2.23) as
J1 +J2 where J1 corresponds to the sum of those terms whose graphs G0 contain
at least one vertical edge with multiplicity greater than 2 and J2 is the sum of
all other terms. Applying Lemma 2.11, we get J1 = O(δ2

n) = o(1).
We further split J2 as J21+J22, where J21 is the sum of all those terms whose

G0-graphs contain at least one non-cutting vertical edge and J22 is the sum of
the rest. For graphs corresponding to the terms in J21, we must have s + r ≤ h.
When evaluating J21, we fix the indices j1, . . . , js and perform the summation for
i1, . . . , ir first. Corresponding to the summation for fixed j1, . . . , js, we define a
new graph G(j1, . . . , js) as follows: If (ig, jh) is a vertical edge of G0, consisting
of µ-up and ν-down edges of G (note that µ + ν = 2), then remove this edge and
add to the vertex ig a loop, to which there corresponds the p×p diagonal matrix
T(jh) = diag(E(xµ

1,jh
x̄ν

1,jh
), . . . , E(xµ

p,jh
x̄ν

p,jh
)), see Figure 4. After all vertical

edges of G0 are removed, the r disjoint connected blocks of the resulting graph
G(j1, . . . , js) have no cutting edges. Note that the ‖ · ‖-norms of the diagonal
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matrices are not greater than σ2. Applying Lemma 2.11 to each of connected
blocks, we obtain

|J21| ≤ Cp−1n−h
∑

s+r≤h

∑
j1,...,js

prσ2hτh
0 = O(1/n).

i1 i2 i3 i1 i2 i3

I I

J J

j1 j2 j3 j4 j1 j2 j3 j4

Figure 4. The left graph is the original one and the right one is the resulting
graph.

Finally, consider J22. Since all vertical edges are cutting edges, we have
s + r = h + 1. There are exactly h non-coincident vertical edges, in which each
down-edge (a, b) must coincide with one and only one up-edge (b, a). Thus, the
contribution of the expectations of the x-variables is

∏h
�=1 E(|x2

ifini(e�)
,jfend(e�)

|).
For a given vertical edge, if its corresponding matrix T(x) is replaced by the p×n

matrix of all entries σ2, applying Lemma 2.11 again, this will cause a difference
of o(1) in J22, since the norms (‖ · ‖ or ‖ · ‖0) of the difference matrix are only
o(n), by (2.22).

Now, denote by µ1, . . . , µr the sizes (the numbers of edges) of the r disjoint
blocks of horizontal edges. Then it is not difficult to show that for each class of
isomorphic graphs, the sub-sum in J22 tends to yr−1αµ1 · · ·αµr(1 + o(1)). Thus,
to evaluate the right hand side of (2.23), one only needs to count the number of
isomorphic classes.

Let im denote the number of disjoint blocks of horizontal subgraphs of size
m. Then it can be shown that the number of isomorphic classes is h!

s!i1!···is! . For
details, see Yin (1986). Hence,

1
p
E[(ST)h|T] = σ2h

h∑
s=1

yh−s
∑ h!

s!

s∏
m=1

(
[p−1tr(Tm)]im

im!
) + o(1)

= σ2h
h∑

s=1

yh−s
∑ h!

s!

s∏
m=1

αim
m

im!
+ o(1), (2.24)

where the inner summation is taken with respect to all nonnegative integer so-
lutions of i1 + · · · + is = h + 1 − s and i1 + 2i2 + · · · + sis = h.
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Similar to the proof of (2.11), to complete the proof of the theorem, one
needs to show that

E(|1
p
(ST)h − E(

1
p
(ST)h|T]|4|T] = O(n−2),

whose proof is similar to, and easier than, that of (2.24). The convergence of the
ESD of ST and the non-randomness of the limiting distribution then follow by
verifying Carleman’s condition.

2.2. Limits of extreme eigenvalues

In multivariate analysis, many statistics involved with a random matrix can
be written as functions of integrals with respect to the ESD of the random ma-
trix. When applying the Helly-Bray theorem to find an approximate value of the
statistics, one faces the difficulty of dealing with integrals with unbounded inte-
grands. Thus, the study of strong limits of extreme eigenvalues is an important
topic in spectral analysis of LDRM.

2.2.1. Limits of extreme eigenvalues of the Wigner matrix

The following theorem is a generalization of Bai and Yin (1988b) where the
real case is considered. The complex case is treated here because the question
often arises as to whether the result is true for the complex case.

Theorem 2.12. Suppose that the diagonal elements of the Wigner matrix W
are i.i.d. real random variables, the elements above the diagonal are i.i.d. complex
random variables, and all these variables are independent. Then the largest eigen-
value of n−1/2W tends to 2σ > 0 with probability 1 if and only if the following
four conditions are true.

(i) E((w+
11)

2) < ∞,
(ii) E(w12) is real and ≤ 0, (2.25)
(iii) E(|w12 − E(w12|2) = σ2,
(iv) E(|w4

12|) < ∞,
where x+ = max(x, 0).

The proof of the sufficiency part of Theorem 2.12 consists of the following
steps. First, by Theorem 2.1, we have

lim inf
n→∞ λmax(n−1/2W) ≥ 2σ, a.s. (2.26)

Thus, the problem reduces to proving

lim sup
n→∞

λmax(n−1/2W) ≤ 2σ, a.s. (2.27)
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Let W̃ be the matrix obtained from W by replacing the diagonal elements
with zero and centralizing the off diagonal elements. By Conditions (i) and (ii),
we notice that lim sup 1√

n
w+

kk = 0, a.s. Then

λmax(n−1/2W) = n−1/2 max
||x||=1

(∑
j,k

xjx̄kwjk

)
≤ max

||x||=1

( 1√
n

∑
j 	=k

xj x̄k(wjk − E(wjk)) +
1√
n

max
k

(w+
kk − E(w12))

)
≤ λmax(W̃) + o(1). (2.28)

 i4 = i7

i1 = i10 i3 = i6 = i8

i2 = i5 = i9

Figure 5. Four types of edges in a W-graph.

This further reduces the proof of (2.27) to showing that lim supn→∞ λmax(W̃) ≤
2σ, a.s.

For brevity of notation, we again use W for W̃, i.e., we assume that the
diagonal elements and the means of off diagonal elements of W are zero. Then
by condition (iv), we may select a sequence of constants δn → 0 such that

P(W 	= W̃, i.o.) = 0,

where W̃ is redefined as (wjkI(|wjk|≤δn
√

n)).
Note that E(w12) = 0 implies

λmax(n−1/2E(W̃)) ≤ (1 + n−1/2)|E(w12I(|w12|≤δn
√

n))| → 0. (2.29)

Therefore, we only need to consider the upper limit of the largest eigenvalue
of W̃ − E(W̃). For simplicity, we still use W to denote the truncated and
recentralized matrix.

Select a sequence of even integers h = hn = 2s with the properties h/ log n →
∞ and hδ

1/4
n / log n → 0. We shall estimate

E(tr(Wh)) =
∑

i1,...,ih

E(wi1i2wi2i3 · · ·wihi1) =
∑
G

E(wG), (2.30)
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where the graphs are constructed as in the proof of Theorem 2.1. Classify the
edges into several types. An edge (ia, ia+1) is called an innovation or a Type 1
(T1) edge if ia+1 	∈ {i1, . . . , ia} and is called a Type 3 (T3) edge if it coincides with
an innovation which is single up to ia. A T3-edge (ia, ia+1) is called irregular if
there is only one innovation which is single up to ia and has a vertex coinciding
with ia in the chain (i1, . . . , ia). Otherwise, it is said to be regular. All other
edges are called Type 4 (T4) edges. A T4-edge is also called a Type 2 (T2) edge if
it does not coincide with any edges prior to it. Examples of the four types of edges
are given in Figure 5, in which the first three edges (in solid arcs) are innovations,
the broken arcs are T3 edges and the dotted arcs are T4 edges. Among the T3

edges, (i5, i6) is a regular T3 edge (since the path may go to i6 = i1 instead of
i6 = i3 ) and among the T4 edges, (i4, i5) is a T2 edge.

To estimate the right hand side of (2.30), we need the following lemmas
whose proofs can be found in Bai and Yin (1988b) or Yin, Bai and Krishnaiah
(1988).

Lemma 2.13. Let t denote the number of non-coincident T4-edges and u denote
the number of innovations which are single up to ia and have a vertex coinciding
with ia in the chain (i1, . . . , ia). Then u ≤ t + 1.

Lemma 2.14. The number of regular T3-edges is not greater than twice the
number of T4-edges.

Now, we return to the proof of Theorem 2.12. Suppose that there are r

innovations (r ≤ s) and t non-coincident T4-edges in a graph. Then there are r

T3-edges, 2s − 2r T4-edges and r + 1 non-coincident vertices. There are at most
nr+1 ways to plot the non-coincident vertices and at most

(2s
r

)
ways to assign

the innovations to the 2s edges. In a canonical graph (i.e., a graph which starts
from the edge (1, 2) and the end-vertex of each innovation is one plus the end-
vertex of the previous innovation), there is only one way to plot the innovations.
There are at most

(2s−r
r

)
ways to select the T3-edges from the remaining 2s − r

edges and only one way to plot irregular T3-edges. By Lemmas 2.13 and 2.14,
there are at most (t + 1)4(s−r) ways to plot the regular T3-edges. After the T1-
and T3-edges have been plotted, there are at most

(2s−2r
t

)
ways to select the t

non-coincident T4-edges and at most t2s−2r ways to plot the 2s−2r T4-edges into
the t places. Finally, we note that the absolute value of each term is at most
σ2(r−t)µt(

√
nδn)2(s−r)−t, where µ = E(|w3

12|). We obtain

E(tr(W)h) ≤
s∑

r=1

2s−2r∑
t=0

ns+1

(
2s
r

)(
2s − r

r

)
(t + 1)8(s−r)σ2r(µ/(σ

√
nδn))tδ2(s−r)

n

≤ 2sns+1[2σ + δn(8s/ log(
√

nδnσ/µ))4]2s

= 2sns+1[2σ + o(1)]2s.
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Then by the fact that λ2smax(n−1/2W) ≤ n−str(W2s), for any ε > 0, we have

P(λmax(n−1/2W) ≥ 2σ + ε) ≤ 2sn[1 − ε − o(1)
2σ + ε

]2s.

The right hand side above is summable by the choice of s. Therefore, by the Borel
Cantelli Lemma, lim supλmax(n−1/2W) ≤ 2σ almost surely. The sufficiency is
proved.

Conversely, if lim supλmax(n−1/2W) ≤ 2a with a > 0, then, by
λmax(n−1/2W) ≥ maxk n−1/2wkk, we have lim supmaxk n−1/2w+

kk ≤ 2a + ε,
which implies condition (i).

For wjk 	= 0 and |wkk| ≤ n1/4, |wjj| ≤ n1/4, taking xk = wjk/(
√

2|wjk|) and
xj = 1/

√
2 in the first equality of (2.28), we have λmax(n−1/2W) ≥ n−1/2|wjk|−

n−1/4. Thus, λmax(n−1/2W) ≥ n−1/2 max{|wkk|≤n1/4, |wjj |≤n1/4} |wjk| − n−1/4.
This implies Condition (iv), by noticing that kn = #{k ≤ n; |wkk| > n1/4} =
oa.s.(n).

If E(Re(w12)) > 0, then take x with kth element xk = (n − kn)−1/2 or 0
in accordance with |wkk| < n1/4 or not, respectively. Then applying (2.26) and
noticing kn = o(n), one gets the following contradiction:

λmax(n−1/2W) ≥ n−1/2x∗Wx

≥ (n − kn − 1)1/2E(Re(w12)) − n−1/4 + λmin(n−1/2[W̃ − E(W̃)]) → ∞,

where W̃ is the matrix obtained from W with its diagonal elements replaced by
zero. Here, we have used the fact that λmin(n−1/2[W̃−E(W̃)]) → −2σ2, by the
sufficiency part of the theorem. This proves that the real parts of the means of
off-diagonal elements of W cannot be positive.

If b = E(Im(w12)) 	= 0, define x in such a way that xj = 0 if |wjj| >
n1/4, and the other n− kn elements are (n− kn)−1/2(1, eiπsign(b)(2�−1)/(n−kn), . . . ,

eiπsign(b)(2�−1)(n−kn−1)/(n−kn)), respectively. Note that x is the eigenvector cor-
responding to the eigenvalue cot(π(2	 − 1)/2(n − kn)) of the Hermitian matrix
whose (j, k)th (j < k) element is i if |wjj| ≤ n1/4 and |wkk| ≤ n1/4, or 0 otherwise.
Therefore, we have, with a = |E(Re(w12)|,

λmax(n−1/2W) ≥ n−1/2x∗Wx

≥ − |a|
(n − kn)

√
n sin2(π(2	 − 1)/2(n − kn))

+
|b|√

n sin(π(2	 − 1)/2(n − kn))

+λmin
(
n−1/2(W̃ − E(W̃))

)
− n−1/4

:= I1 + I2 + I3 − n−1/4.

Taking 	 = [n1/3] and noticing kn = o(n), we have

I1 ∼ −|a|n−1/6 → 0, I2 ∼ |b|n1/6 → ∞ and I3 → −2σ2.
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This leads to the contradiction that λmax(n−1/2W) → ∞, proving the necessity
of Condition (ii).

Condition (iii) follows by applying the sufficiency part. The proof of Theorem
2.12 is now complete.

Remark 2.6. For the Wigner matrix, there is a symmetry between the largest
and smallest eigenvalues. Thus, Theorem 2.12 actually proves that the necessary
and sufficient conditions for both the largest and smallest eigenvalues to have
finite limits almost surely are that the diagonal elements have finite second mo-
ments and the off-diagonal elements have zero mean and finite fourth moments.

Remark 2.7. In the proof of Theorem 2.12, if the entries of W depend on n

but satisfy

E(wjk) = 0, E(|w2
jk|) ≤ σ2, E(|w�

jk|) ≤ b(δnn)�−3, (	 ≥ 3) (2.31)

for some b > 0 and δn ↓ 0, then for fixed ε > 0 and 	 > 0, the following is true:

P(λmax(n−1/2W) ≥ 2σ + ε + x) = o(n−�(2σ + ε + x)−2), (2.32)

uniformly for x > 0. This implies that the conclusion lim supλmax(n−1/2W) ≤
2σ a.s. is still true.

2.2.2. Limits of extreme eigenvalues of sample covariance matrices

Geman (1980) proved that, as p/n → y, the largest eigenvalue of a sample
covariance matrix tends to b(y) almost surely, assuming a certain growth condi-
tion on the moments of the underlying distribution, where b(y) = σ2(1 +

√
y)2 is

defined in the statement of Theorem 2.5. Later, Yin, Bai and Krishnaiah (1988)
and Bai, Silverstein and Yin (1988), respectively, proved that the necessary and
sufficient condition for the largest eigenvalue of a sample covariance matrix to
converge to a finite limit almost surely is that the underlying distribution has a
zero mean and finite fourth moment, and that the limit must be b(y). Silverstein
(1989b) showed that the necessary and sufficient conditions for the weak con-
vergence of the largest eigenvalue of a sample covariance matrix are E(x11) = 0
and n2P(|x11| ≥

√
n) → 0. The most difficult problem in this direction is to

establish the strong convergence of the smallest eigenvalue of a sample covari-
ance matrix. Yin, Bai and Krishnaiah (1983) and Silverstein (1984) showed that
when y ∈ (0, 1), there is a positive constant ε0 such that the liminf of the smallest
eigenvalue of 1/n times a Wishart matrix is larger than ε0, a.s. In Silverstein
(1985), this result is further improved to say that the smallest eigenvalue of a
normalized Wishart matrix tends to a(y) = σ2(1 − √

y)2 almost surely. Silver-
stein’s approach strongly relies on the normality assumption and hence cannot
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be extended to the general case. The latest contribution is due to Bai and Yin
(1993), in which a unified approach is presented, establishing the strong con-
vergence of both the largest and smallest eigenvalues simultaneously under the
existence of the fourth moment. Although only the real case is considered in Bai
and Yin (1993), their results can easily be extended to the complex case.

Theorem 2.15. In addition to the assumptions of Theorem 2.5, we assume that
the entries of X have finite fourth moment. Then

−2yσ2 ≤ lim inf
n→∞ λmin(S−σ2(1+y)I)≤ lim sup

n→∞
λmax(S−σ2(1+y)I) ≤ 2yσ2, a.s.

(2.33)
If we define the smallest eigenvalues as the (p−n + 1)-st smallest eigenvalue

of S when p > n, then from Theorem 2.15, one immediately gets the following
Theorem.

Theorem 2.16. Under the assumptions of Theorem 2.15, we have

lim
n→∞λmin(S) = σ2(1 −√

y)2, a.s. (2.34)

and
lim

n→∞λmax(S) = σ2(1 +
√

y)2, a.s. (2.35)

The proof of Theorem 2.15 relies on the following two lemmas.

Lemma 2.17. Under the conditions of Theorem 2.15, we have

lim sup
n→∞

||T(	)|| ≤ (2	 + 1)(	 + 1)y(�−1)/2 a.s.,

where T(	), p×p, has its (a, b)th entry n−�(
∑′xav1xu1v1xu1v2xu2v2 · · · xu�−1v�

xbv�
)

and the summation
∑′ runs over v1, . . . , v� = 1, . . . , n and u1, . . . , u�−1 = 1, . . . , p

subject to the restriction

a 	= u1, u1 	= u2, . . . , u�−1 	= b and v1 	= v2, v2 	= v3, . . . , v�−1 	= v�.

Lemma 2.18. Under the conditions of Theorem 2.15, we have

(T − yI)h =
h∑

r=0

(−1)r+1T(r)
[(h−r)/2]∑

i=0

Ci(h, r)yh−r−i + o(1), (2.36)

where T = T(1) = S − σ2(1 + y)I and the constants |Ci(h, r)| ≤ 2h.
The proof of Lemma 2.17 is similar to that of Theorem 2.12, i.e., to consider

the expectation of tr(T2s(	)). Construct the graphs as in the proof of Theorem
2.5. Using Lemmas 2.13 and 2.14 one gets an estimate

E(tr(T2s(	))) ≤ n3[(2	 + 1)(	 + 1)y(�−1)/2 + o(1)]2s.
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From this, Lemma 2.17 can be proved; the details are omitted. The proof of
Lemma 2.18 follows by induction.

2.3. Limiting behavior of eigenvectors

Relatively less work has been done on the limiting behavior of eigenvectors
than eigenvalues in the spectral analysis of LDRM. Some work on eigenvectors
of the Wigner matrix can be found in Girko, Kirsch and Kutzelnigg (1994),
in which the first order properties are investigated. For eigenvectors of sample
covariance matrices, some results can be found in Silverstein (1979, 1981, 1984b,
1989, 1990). Except for his first paper, the focus is on second order properties.

There is a good deal of evidence that the behavior of LDRM is asymptotically
distribution-free, that is, it is asymptotically equivalent to the case where the
basic entries are i.i.d. mean 0 normal, provided certain moment requirements
are met. This phenomenon has been confirmed for distributions of eigenvalues.
For the eigenvectors, the problem is how to formulate such a property. In the
normal case, the matrix of orthonormal eigenvectors, which will be simply called
the eigenmatrix, is Haar distributed. Since the dimension tends to infinity, it is
difficult to compare the distribution of the eigenmatrix with the Haar measure.
However, there are several different ways to characterize the similarity between
these two distributions. The following approach is considered in the work referred
to above.

Let un = (u1, . . . , up)′ be a p-dimensional unit vector and On be the eigen-
matrix of a covariance matrix. Define yn = O′

nun = (y1, . . . , yp)′. If On is Haar
distributed, then y is uniformly distributed on the unit sphere in a p-dimensional
space. To this end, define a stochastic process Yn(t) as follows.

Yn(t) =
[pt]∑
i=1

|yi|2.

Note that the process can also be viewed as a random measure of the uniformity
of the distribution of y. It is conceivable that Yn(Fn(t)) converges to a common
limiting stochastic process whatever the vector un is, where Fn is the ESD of
the random matrix. This was proved in Girko, Kirsch and Kutzelnigg (1994)
for the Wigner matrix and was the the main focus of Silverstein (1979) for large
covariance matrices. This is implied by results in Silverstein’s other work, in
which second order properties are investigated. Here, we shall briefly introduce
some of his results in this direction.

In the remainder of this subsection, we consider a real sample covariance
matrix S with i.i.d. entries. Define

Xn(t) =
√

p/2(Yn(t) − [pt]/p).
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When S is a Wishart matrix, it is not difficult to show that Xn(t) converges
weakly to a Brownian bridge W 0(t) in D[0, 1], the space of r.c.l.l. (right-
continuous and left-limit) functions on [0, 1]. In Silverstein (1989a), the following
theorem is proved.

Theorem 2.19.
(i) If

E(x11) = 0, E(|x2
11|) = 1, E(|x4

11|) = 3, (2.37)

then for any integer k( ∫ ∞

0
xr Xn(FS(dx)), r = 1, . . . , k

) D→
( ∫ ∞

0
xr W 0(Fy(dx)), r = 1, . . . , k

)
,

(2.38)
where Fy is the Marčenko-Pastur distribution with dimension-ratio y and
parameter σ2 = 1.

(ii) If
∫∞
0 xXn(FS(dx)) is to converge in distribution to a random variable for

un = (1, 0, 0, . . . , 0)′ and un = p−1/2(1, 1, . . . , 1)′, then E(|x4
11|) < ∞ and

E(x11) = 0.
(iii) If E(|x4

11|) < ∞ but E(|x11 − E(x11)|4)/Var(x11) 	= 3, then there exist se-
quences {un} for which( ∫ ∞

0
xXn(FS(dx)),

∫ ∞

0
x2 Xn(FS(dx))

)
fails to converge in distribution.
Note that ∫ ∞

0
xk Xn(FS(dx)) =

√
p/2
(
u∗

nS
kun − p−1tr(Sk)

)
.

The proof of (i) consists of the following three steps

1)
√

pE(u∗
nS

kun − p−1tr(Sk)) Pr→ 0;

2)
√

p(p−1tr(Sk) − E(p−1tr(Sk))) Pr→ 0;

3)
√

p/2(u∗
nS

kun − E(u∗
nS

kun)) D→
∫ ∞

0
xk W 0(Fy(dx)).

The details are omitted. The proof of (ii) follows from standard limit theorems
(see, e.g., Gnedenko and Kolmogorov (1954)). As for conclusion (iii), by elemen-
tary computation we have

Cov
( ∫ ∞

0
xXn(FS(dx)),

∫ ∞

0
x2 Xn(FS(dx))

)
= (2y + y2)(1 + o(1))

[
1 +

1
2
(E(|x4

11|) − 3)
( n∑

i=1

|ui|4
)]

.
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Then un can be chosen so that the right hand side of the above has no limit,
unless E(|x4

11|) = 3.

Remark 2.8. The importance of the above theorem stems from the following.
Assume Var (x11) = 1. If E(x11) = 0, n2P(|x11| ≥

√
n) → 0 (ensuring weak

convergence of the largest eigenvalue of S) and Xn
D→ W 0, then it can be shown

that (2.38) holds. Therefore, if weak convergence to a Brownian bridge is to
hold for all choices of unit vectors u, from (ii) and (iii) it must follow that
E(|x4

11|) = 3. Thus it appears that similarity of the eigenmatrix to the Haar
measure requires a certain amount of closeness of x11 to the standard normal
distribution. At present, either of the two extremes, Xn

D→ W 0 for all unit u
and all x11 satisfying the above moment conditions, or Xn

D→ W 0 only in the
Wishart case, remains as a possibility. However, because of (i), verifying weak
convergence to a Brownian bridge amounts to showing tightness of the sequence
{Xn} in D[0, 1].

The following theorem, found in Silverstein (1990), yields a partial solution
to the problem, a case where tightness can be established.

Theorem 2.20. Assume x11 is symmetrically distributed about 0 and E(x4
11) <

∞. Then Xn
D→ W 0 holds for u = p−1/2(±1,±1, . . .).

2.4. Miscellanea

Let X be an n×n matrix of i.i.d. complex random variables with mean zero
and variance σ2. In Bai and Yin (1986), large systems of linear equations and
linear differential equations are considered. There, the norm of (n−1/2X)k plays
an important role for the stability of the solutions. The following theorem was
proved.

Theorem 2.21. If E(|x4
11|) < ∞, then

lim sup
n→∞

||(n−1/2X)k|| ≤ (1 + k)σk, a.s., for all k. (2.39)

The proof of this theorem relies on, after truncation and centralization, the
estimation of E([(n−1/2X)k(n−1/2X∗)k]�). The details are omitted. Here, we
remark that when k = 1, the theorem reduces to a special case of Theorem
2.15 for y = 1. We also introduce an important consequence about the spectral
radius of n−1/2X, which plays an important role in establishing the circular law
(See Section 4). This was also independently proved by Geman (1986), under
additional restrictions on the growth of moments of the underlying distribution.

Theorem 2.22. If E(|x4
11|) < ∞, then

lim sup
n→∞

max
j≤n

|λj(n−1/2X)| ≤ σ, a.s. (2.40)
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Theorem 2.22 follows from the fact that for any k,

lim sup
n→∞

max
j≤n

|λj(n−1/2X)| = lim sup
n→∞

max
j≤n

|λj [(n−1/2X)k]|1/k

≤ lim sup
n→∞

||(n−1/2X)k||1/k ≤ (1 + k)1/kσ → σ,

by making k → ∞.

Remark 2.9. Checking the proof of Theorem 2.21, one finds that, after trunca-
tion and centralization, the conditions for guaranteeing (2.39) are |xjk| ≤ δn

√
n,

E(|x2
jk|) ≤ σ2 and E(|x3

jk|) ≤ b, for some b > 0. This is useful in extending the
circular law to the case where the entries are not identically distributed.

3. Stieltjes Transform

Let G be a function of bounded variation defined on the real line. Then its
Stieltjes transform is defined by

m(z) =
∫ ∞

−∞
1

x − z
G(dx), (3.1)

where z = u + iv with v > 0. Throughout this section, z denotes u + iv with
v > 0. Note that the integrand in (3.1) is bounded by 1/v, the integral always
exists, and

1
π

Im(m(z)) =
∫ ∞

−∞

[ v

π[(x − u)2 + v2]

]
G(dx).

This is the convolution of G with a Cauchy density with a scale parameter v. If
G is a distribution function, then the Stieltjes transform always has a positive
imaginary part. Thus, one can easily verify that, for any continuity points x1 <
x2 of G,

lim
v↓0

∫ x2

x1

1
π

Im(m(z))du = G(x2) − G(x1). (3.2)

Formula (3.2) obviously provides a continuity theorem between the family of
distribution functions and the family of their Stieltjes transforms.

Also, if Im(m(z)) is continuous at x0 + i0, then G(x) is differentiable at
x = x0 and its derivative equals 1

π Im(m(x0 + i0)). This result was stated in Bai
(1993a) and rigorously proved in Silverstein and Choi (1995). Formula (3.2) gives
an easy way to find the density of a distribution function if its Stieltjes transform
is known.

Now, let G be the ESD of a Hermitian matrix W of order p. Then it is easy
to see that

mG(z) =
1
p
tr(W − zI)−1

=
1
p

p∑
k=1

1
wkk − z − α∗

k(Wk − zIp−1)−1αk
, (3.3)
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where αk ((p − 1) × 1) is the kth column vector of W with the kth element
removed and Wk is the matrix obtained from W with the kth row and column
deleted. Formula (3.3) provides a powerful tool in the area of spectral analysis
of LDRM.

As mentioned earlier, the mapping from distribution functions to their Stielt-
jes transforms is continuous. In Bai (1993a), this relation was more clearly char-
acterized as a Berry-Esseen type inequality.

Theorem 3.1. Let F be a distribution function and G be a function of bounded
variation satisfying

∫ |F (y) − G(y)|dy < ∞. Then, for any v > 0 and constants
γ and a related to each other by the condition γ = 1

π

∫
|u|≤a

1
u2+1

du > 1/2,

||F − G|| ≤ 1
π(2γ − 1)

[ ∫
|f(z) − g(z)|du +

1
v

sup
x

∫
|y|≤2va

|G(x + y) − G(x)|dy
]
,

where f and g are Stieltjes transforms of F and G respectively, and z = u + iv.

Sometimes, F and G have thin tails or even have bounded supports. In these
cases, one may want to bound the difference between F and G in terms of an
estimate of the difference of their Stieltjes transforms on a finite interval. We
have the following theorem.

Theorem 3.2. Under the conditions of Theorem 3.1, for any constants A and
B restricted by κ = 4B

π(A−B)(2γ−1) ∈ (0, 1), we have

‖F − G‖ ≤ 1
π(1 − κ)(2γ − 1)

[ ∫ A

−A
|f(z) − g(z)|du

+
1
v

sup
x

∫
|y|≤2va

|G(x + y) − G(x)|dy + 2πv−1
∫
|x|>B

|F (x) − G(x)|dx
]
.

Corollary 3.3. In addition to the conditions of Theorem 3.1, assume further
that, for some constant B, F ([−B,B]) = 1 and |G|((−∞,−B)) = |G|((B,∞)) =
0, where |G|((b, c)) denotes the total variation of G on the interval (b, c). Then
for any A satisfying the constraint in Thereom 3.2, we have

‖F−G‖≤ 1
π(1−κ)(2γ−1)

[ ∫ A

−A
|f(z)−g(z)|du+

1
v

sup
x

∫
|y|≤2va

|G(x+y)−G(x)|dy
]
.

Remark 3.1. Corollary 3.3 is good enough for establishing the convergence
rate of ESD’s of LDRM since, in all known cases in the literature, the limiting
distribution has a bounded support and the extreme eigenvalues have finite limits.
It is more convenient than Theorem 3.1 since one does not need to estimate the
integral of the difference of the Stieltjes transforms over the whole line.
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3.1. Limiting spectral distributions

As an illustration, we use the Stieltjes transform (3.3) to derive the LSD’s
of Wigner and sample covariance matrices.

3.1.1. Wigner matrix

Now, as an illustration of how to use Formula (3.3) to find the LSD’s, let
us give a sketch of the proof of Theorem 2.1. Truncation and centralization are
done first as in the proof of Theorem 2.1. That is, we may assume that wkk = 0
and |wjk| ≤ C for all j 	= k and some constant C. Theorem 2.4 can be similarly
proved but needs more tedious arguments.

Let mn(z) be the Stieltjes transform of the ESD of n−1/2W. By (3.3), and
noticing wkk = 0, we have

mn(z) =
1
n

n∑
k=1

1
−z − 1

nα∗
k(n−1/2Wk − zIn−1)−1αk

=
1
n

n∑
k=1

1
−z − σ2mn(z) + εk

= − 1
z + σ2mn(z)

+ δn, (3.4)

where
εk = σ2mn(z) − 1

n
α∗

k(n
−1/2Wk − zIn−1)−1αk

and

δn = δn(z) =
1
n

n∑
k=1

−εk

(−z − σ2mn(z) + εk)(−z − σ2mn(z))
. (3.5)

We first show that for any fixed v0 > 0 and B > 0, with z = u + iv,

sup
|u|≤B,v0≤v≤B

|δn(z)| = o(1) a.s. (3.6)

By the uniform continuity of mn(z), the proof of (3.6) is equivalent to showing
for each fixed z with v > 0,

|δn(z)| = o(1) a.s. (3.7)

Note that

| − z − σ2mn(z) + εk| ≥ Im(−z − 1
n

α∗
k(n

−1/2Wk − zIn−1)−1αk)|

= v(1 +
1
n

α∗
k((n

−1/2Wk − uIn−1)2 + v2I)−1αk) ≥ v,

and |z + σ2mn(z)| ≥ v. Then (3.7) follows if one can show

max
k

|εk(z)| = o(1) a.s. (3.8)
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Let Fn and Fn(−k) denote the ESD’s of n−1/2W and n−1/2Wk, respectively.
Since |nFn(x) − (n − 1)Fn(−k)(x)| ≤ 1 by the interlacing theorem (see the proof
of Lemma 2.2),

|mn(z) − 1
n

tr((n−1/2Wk − zIn−1)−1)| =
∣∣∣ 1
n

∫
nFn(dx) − (n − 1)Fn(−k)(dx)

x − z

∣∣∣
≤
∣∣∣ 1
n

∫ (nFn(x) − (n − 1)Fn(−k)(x))dx

(x − z)2
∣∣∣ ≤ π/nv.

Based on this fact, in the proof of (3.8), we can replace εk’s by n−1α∗
k(n

−1/2Wk−
zIn−1)−1αk) − n−1tr((n−1/2Wk − zIn−1)−1).

Since αk is independent of Wk, it is not difficult to show that

E
(∣∣∣n−1α∗

k(n
−1/2Wk − zIn−1)−1αk − n−1tr(n−1/2Wk − zIn−1)−1)

∣∣∣6∣∣∣Wk

)
≤ 6!C6

n6

(
tr
[
(n−1/2Wk − uIn−1)2 + v2In−1

]−1
)
)3

= O(n−3).

This implies (3.8).
Solving equation (3.4) (in the variable m), one gets two solutions

m(1),(2)
n (z) = − 1

2σ2
[z + δnσ2 ∓

√
(z − δnσ2)2 − 4σ2],

where, for a complex number a, by convention
√

a denotes the square root with
positive imaginary part. We need to determine which solution is the Stieltjes
transform of the spectrum of n−1/2W. By (3.4), we have

|δn| ≤ |mn| + 1/|z + σ2mn| ≤ 2/v → 0, as v → ∞.

Thus, when z has a large imaginary part, mn = m
(1)
n (z). We claim this is true

for all z with v > 0. Note that mn and m
(1),(2)
n are continuous in z on the

upper half complex plane. We only need to show that m
(1)
n and m

(2)
n have no

intersection. Suppose that they are equal at z0 with Im(z0) > 0. Then we have
(z0 − σ2δn)2 − 4σ2 = 0 and

mn(z0) = − 1
2σ2

(z0 + σ2δn) = −z0/σ
2 ± 2/σ,

which contradicts with the fact that mn(z) has a positive imaginary part. There-
fore, we have proved that

mn(z) = − 1
2σ2

[z + δnσ2 −
√

(z − δnσ2)2 − 4σ2].

Then from (3.6), it follows that with probability 1 for every fixed z with v > 0,
mn(z) → m(z) = − 1

2σ2 [z − √
z2 − 4σ2]. Letting v ↓ 0, we find the density of

semicircular law as give in (2.2).
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3.1.2. General sample covariance matrix

Note that a general form of sample covariance matrices can be considered
as a special case of products of random matrices ST in Theorem 2.10. For
generalization in another direction, as mentioned in Section 2.1.3, we present the
following theorem.

Theorem 3.4. (Silverstein and Bai (1995)) Suppose that for each n, the entries
of X = (x1, . . . ,xn), p × n, are i.i.d. complex random variables with E(|x11 −
E(x11)|2) = 1, and that T = Tn = diag(τn

1 , . . . , τn
p ), τn

i real, and the ESD of
T converges almost surely to a probability distribution function H as n → ∞.
Assume that B = A + 1

nX∗TX, where A = An is Hermitian n × n satisfying
FAn

v→ Fa almost surely, where Fa is a distribution function (possibly defective,
i.e., of total variation less than 1) on the real line, and v→ means vague conver-
gence, i.e., convergence without preservation of the total variation. Furthermore,
assume that X, T, and A are independent. When p/n → y > 0 as n → ∞, we
have almost surely FB, the ESD of B, converges vaguely to a (non-random) d.f.
F , whose Stieltjes transform m(z) is given by

m(z) = ma

(
z − y

∫
τdH(τ)

1 + τm(z)

)
, (3.9)

where z is a complex number with a positive imaginary part and ma is the Stieltjes
transform of Fa.

The set-up of Theorem 3.4 originated from nuclear physics, but is also en-
countered in multivariate statistics. In MANOVA, A can be considered as the
between-covariance matrix, which may diverge in some directions under the al-
ternative hypothesis. Examples of B can be found in the analysis of multivariate
linear models and error-in-variables models, when the sample covariance matrix
of the covariates is ill-conditioned. The role of A is to reduce the instability in
the directions of the eigenvectors corresponding to small eigenvalues.

Remark 3.2. Note that Silverstein and Bai (1995) is more general than Yin
(1986) in that it does not require the moment convergence of the ESD of T nor
the positive definiteness of T. Also, it allows a perturbation matrix A. However,
it is more restrictive than Yin (1986) in that it requires the matrix T to be
diagonal. An extension of Yin’s work in another direction is made in Silverstein
(1995), who only assumes that T is positive definite and its ESD almost surely
tends to a probability distribution, without requiring moment convergence. Weak
convergence to (3.9) was established in Marčenko-Pastur (1967) under higher
moment conditions than assumed in Theorem 3.4, but with mild dependence
between the entries of X.
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The assumption that the matrix T is diagonal in Theorem 3.4 is needed for
the proof. It seems possible and is of interest to remove this restriction.

Now, we sketch a proof of Theorem 3.4 under more general conditions by
using the Stieltjes transform. We replace the conditions for the x-variables with
those given in Theorem 2.8. Remember that the entries of X and T depend on
n. For brevity, we shall suppress the index n from these symbols and τn

i .
Denote by Hn and H the ESD of Tn and its LSD, and denote by mAn and

mA the Stieltjes transforms of the ESD of An and that of its LSD. Denote the
Stieltjes transform of the ESD of B by mn(z).

Using the truncation and centralization techniques as in the proof of Theorem
2.10, without loss of generality, we may assume that the following additional
conditions hold:
1. |τj | ≤ τ0 for some positive constant τ0,
2. E(xij) = 0, E(|xij |2) ≤ 1 with 1

pn

∑
ij E(|xij |2) → 1 and |xij | ≤ δn

√
n for some

sequence δn → 0.
If FAn → c, a.s. for some c ∈ [0, 1] (which is equivalent to almost all

eigenvalues of An tending to infinity while the number of eigenvalues tending to
negative infinity is about cn), then FBn → c a.s., since the support of XTX∗

remains bounded. Consequently, mn → 0 and mAn → 0 a.s., and hence (3.9) is
true. Thus, we only need to consider the case where the limit FA of FAn has a
positive mass over the real line. Then for any fixed z, there is a positive number
η such that Im(mn(z)) > η.

Let B(i) = B− τiξiξ
∗
i and

µn =
1
n

n∑
i=1

τi

1 + τimn(z)
=
∫

τ

1 + τmn(z)
Hn(dτ),

where ξi = n−1/2xi. Note that x has a non-positive imaginary part. Then by
the identity

(An−(z−µn)I)−1 = (B−zI)−1 +(An−(z−µn)I)−1(
1
n
XTX∗−µnI)(B−zI)−1,

we obtain

mAn(z − µn) − mn(z) =
1
n

n∑
i=1

τidi

1 + τimn(z)
, (3.10)

where

di = dn
i (µn) =

(1 + τimn(z))ξ∗
i (B(i) − zI)−1(An − (z − µn)I)−1ξi

1 + τiξ
∗
i (B(i) − zI)−1ξi

− 1
n

tr[(B − zI)−1(An − (z − µn)I)−1].
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Note that for any fixed z, {mn(z)} is a bounded sequence. Thus, any sub-
sequence of {mn(z)} contains a convergent subsequence. If mn converges, then
so does µn and hence mAn(z − µn). By (3.10), to prove (3.9), one only needs to
show that equation (3.10) tends to (3.9) once mn(z) converges and that equation
(3.9) has a unique solution. The proof of the latter is postponed to the next
theorem. A proof of the former, i.e., the right hand side of (3.10) tends to zero,
is presented here.

By (3.10) and the fact that Im(mn(z)) > η, we have |1 + τimn(z)| ≥
min{1/2, vη/2τ0} > 0. This implies that µn is uniformly bounded. Also, we
know that µn has non-positive imaginary part from its definition. Therefore, to
complete the proof of the convergence of (3.10), we can show the stronger conclu-
sion that, with probability 1, the right hand side of (3.10) (with µn replaced by
µ) tends to zero uniformly in µ over any compact set of the lower half complex
plane. Due to the uniform continuity of both sides of (3.10) in u and µ, we only
need to show (3.10) for any fixed z and non-random µ.

Note that the norms of (An − (z − µ)I)−1, (B− zI)−1 and (B(i) − zI)−1 are
bounded by 1/v. Now we present an easier proof under the slightly stronger con-
dition that δ2

n log n → 0. (This holds if the random variables |xjk|2 log(1 + |xjk|)
are uniformly integrable or xjk are identically distributed. For the second case,
a second-step truncation is needed (see Silverstein and Bai (1995) for details)).
Under this additional condition, it is sufficient to show that maxi{|di|} → 0, a.s.
Using Lemma A.4 of Bai (1997), one can show that

P
(∣∣∣ξ∗i (B(i)−zI)−1(An−(z−µ)I)−1ξi−

1
n

tr[(B(i)−zI)−1(An−(z−µ)I)−1]
∣∣∣≥ε

)
≤C exp{−b/δ2

n}
and

P(|ξ∗i (B(i)−zI)−1ξi−
1
n

tr(B(i)−zI)−1)| ≥ ε) ≤ C exp{−b/δ2
n}, for some b > 0.

These two inequalities show that for any fixed µ,

max
i≤p

|ξ∗i (B(i)−zI)−1(An−(z−µ)I)−1ξi−n−1tr[(B(i)−zI)−1(An−(z−µ)I)−1]|→0, a.s.

and
max
i≤p

|ξ∗i (B(i) − zI)−1ξi −
1
n

tr(B(i) − zI)−1)| → 0, a.s.

Then the uniform continuity in µ implies that the above two limits hold uniformly
when µ varies in any fixed compact subset of the lower half plane.

Note that the rank of B−B(i) is one. Also by Lemma 2.2, ||FB − FB(i) || ≤
1/p. Hence

|mn(z) − mn(i)(z)| ≤ π

pv
, (3.11)
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where mn(i)(z) is the Stieltjes transform of the ESD of B(i). Therefore,

max
i≤p

∣∣∣∣∣ 1 + τimn(z)
1 + τiξ

∗
i (B(i) − zI)−1ξi

− 1

∣∣∣∣∣ = max
i≤p

o(1)
1 + τimn(z) + o(1)

= o(1).

Here, the last step follows from the fact that |1+τimn(z)| ≥ min{1/2, vη/2τ0} >

0. Finally, we get

max
i≤p

|di| ≤ o(1) + max
i≤p

∣∣∣∣ 1ntr
(
[(B − zI)−1 − (B(i) − zI)−1](An − (z − µ)I)−1

)∣∣∣∣
≤ o(1) + max

i≤p

1
n2v3

n∑
k=1

|xik|2 = o(1).

For the general case without the additional condition, we need to rewrite the
right hand side of (3.10) as

1
n

n∑
i=1

τidi1

1 + τimn(z)
− 1

n

n∑
i=1

τ2
i ηidi2

(1 + τimn(z))2
− 1

n

n∑
i=1

τ2
i di1di2

(1 + τimn(z))2

+
1
n

n∑
i=1

τ3
i ηid

2
i2

(1 + τimn(z))3
− 1

n

n∑
i=1

τ4
i ηid

3
i2

(1 + τimn(z))3(1 + τiξ
∗
i (B(i) − zI)−1ξi)

+
1
n

n∑
i=1

τ3
i di1d

2
i2

(1 + τimn(z))2(1 + τiξ
∗
i (B(i) − zI)−1ξi)

+ oa.s.(n−1+ε)

=
6∑

k=1

ζk + oa.s.(n−1+ε),

where
di1 = ξ∗i (B(i) − zI)−1(An − (z − µ)I)−1ξi − ηi,

di2 = ξ∗i (B(i) − zI)−1ξi −
1
n

tr[(B(i) − zI)−1]

and

ηi =
1
n

tr[(B(i) − zI)−1(An − (z − µ)I)−1].

By elementary but tedious arguments, one can show that E(|ζk|4) = O(n−2),
k = 1, 2, E(|ζk|2) = O(n−2), k = 3, 4, and E(|ζk|) = O(n−3/2), k = 5, 6. Thus,
the right hand side of (3.10) tends to zero almost surely. The proof of Theorem
3.4 is complete.

Theorem 3.5. For any z with Im(z) > 0, (3.9) has a unique solution m(z)
which has a positive imaginary part.
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The existence of a solution to equation (3.9) has already been proved in the
proof of Theorem 3.4. To prove the uniqueness, rewrite equation (3.9) as

m =
∫

FA(dλ)
λ − z + xy

, (3.12)

where

x = x(m) =
∫

τH(dτ)
1 + τm

.

Suppose that the equation has two roots m1 	= m2. Let xj = x(mj), j = 1, 2.
Then by (3.12), we have

m1 − m2 =
∫

y(x2 − x1)FA(dλ)
(λ − z + x1y)(λ − z + x2y)

= y(m1 − m2)
∫

τ2H(dτ)
(1 + τm1)(1 + τm2)

∫
FA(dλ)

(λ − z + x1y)(λ − z + x2y)
.

Finally, a contradiction can be derived by Hölder’s inequality, as follows,

1 = y

∫
τ2H(dτ)

(1 + τm1)(1 + τm2)

∫
FA(dλ)

(λ − z + x1y)(λ − z + x2y)

≤
(
y

∫
τ2H(dτ)
|1 + τm1|2

∫
FA(dλ)

|λ − z + x1y|2
)1/2(

y

∫
τ2H(dτ)
|1 + τm2|2

∫
FA(dλ)

|λ − z + x2y|2
)1/2

=
(
y

∫
τ2H(dτ)
|1 + τm1|2

Im(m1)
v + Im(x1)y

)1/2(
y

∫
τ2H(dτ)
|1 + τm2|2

Im(m2)
v + Im(x2)y

)1/2
< 1.

Here, the last equality follows by comparing the imaginary part of equation
(3.12) and the last inequality follows by observing that

∫ F A(dλ)
|λ−z+xjy|2 = Im(mj)

v−yIm(xj)

and Im(xj) =
∫ Im(mj)τ

2H(dτ)
|1+τmj |2 . The proof of the theorem is complete.

3.2. Convergence rates of spectral distributions

The problem of convergence rates of ESD’s of LDRM had been open for
decades since no suitable tools were found. As seen in Section 2, most important
works were done by employing the MCT. Carleman’s criterion guarantees con-
vergence but does not give any rate. A breakthrough was made in recent work of
Bai (1993a,b) in which Theorem 3.1 - Corollary 3.3 were proved and some con-
vergence rates were established. Although these rates are still far from expected,
some solid rates have been established and, more importantly, we have found a
way to establish them. Bai, Miao and Tsay (1996a,b, 1997) further investigated
the convergence rates of the ESD of large dimensional Wigner matrices.
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3.2.1. Wigner matrix

In this section, we first introduce a result in Bai (1993a). Consider the model
of Theorem 2.4 and assume that the entries of W above or on the diagonal are
independent and satisfy

(i) E(wjk) = 0, for all 1 ≤ i ≤ j ≤ n;
(ii) E(|w2

jk|) = 1, for all 1 ≤ i < j ≤ n; (3.13)
(iii) E(|w2

jj|) = σ2, for all 1 ≤ j ≤ n

(iv) supn max1≤i≤j≤n E(|w4
jk|) ≤ M < ∞.

Theorem 3.6. Under the conditions in (3.13), we have

||EF (1/
√

nW) − F || = O(n−1/4), (3.14)

where F is the semi-circular law with scale parameter 1.

Remark 3.3. The assertion (3.14) does not imply the complete convergence of
F (1/

√
nW) to F . Here, we present a new result of Bai, Miao and Tsay (1997) in

which a convergence rate in probability is established. Readers interested in the
details of the proof of Theorem 3.6 are referred to Bai (1993a). Our purpose here
is to illustrate how to use Theorem 3.1 - Corollary 3.3 to establish convergence
rates of ESD’s. Thus, we shall not pursue better rates through tedious arguments.

Theorem 3.7. Under conditions (i)-(iv) in (3.13), we have

||F (1/
√

nW) − F || = Op(n−1/4). (3.15)

Truncate the diagonal entries of W at n1/8 and off-diagonal elements at
n1/3. Let F

(t)
n denote the ESD of the truncated matrix. Then by Lemma 2.2 and

condition (iv), we have

E‖Fn − F (t)
n ‖ ≤ 1

n

(∑
j 	=k

P(|wjk| ≥ n1/3) +
∑
k

P(|wkk| ≥ n1/8)
)

≤ Mn(n − 1)n−4/3 + Mnn−1/2

n
≤ 2Mn−1/3.

Centralize the off-diagonal elements of the truncated matrix, replace its di-
agonal elements by zero and denote the ESD of the resulting matrix by F t,c

n .
Then using Lemma 2.3, we obtain

L3(F (t)
n − F (t,c)

n ) ≤ 1
n2

(∑
j 	=k

E2(|wjk|I|wjk|≥n1/3) +
∑
k

E(|wkk|2I|wkk|≤n1/8)
)

≤ M2n(n − 1)n−2 + nn1/4

n2
≤ 2n−3/4
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for all large n. Therefore, to prove Theorem 3.6, we may make the additional
assumptions that the diagonal elements of W are zero and the off-diagonal ele-
ments are bounded by n−1/3. Then the conditions in Remark 2.8 are satisfied.
Therefore, we have

E
∫
|x|≥4

|Fn(x) − F (x)|dx

≤
∫ ∞

4

(
P(λmax(n−1/2W) ≥ x) + P(λmin(n−1/2W) ≤ −x)

)
dx = o(n−1).

Recalling Theorem 3.2, we have for any v > 0,

E||F (1/
√

nW) − F ||
≤ C

( ∫
|u|<16

E(|mn(z) − m(z)|)du + E
∫
|x|≥4

|Fn(x) − F (x)|dx + v
)

= C

∫
|u|<16

E(|mn(z) − m(z)|)du + O(n−1/4),

if v is chosen to be bn−1/4 for some b > 0.
In Bai (1993a), it is proved that for the above chosen v,∫

|E(mn(z)) − m(z)|du = O(v).

Thus, to prove (3.15), it is sufficient to prove∫
|u|<16

E(|mn(z) − E(mn(z))|)du = O(n−1/4). (3.16)

Define γd = Ed(mn(z)) − Ed−1(mn(z)), d = 1, . . . , n, where Ed denotes the
conditional expectation given the variables {wj,k, 1 ≤ j ≤ k ≤ d}, with the
convention that E0 = E. Note that {γ1, . . . , γn} forms a martingale difference
sequence and

mn(z) − E(mn(z)) =
1
n

n∑
d=1

γd.

By noticing |γk| ≤ 2/v and the orthogonality of martingale differences, we get

E|mn(z) − E(mn(z))| ≤ E1/2|mn(z) − E(mn(z))|2

=
1
n

(
n∑

d=1

E(|γd|2)
)1/2

≤ 2v−1n−1/2 = O(n−1/4).

The proof of the theorem is complete.
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In Bai, Miao and Tsay (1996a,b), the convergence rate of Wigner matrices
is investigated further. The following results are established in the first of these
works.

Theorem 3.8. Suppose that the diagonal entries of W are i.i.d. with mean zero
and finite sixth moment and that the elements above the diagonal are i.i.d. with
mean zero, variance 1 and finite eighth moment. Then the following results are
true:

‖EFn − F‖ = O(n−1/2)

and
‖Fn − F‖ = Op(n−2/5).

If we further assume that the entries of W have finite moments of all orders,
then for any ε > 0,

‖Fn − F‖ = oa.s.(n−2/5+ε).

In Bai, Miao and Tsay (1996b), the convergence rate of the expected ESD
of W is improved to O(n−1/3) under the conditions of Theorem 3.6.

3.2.2. Sample covariance matrix

Assume the following conditions are true.
(i) E(xjk) = 0, E(|x2

jk|) = 1, for all j, k, n,
(ii) supn supj,k E|x4

jk|I(|xjk|≥M) → 0, as M → ∞. (3.17)
In Bai (1993b), the following theorems are proved.

Theorem 3.9. Under the assumptions in (3.17), for 0 < θ < Θ < 1 or 1 < θ <

Θ < ∞,
sup

yp∈(θ,Θ)
‖EFS − Fyp‖ = O(n−1/4), (3.18)

where yp = p/n and Fyp is defined in Theorem 2.19.

Theorem 3.10. Under the assumptions in (3.17), for any 0 < ε < 1,

sup
yp∈(1−ε,1+ε)

||EFS − Fyp || = O(n−5/48). (3.19)

By the same approach as in the proof of Theorem 3.8, Bai, Miao and Tsay
(1996a) also generalized the results of Theorems 3.9 and 3.10 to the following
theorem.

Theorem 3.11. Under the assumptions in (3.17), the conclusions in Theorems
3.9 and 3.10 can be improved to

sup
yp∈(θ,Θ)

||FS − Fyp || = Op(n−1/4)
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and
sup

yp∈(1−ε,1+ε)
||FS − Fyp || = Op(n−5/48).

4. Circular Law - Non-Hermitian Matrices

In this section, we consider a kind of non-Hermitian matrix. Let Q =
n−1/2(xjk) be an n × n complex matrix with i.i.d. entries xjk of mean zero and
variance 1. The eigenvalues of Q are complex and thus the ESD of Q, denoted
by Fn(x, y), is defined in the complex plane. Since the early 1950’s, it has been
conjectured that Fn(x, y) tends to the uniform distribution over the unit disc in
the complex plane, called the circular law. The major difficulty is that the ma-
jor tools introduced in the previous two sections do not apply to non-Hermitian
matrices.

Ginibre (1965) found the density of the eigenvalues of a matrix of i.i.d. com-
plex N(0, 1) entries to be

c
∏
j 	=k

|λj − λk|2 exp{−1
2

n∑
k=1

|λk|2}.

Based on this result, Mehta (1991) proved the circular law when the entries are
i.i.d. complex normally distributed. Hwang (1986) reported that this result was
also proved in an unpublished paper of Silverstein by the same approach.

Girko (1984a,b) presented a proof of the circular law under the condition
that the entries have bounded densities on the complex plane and finite (4 +
ε)th moments. Since they were published, many have tried to understand his
mathematical arguments without success. The problem was considered open
until Bai (1997) proved the following.

Theorem 4.1. Suppose that the entries have finite (4 + ε)th moments, and
that the joint distribution of the real and imaginary parts of the entries, or the
conditional distribution of the real part given the imaginary part, has a uniformly
bounded density. Then the circular law holds.
Remark 4.1. The second part of Theorem 4.1 covers real random matrices. In
this case, the joint distribution of the real and imaginary parts of the entries
does not have a density in the complex plane. However, when the entries are
real and have a bounded density, the real and imaginary parts are independent
and hence the condition in the second part of Theorem 4.1 is satisfied. By
considering the matrix eiθX, we can extend the density condition in the second
part of Theorem 4.1 to: the conditional density of Re(xjk) cos(θ)− Im(xjk) sin(θ)
given Re(xjk) sin(θ) + Im(xjk) cos(θ) is bounded.

Although Girko’s arguments are hard to understand, or even deficient, he
provided the following idea. Let Fn(x, y) denote the ESD of n−1/2X, and νn(x, z)
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denote the ESD of the Hermitian matrix H = Hn(z) = (n−1/2X− zI)(n−1/2X−
zI)∗ for given z = s + it.

Lemma 4.2. (Girko) For uv 	= 0,∫ ∫
eiux+iyvFn(dx, dy) =

u2 + v2

4πiu

∫ ∫
eisu+ivtgn(s, t)dtds, (4.1)

and ∫ ∫
eiux+iyvFcir(dx, dy) =

u2 + v2

4πiu

∫ ∫
eisu+ivtg(s, t)dtds, (4.2)

where
gn(s, t) =

∂

∂s

∫ ∞

0
log xνn(dx, z),

Fcir is the uniform distribution over the unit disc in the complex plane, and
g(s, t) = 2s or 2s/|z|2 in accordance with |z| < 1 or not.

Making use of the formula that for all uv 	= 0,

u2 + v2

2iuπ

∫ [∫
s

s2 + t2
eius+ivtdt

]
ds = 1,

we obtain ∫ ∫
eiux+ivyFn(dx, dy)

=
u2 + v2

2iuπ

∫ ∫ 1
n

n∑
k=1

s

s2 + t2
eius+ivt+iuRe(λk)+ivIm(λk)dtds

=
u2 + v2

4iuπ

∫ ∫ 1
n

n∑
k=1

2(s − Re(λk))
(s − Re(λk))2 + (t − Im(λk))2

eius+ivtdtds

=
u2 + v2

4iuπ

∫ ∫
∂

∂s

1
n

n∑
k=1

log(|z − λk|2)eius+ivtdtds

=
u2 + v2

4iuπ

∫ ∫ [
∂

∂s

∫ ∞

0
log xνn(dx, z)

]
eius+ivtdtds. (4.3)

Here, we have used the fact that
∏n

k=1 |z − λk|2 = det(H). The proof of the first
assertion of Lemma 4.2 is complete. The second assertion follows from the Green
Formula.

Under the condition that the entries have finite (4+ ε)th moments, it can be
shown that, as mentioned in Subsection 2.2.2, the upper limit of the maximum
absolute value of the eigenvalues of n−1/2X is less than the maximum singular
value, which tends to 2. Thus the distribution family {Fn(x, y)} is tight. Hence
going along some subsequence of integers, Fn and νn(x, z) tend to limits µ and
ν respectively. It seems the circular law follows by making limit in (4.1) and
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getting (4.2) with µ and ν substituting Fcir and the ν defined by the circular
law. However, there is no justifcation for passing the limit procedure νn → ν
through the 3-fold integration since the outside integral range in (4.3) is the
whole plane and the integrand of the inner integral is unbounded. To overcome
the first difficulty, we need to reduce the integral range.

Let T = {z; |s| < A, |t| < A2, |1 − |z|| > ε}.
Lemma 4.3. For any A > 0 and ε > 0, with probability 1,∣∣∣∣∫ ∫

T c
eisu+ivtgn(s, t)dtds

∣∣∣∣ = O(A−1 + ε) uniformly in n.

The same is true if gn is replaced by g, where g is defined in Lemma 4.2.
By the lemma and integration by parts, the problem is reduced to showing

that ∫ ∫
T

∣∣∣∣∫ ∞

0
log x(νn(dx, z) − ν(dx, z))

∣∣∣∣ dtds → 0 a.s. (4.4)

Since z ∈ T and the norm of Q is bounded with probability 1, the support of
νn(x, z) is bounded above by, say, M . Therefore, it is not a problem when dealing
with the upper limit of the inner integral. However, since log x is not bounded at
zero, (4.4) could not follow from νn → ν. To overcome this difficulty, we estimate
the convergence rate of νn − ν and prove the following lemma.

Lemma 4.4. Under the conditions of Theorem 4.1, we have

sup
z∈T

||νn(·, z) − ν(·, z)|| = o(n−β), a.s.,

where β > 0 depends on ε (in the moment condition) only.
Let εn = e−nβ

. Then by Lemma 4.4,

sup
z∈T

∣∣∣ ∫ ∞

εn

log x(νn(dx, z) − ν(dx, z))
∣∣∣≤nβM sup

z∈T
||νn(·, z) − ν(·, z)||=o(1), a.s.

It remains to show that∫ ∫
T

∫ εn

0
log xνn(dx, z)dtds → 0 a.s. (4.5)

∫ ∫
T

∫ εn

0
log xν(dx, z)dtds → 0 a.s.

The most difficult part is the proof of (4.5). For details, see Bai (1997).

5. Applications

In this section, we introduce some recent applications in multivariate statis-
tical inference and signal processing. The examples discussed reveal that when
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the dimension of the data or parameters to be estimated is “very high”, it causes
non-negligible errors in many traditional multivariate statistical methods. Here,
“very high” does not mean “incredibly” high, but “fairly” high. As simulation
results for problems in the following sub-sections show (see cited papers), when
the ratio of the degrees of freedom to dimension is less than 5, the non-exact
test significantly beats the traditional T 2 in a two-sample problem (see Bai and
Saranadasa (1996) for details); in the detection of the number of signals in a mul-
tivariate signal processing problem, when the number of sensors is greater than
10, the traditional MUSIC (MUltivariate SIgnal Classification) approach per-
forms poorly, even when the sample size is as large as 1000. Such a phenomenon
has been found in many different areas. In a normality test, say, the simplified
W ′-test beats Shapiro’s W -test for most popular alternatives, although the lat-
ter is constructed by the Markov-Gaussian method, seemingly more reasonable
than the usual least squares method. I was also told that when the number of
regression coefficients in a multivariate regression problem is more than 6, the
estimation becomes worse, and that when the number of parameters in a struc-
tured covariance matrix is more than 4, the estimates have serious errors. In
applied time series analysis, models with orders greater than 6 (p in AR model,
q in MA and p + q in ARMA) are seldom considered. All these tell us that one
has to be careful when dealing with high-dimensional data or a large number of
parameters.

5.1. Non-exact test for the two-sample problem

Suppose that x1, . . . ,xn1 and y1, . . . ,yn2 are random samples from two pop-
ulations with mean vectors µ1 and µ2, and a common covariance matrix Σ. Our
problem is to test the hypothesis H : µ1 = µ2 against K : µ1 	= µ2. The
classical approach uses the Hotelling test (or T 2-test), with

T 2 =
n1n2

n1 + n2
(x − y)′A−1(x − y),

x = 1
n1

∑n1
i=1 xi, y = 1

n2

∑n2
i=1 yi and

A =
1

n1 + n2 − 2

( n1∑
i=1

(xi − x)(xi − x)′ +
n2∑
i=1

(yi − y)(yi − y)′
)
.

The T 2 test has lots of good properties, but it is not well defined when the
degrees of freedom (n1 + n2 − 2) is less than the dimension (p) of the data.

As a remedy, Dempster (1959) proposed the so-called non-exact test (NET)
by using the chi-square approximation technique. In recent research of Bai and
Saranadasa (1996), it is found that Dempster’s NET is also much more powerful
than the T 2 test in many general situations when T 2 is well defined. One difficulty
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in computing Dempster’s test statistic is the construction of a high dimensional
orthogonal matrix and the other is the estimation of the degrees of freedom of the
chi-square approximation. Bai and Saranadasa (1996) proposed a new test, the
asymptotic normal test (ANT), in which the test statistic is based on ‖x − y‖2,
normalized by consistent estimators of its mean and variance. It is known that
ANT is asymptotically equivalent to NET, and simulations show that ANT is
slightly more powerful than NET. It is easy to show that the type I errors for
both NET and ANT tend to the prechosen level of the test. Simulation results
show that NET and ANT gain a great amount of power with a slight loss of the
exactness of the type I error. Note that non-exact does not mean that the error
is larger.

Now, let us analyze why this happens. Under the normality assumption, if Σ
were known, then the “most powerful test statistic” should be (x−y)′Σ−1(x−y).
Since Σ is actually unknown, the matrix A plays the role of an estimator of
Σ. Then there is the problem of how close A−1 is to Σ−1. The matrix A−1

can be rewritten in the form Σ−1/2S−1Σ−1/2, where S is defined in Subsection
2.1.2, with n = n1 + n2 − 2. The approximation is good if S−1 is close to I.
Unfortunately, this is not really the case. For example, when p/n = 0.25, the
ratio of the largest eigenvalue of S−1 to the smallest can be as large as 9. Even
when p/n is as small as 0.01, the ratio can be as large as 1.493. This shows that
it is practically impossible to get a “good” estimate of the inverse covariance
matrix. In other words, if the ratio of the largest to the smallest eigenvalues of
the population covariance matrix is not larger than (

√
n+

√
p)2/(

√
n−√

p)2 (e.g.
9 for p/n = 0.25 and 1.493 for p/n = 0.01), NET or ANT give a better test than
T 2.

A similar but simpler case is the one-sample problem. As in Bai and
Saranadasa (1996), it can be shown that NET and ANT are better than the T 2

test. This phenomenon happens in many statistical inference problems, such as
large contingency tables, MANOVA, discretized density estimation, linear models
with large number of parameters and the Error in Variable Models. Once the
dimension of the parameter is large, the performance of the classical estimators
become poor and corrections may be needed.

5.2. Multivariate discrimination analysis

Suppose that x is a sample drawn from one of two populations with mean
vectors µ1 and µ2 and a common covariance matrix Σ. Our problem is to classify
the present sample x into one of the two populations. If µ1 and µ2 and Σ are
known, then the best discriminant function is d = (x− 1

2(µ1+µ2))′Σ−1(µ1−µ2),
i.e., assign x to Population 1 if d > 0.

When both the mean vectors and the covariance matrix are unknown, as-
sume training samples x1, . . . ,xn1 and y1, . . . ,yn2 from the two populations are
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available. Then we can substitute the MLE x, y and A of the mean vectors and
covariance matrix into the discriminant function. Obviously, this is impossible if
n = n1 +n2−2 < p. The problem is again whether this criterion has the smallest
misclassification probability when p is large. If not, what discrimination criterion
is better. Based on the same discussion in the last subsection, one may guess
that the criterion d = (x − 1

2(x + y))′(x − y) should be better. Using the LSD
of a large sample covariance matrix, this was theoretically proved in Saranadasa
(1993). Simulation results presented in his paper strongly support the theoretical
results, even for moderate n and p.

5.3. Detection of the number of signals

Consider the model

yj = Asj + nj , j = 1, . . . , N,

where yj is a p × 1 complex vector of observations collected from p sensors, sj

a q × 1 complex vector of unobservable signals emitted from q targets, A is an
unknown p × q matrix whose columns are called the distance-direction vectors
and nj represents the noise generated by the sensors, usually assumed to be
white. Usually, in detecting the number of signals (for non-coherent models),
A is assumed to be of full rank and the number q is assumed to be less than
p. In the estimation of DOA (Direction Of Arrivals), the (j, k)th element of
A is assumed to be rk exp(−2πd(j − 1)ω0 sin(θk)/c), where rk is the complex
amplitude determined by the distance from the kth target to the jth sensor, d
the spatial distance between adjacent sensors, ω0 the central frequency, c the
speed of light and θk the angle between the line of the sensors and the line from
the jth sensor to the kth target, called the DOA. The most important problems
are the detection of the number q of signals and the estimation of the DOA. In
this section, we only consider the detection of the number of signals.

All techniques for solving the problem are based on the following:

Σy = AΨA∗ + σ2I,

where Ψ (q×q) is the covariance matrix of the signals. Denote the eigenvalues of
Σy by λ1 ≥ · · · ≥ λq > λq+1 = · · · = λp = σ2. This means that the multiplicity
of the smallest eigenvalues σ2 is p − q and there is a gap between λq and λq+1.

Since the signals and noise have zero means, one can use Σ̂N = 1
N

∑N
j=1 yjy∗

j

as an estimator of Σy, and then compare a few of the smallest eigenvalues of Σ̂N

to estimate the number of signals q. In the literature, AIC, BIC and GIC criteria
are used to detect the number of signals. However, when p is large, the problem
is then how big the gap between the qth and (q + 1)-st largest eigenvalues of Σ̂N

should be, so that q can be correctly detected by these criteria. Simulations in
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the literature usually take q to be 2 or 3 and p to be 4 or 5. Once p = 10 and
SNR = 0db (SNR (Signal to noise ratio) is defined as ten times the logarithm of
the ratio of the variance of the signal (the kth component of As1) to the variance
of the noise (the kth component of n1)), no criterion works well unless N is larger
than 1000 (i.e. y ∼ 0.01). Unreasonably, if we drop half of the data (i.e., reduce
p to 5), the simulation results become good even for n = 300 or 400.

From the theory of LDRM, in the support of the LSD of Σ̂N , there may be a
gap at the (1− q/p)th quantile or the gap may disappear, which depends on the
original gap and the ratio y = lim p/N in a complicated manner. Some work was
done in Silverstein and Combettes (1992). Their simulation results show that
when the gap exists in the support of the LSD, the exact number q (not only
the ratio q/p) can be exactly estimated for all large N . More precisely, suppose
p = pN and q = qN tend to ∞ proportionally to N , then P(q̂N 	= q, i.o.) = 0.
Work on this is being done by Silverstein and myself (see Bai and Silverstein
(1998)).

6. Unsolved Problems

6.1. Limiting spectral distributions

6.1.1. Existence of the LSD
Nothing is known about the existence of the LSD’s of the following three

matrices 
x1 x2 · · · xn

x2 x1
. . . xn−1

...
. . . . . .

...
xn xn−1 · · · x1

 ,


x1 x2 · · · xn

x2 x3 · · · xn+1
...

...
...

...
xn xn+1 · · · x2n−1


and 

−
n∑

i=2
x1i x12 · · · x1n

x21 −
n∑

i=1, 	=2
x2i · · · x2n

...
...

...
...

xn1 xn2 · · · −
n−1∑
i=1

xni


,

where, in the first two matrices, xj’s are i.i.d. real random variables and in the
third matrix, xjk = xkj, j < k, are i.i.d. real random variables. Consider the three
matrices as limiting distributions of the form

√
n(An − A): the first is for the

autocovariance matrix in time series analysis, the second is for the information
matrix in a polynomial regression model and the third is for the derivative of a
transition matrix in a Markov process.
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6.1.2. Explicit forms of LSD

The only known explicit forms of densities of LSD’s of LDRM are those of the
semi-circular law, the circular law, the Marčenko-Pastur law and the Multivariate
F -matrix. As shown in Theorem 3.4, there are a large class of random matrices
whose LSD’s exist but for which no explicit forms are known. It is of interest to
find more explicit forms of the densities of the LSD’s.

6.2. Limits of extreme eigenvalues

These are known for Wigner and sample covariance matrices. Nothing is
known for multivariate F matrices.

As mentioned in Section 5.3, it is very interesting that there are no eigenval-
ues at all in the gap of the support (this is called the separation problem) of the
LSD. More precisely, suppose that qN/N → z and pN/N → y with 0 < z < y < 1,
and λqN

→ c, λqN+1 → d with d < c. Under certain conditions, we conjecture
that 	qN

→ gz,y(c) and 	qN+1 → gz,y(d), where λqN
, λqN+1, 	qN

and 	qN+1 are
the qN th and (qN + 1)-st largest eigenvalues of Σ and SΣ, respectively, and
gz,y(c) > gz,y(d) are the upper and lower bounds of the (1 − z)-quantile of the
LSD of SΣ.

Remark 6.1. After this paper was written, the above mentioned problem has
been partially solved in Bai and Silverstein (1998). For details, see Silverstein’s
discussion following this paper.

6.3. Convergence rates of spectral distributions

The only known results are introduced in Subsection 3.2. For Wigner and
sample covariance matrices, some convergence rates of ESD’s are given in Bai
(1993a,b), Bai, Miao and Tsay (1996a,b, 1997) and the present paper. Of more
interest is the rates of a.s. or in probability convergence. It is also of interest is
to find the ideal convergence rates (the conjectured rates are of the order O(1/n)
or at least O(1/

√
n)). Furthermore, nothing is known about other matrices.

6.4. Second order convergence

6.4.1. Second order convergence of spectral distributions

Of course, the convergence rates should be determined first. Suppose that the
exact rate is found to be αn. It is reasonable to conjecture that α−1

n (Fn(x)−F (x))
should tend to a limiting stochastic process. Based on this, it may be possible
to find limiting distributions of statistics which are functionals of the ESD. Then
statistical inference, such as testing of hypothesis and confidence intervals, can
be performed.
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6.4.2. Second order convergence of extreme eigenvalues
In Subsection 2.2, limits of extreme eigenvalues of some random matrices are

presented. As mentioned in the last subsubsection, it is important to find the
limiting distribution of α−1

n (	extr − λlim), where 	extr is the extreme eigenvalue
and λlim is the limit of 	extr. The normalizing constant αn may be the same as,
or different from, that for the corresponding ESD’s. For example, for Wigner
and sample covariance matrices with y 	= 1, the conjectured αn is 1

n , but for
sample covariance matrices with p = n, the conjectured normalizing constant
for the smallest eigenvalue of S is 1/n2. The smallest eigenvalue when p = n

is related to the condition number (the square-root of the ratio of the largest
to the smallest eigenvalues of S), important in numerical computation of linear
equations. Reference is made to Edelman (1992).

6.4.3. Second order convergence of eigenvectors

Some results on the eigenvectors of large-dimensional sample covariance ma-
trices were established in the literature and introduced in Subsection 2.3. A
straightforward problem is to extend these results to other kinds of random ma-
trices. Another problem is whether there are other ways to describe the similarity
between the eigenmatrix and Haar measure.

6.5. Circular law

The conjectured condition for guaranteeing the circular law is finite second
moment only, at least for the i.i.d. case. In addition to the difficulty of estimating
(4.5), there are no similar results to Lemmas 2.2, 2.3, 2.6 and 2.7, so we cannot
truncate the variable at

√
n under the existence of the second moment of the

underlying distributions.
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COMMENT: SPECTRAL ANALYSIS OF RANDOM MATRICES

USING THE REPLICA METHOD

G. J. Rodgers

Brunel University

Abstract: In this discussion paper, we give a brief review of the replica method

applied to random matrices, and in particular to their spectral analysis. We illus-

trate the method by calculating the eigenvalue spectrum of the real random matrix

ensemble describing the Hopfield model of autoassociative memory.

Key words and phrases: Random matrices, replica method, spectral analysis.

1. Introduction

In Bai (1999), the author reviews the theory of random matrices from the
mathematical physics literature. In contrast to this rigorous analysis of spec-
tral theory, there have been parallel, non-rigorous, developments in the theo-
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retical physics literature. Here the replica method, and to a lesser extent super-
symmetric methods, have been used to analyse the spectral properties of a variety
of random matrices of interest to theoretical physicists. These matrices have ap-
plications in, for instance, random magnet theory, neural network theory and
the conductor/insulator transition. In the present discussion we briefly review
the work using the replica method. We then illustrate the use of this method by
using it, for the first time, to obtain the spectral distribution of the sample co-
variance matrix. This problem is considered in Section 2.1.2 of Bai (1999) using
a completely different approach.

The replica method was introduced by Edwards (1970) to study a polymer
physics problem. It was first applied to a matrix model by Edwards and Jones
(1976) who used it to obtain the Wigner semi-circular distribution for the spec-
trum of a random matrix with Gaussian distributed entries. Since then it was
applied by Rodgers and Bray (1988) and Bray and Rodgers (1988) to obtain the
spectral distribution of two different classes of sparse random matrices. Later,
Sommers, Crisanti, Sompolinsky and Stein (1988) used an electrostatic method,
which nevertheless relied on the replica method to demonstrate an assumption,
to obtain the average eigenvalue distribution of random asymmetric matrices.
Some of these approaches are analogous to the super-symmetric technique used
on sparse random matrices by Rodgers and DeDominicis (1990) and Mirlin and
Fyodorov (1991).

2. Illustration

We illustrate the replica method by using it to calculate the spectral distri-
bution of the real version of the sample covariance matrix in Bai (1999, Section
2.1.2). The eigenvalue distribution of any N × N random matrix Hjk can be
calculated by considering the generating function Z(µ) defined by

Z(µ) =
∫ ∞

−∞

(∏
j

dφj

)
exp

{ i

2

[
µ
∑
j

φ2
j −

∑
jk

Hjkφjφk

]}
, (1)

where µ(x+iε) implicitly contains a small positive imaginary part ε which ensures
the convergence of the integrals. The integers j and k run from 1, . . . , N . The
average normalised eigenvalue density is then given by

ρ(x) =
2

πN
lim
ε→0

Im
∂

∂µ
[ln Z(µ)]av , (2)

where []av represents the average over the random variables in Hjk. We can
connect this expression with Bai (1999) by observing that

ρ(x) =
1

πN
lim
ε→0

Im
N∑

j=1

1
λj − µ

=
1
π

lim
ε→0

[ImmN (u)]av , (3)



664 Z. D. BAI

where mN (µ) is the Stieltjes defined in (3.1) of Bai (1999) and {λj , j = 1, N}
are the eignevalues of Hjk. The average in (2) is done using the replica method,
which makes use of the indentity

[ln Z]av = lim
n→0

[Zn]av − 1
n

. (4)

In the right hand side of (4) the average is evaluated for integer n and then one
must analytically continue to take the limit n → 0. In random matrix problems
this analytical continuation is straightforward, although in some physical prob-
lems, such as spin glasses, it can be more problematic. These problems occur
in systems in which the phase space in the infinite system limit is partitioned
so that the system is non-erogdic, see Mezard, Parisi and Virasoro (1988). This
physical mechanism has no counterpart in studies of random matrices.

We will illustrate the replica method on the matrix

Hjk =
1
N

p∑
v=1

ξv
j ξv

k , (5)

where the real random variables {ξv
j }, j = 1, . . . , N , v = 1, . . . , p, are identically

independently distributed with distribution P (ξv
j ), mean zero and variance σ2.

This matrix represents the patterns to be memorised in a neural network model
of autoassociative memory, Hopfield (1982). It is also the real version of the
sample covariance matrix studied in section 2.1.2 of Bai (1999). Here we have
opted to study the real version because it is slightly simpler to analyse by the
replica method and because the Hopfield model, which is the main application of
this matrix, has real variables. To further connect with the theoretical physics
literature, we have adopted the notation common within that field.

Introducing replica variables {φjα}, j = 1, . . . , N and α = 1, . . . , n, where n

is an integer, allows us to write the average of the nth power of Z(µ) as

[Zn]av =
∫ ∞

−∞

[∏
j,α

dφjα

][∏
j,v

P (ξv
j )dξv

j

]
exp{G}, (6)

where
G =

iµ

2

∑
j,α

φ2
jα − i

2N

∑
α,v

(∑
j

ξv
j φjα

)2
. (7)

We introduce the variables {xvα}, v = 1, . . . , p and α = 1, . . . , n to linearise the
second term in G using the Hubbard-Stratonovich transformation. This is just
an integral generalisation of “completing the squares” such as

exp
{
− i

2N

(∑
j

ξv
j φjα

)2}
=
√

2
π

∫
exp

{
− 1

2
x2

vα +
1√
in

xvα

∑
j

ξv
j φjα

}
dxva. (8)
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After repeatedly applying this transformation for all v and α we can intergrate
over {ξv

j } to obtain

[Zn]av =
∫ ∞

−∞

[∏
j,α

dφjα

][∏
a,v

dxav

]
exp{G̃}, (9)

where
G̃ =

iµ

2

∑
j,α

(φjα)2 − 1
2

∑
v,α

(xva)2 +
1
N

∑
j,v

f
(∑

a

xvaφjα

)
(10)

and f(x) = −iσ2x2/2. In order to illustrate the method we assume a general
form for f(x) for the time being so as to represent different types of randommess.
We can expand (10) for a general f(x) if ya = xvαφjα then

f
(∑

a

ya

)
= f(0) +

∑
α,r

bry
r
a +

∑
α<β,r,s

brsy
r
ay

s
β +

∑
α<β<y,r,s,t

brsty
r
αys

βyt
γ + · · · (11)

without loss of generality. (In our particular case of quadratic f(x), the only
non-zero terms are b2 = −iσ2/2 and b11 = −iσ2.) This alows the third term in
(10) to be rewritten as

1
N

∑
j,v

f(
∑
a

xvαφjα)=
1
N

∑
j,v

f(0) +
1

2N

∑
α,r

br

[(∑
v

xr
vα +

∑
j

φr
jα

)2 −
(∑

v

xr
va

)2

−
(∑

j

φr
jα

)2]
+

1
2N

∑
α<β,r,s

brs

[(∑
v

xr
vαxs

vβ +
∑
j

φr
jαφs

jβ

)2

−
(∑

v

xr
vαxs

vβ

)2−
(∑

j

φr
jαφs

jβ

)2]
+ · · · (12)

We now introduce conjugate variables to linearise these terms, again using the
Hubbard-Stratonovich transformation. The variables and their conjugates are

a
(r)
α

∑
v xr

vα +
∑

j φr
jα b

(r)
α

∑
v xr

va c
(r)
a

∑
j φr

jα

a
(r,s)
αβ

∑
v xr

vαxs
vβ +

∑
j φr

jαφs
jβ, b

(r,s)
αβ

∑
v xr

vax
s
vβ and c

(r)
aβ

∑
j φr

jαφs
jβ.

...
...

...
...

...
...

(13)

Using these variables to linearise those in (12), then evaluating them by the
method of steepest descents as p, N → ∞, gives

a
(r)
α = c〈xr

α〉2 + 〈φr
α〉1 b

(r)
a = ic〈xr

a〉2 c
(r)
a = i〈φr

α〉1
a

(r,s)
αβ = c〈xr

αxs
β〉2 + 〈φr

aφ
s
β〉1, b

(r,s)
αβ = ic〈xr

αxs
β〉2 and c

(r,s)
αβ = i〈φr

αφs
β〉1

...
...

...
...

...
...

...

(14)
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where p/N → c ∈ (0,∞) in the limit p → ∞ and N → ∞. Using the notation
Dφ =

∏
α dφα, the brackets ♦1 and ♦2 are defined by

〈h{φα}〉1 =

∫
Dφh{φα} exp

{
iµ
2

∑
α φ2

a + g1{φa}
}

∫
Dφ exp

{
iµ
2

∑
a φ2

α + g1{φα}
} (15)

and

〈h{xα}〉2 =

∫
Dxh{xα} exp

{
−1

2

∑
α x2

a + g2{xα}
}

∫
Dx exp

{
−1

2

∑
a x2

a + g{xa}
} , (16)

where
g1{φa} = cf(0) + c〈f(

∑
a

φaxa)〉2 (17)

and
g2{xa} = 〈f(

∑
a

φaxa)〉1. (18)

We can rewrite our expression for the average normalised density of states as

ρ(x) = lim
n→0

1
nπ

Re〈
∑
α

(φα)2〉1. (19)

Using the fact that f(x) = −iσ2x2/2 we can look for a self-consistent solution
to (17) and (18) of the form g1{φα} = A

∑
α(φα)2 and g2{xα} = B

∑
α(xα)2. In

this case ρ(x) can be rewritten as ρ(x) = Im(A)/πσ2. Equations (17) and (18)
can be solved self-consistently by performing the n-dimensional integrals as if n

were a positive integer and then taking the limit n → 0. This reveals expressions
for A and B, and hence for c > 1,

ρ(x) =

{
1

4πxσ2

√
(b − x)(x − a) a ≤ x ≤ b

0 otherwise
(20)

with a = 2σ2(
√

c − 1)2 and b = 2σ2(
√

c + 1)2. This result is of the same form
as Bai (1999, equation (2.12)), if we make the changes c → 1/y and 2cσ2 → σ2.
These changes are caused by different definitions of the initial random matrices,
and because we are treating the real version of the matrices whereas Bai (1999)
considers the complex case.

3. Summary

We have shown how the replica method can be used to calculate the eigen-
value spectrum of real random matrices. It is also possible to use this method to
analyse other problems discussed in Bai (1999). For instance, in Dhesi and Jones
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(1990) there is an example of how to use a perturbative scheme with the replica
method to find the corrections to the spectral distribution up to O(1/N2). In
Weight (1998) the replica scheme is used to analyse the properties of products of
random matrices. Thus the replica technique can be viewed as a useful addition
to the analytical techniques presented in Bai (1999).

Department of Mathematics and Statistics, Brunel University, Uxbridge, Middlesex, UB8 3PH
U.K.

E-mail: g.j.rodgers@brunel.ac.uk

COMMENT: COMPLEMENTS AND NEW DEVELOPMENTS

Jack W. Silverstein

North Carolina State University

My good friend and colleague has done a fine job in presenting the essential
tools that have been used in understanding spectral behavior of various classes
of large dimensional random matrices. The Stieltjes transform is by far the most
important tool. As can be seen in the paper, some limit theorems are easier
to prove using them and rates of convergence of the spectral distribution can
be explored using Theorem 3.1. Moreover, as will be seen below, analysis of
the Stieltjes transform of the limiting spectral distribution of matrices presented
in Section 2.1.3 can explain much of the distribution’s properties. Also, the
conjecture raised in Section 6.2 has been proven using Stieltjes transforms.

However, this is not to say the moment method can be dispensed with.
Indeed, there has been no alternative way of proving the behavior of the extreme
eigenvalues. This paper shows further use of moments by proving Theorem 2.10
with no restriction on T. An attempt to prove it in Silverstein (1995) without the
assumption of positive definiteness was abandoned early on in the work. Another
example will be seen below concerning the preliminary work done on the rate of
convergence. Moments were used. In my opinion it would be nice to develop
all random matrix spectral theory without relying on moment arguments. They
reveal little of the underlying behavior, and the combinatorial arguments used
are frequently horrendous. Unfortunately, it appears unlikely we can remove
them from our toolbox.

The remaining comments are on the matrices appearing in Theorem 2.10
when T is non-negative definite. Their eigenvalues are the same as those of

Bp ≡ 1
n

T 1/2
p XpX∗

pT
1/2
p ,
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(note that at this stage it is necessary to change subscripts on the matrices) where
T

1/2
p is any Hermitian square root of Tp, and differ from those of B = Bp in The-

orem 3.4 (with A = 0) by |p−n| zero eigenvalues. When the elements of Xp are
standardized (mean zero and E(|X11|2) = 1), Bp is (under the assumption of zero
mean) the sample covariance matrix of n samples of the p-dimensional random
vector T

1/2
p X·1, the population matrix being of course Tp . This represents a

broad class of random vectors which includes multivariate normal, resulting in
Wishart matrices. Results on the spectral behavior of Bp are relevant in sit-
uations where p is high but sample size is not large enough to ensure sample
and population eigenvalues are near each other, only large enough to be on the
same order of magnitude as p. The following two sections provide additional
information on what is known about the eigenvalues of Bp.

1. Understanding the Limiting Distribution Through Its Stieltjes
Transform

For the following, let F denote the limiting spectral distribution of Bp with
Stieltjes transform m(z). Then it follows that F and F, the limiting spectral
distribution of B, satisfy

F = (1 − y)I[0,∞) + yF

(I[0,∞) denoting the indicator function on [0,∞) ), while m(z) and m(z), the
Stieltjes transform of F, satisfy

m(z) = −(1 − y)
z

+ ym(z).

From (3.9) we find that the inverse of m = m(z) is known:

z = − 1
m

+ y

∫
τdH(τ)
1 + τm

,

and from this it can be proven (see Silverstein and Choi (1995)):
1. On R

+, F has a continuous derivative f given by f(x) = (1/π)Im m(x) =
(1/yπ) limz∈C+→x Imm(z) (C+ denoting the upper complex plane). The den-
sity f(x) is analytic wherever it is positive, and for these x, yπf(x) is the
imaginary part of the unique m ∈ C

+ satisfying

x = − 1
m

+ y

∫
τdH(τ)
1 + τm

. (1)

2. Intervals outside the support of f are those on the vertical axis on the graph
of (1), for m ∈ R, corresponding to intervals where the graph is increasing
(originally observed in Marčenko and Pastur (1967)). Thus, the graph of f
can be obtained by first identifying intervals outside the support, and then
applying Newton’s method to (1) for values of x inside the support.
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3. Let a > 0 be a boundary point in the support of f . If a is a relative extreme
value of (1) (which is always the case whenever H is discrete), then near a

and in the support of f , f ∼ √|x − a|. More precisely, there exists a C > 0
such that

lim
x∈supp f→a

f(x)
C
√|x − a| = lim

x∈supp f→a

d
dxf(x)

d
dxC

√|x − a| = 1

4. y and F uniquely determine H.
5. F

D−→ H as y → 0, which complements the a.s. convergence of Bp to Tp for
fixed p as n → ∞.

6. If 0 < b1 < b2 are boundary points of the support of H with b1−ε, b2+ε outside
the support of H for small ε > 0, then for all y sufficiently small there exist
corresponding boundary points a1(y), a2(y) of F such that F{[a1(y), a2(y)]} =
H{[b1, b2]} and [a1(y), a2(y)] → [b1, b2] as y → 0.
Thus from the above properties relevant information on the spectrum of Tp

for p large can be obtained from the eigenvalues of Bp with a sample size on
the same order of magnitude as p. For the detection problem in Section 5.3 the
properties tell us that for a large enough sample we should be able to estimate
(at the very least) the proportion of targets in relation to the number of sensors.
Finding the exact number of “signal” eigenvalues separated from the p−q “noise”
ones in our simulations, with the gap close to the gap we would expect from F ,
came as a delightful suprise (Silverstein and Combettes (1992)).

2. Separation of Eigenvalues

Verifying mathematically the observed phenomenon of exact separation of
eigenvalues has been achieved by Zhidong Bai and myself. The proof is broken
down into two steps. The first step is to prove that, almost surely, no eigenvalues
lie in any interval that is outside the support of the limiting distribution for all
p large (Bai and Silverstein (1998)). Define FA to be the empirical distribution
function of the eigenvalues of the matrix A, assumed to be Hermitian. Let
Hp = FTn , yp = p/n, and F yp,Hp be the limiting spectral distribution of Bp with
y,H replaced by yp and Hp. We assume the entries of Xp have mean zero and
finite fourth moment (which are necessary, considering the results in Section 2.2.2
on extreme eigenvalues) and the matrices Tp are bounded for all p in spectral
norm. We have then

Theorem. (Theorem 1.1 of Bai and Silverstein (1998)) For any interval [a, b]
with a > 0 which lies in an open interval outside the support of F (= F y,H) and
F yp,Hp for all large p we have

P( no eigenvalue of Bp appears in [a, b] for all large p ) = 1.
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Note that the phrase “in an open interval” was inadvertently left out of the
original paper.

The proof looks closely at properties of the Stieltjes transform of FBp , and
uses moment bounds on both random quadratic forms (similar to Lemma A.4 of
Bai (1997)) and martingale difference sequences.

The second step is to show the correct number of eigenvalues in each portion
of the limiting support. This is achieved by appealing to the continuous depen-
dence of the eigenvalues on their matrices. Let Bn

p denote the dependence of the
matrix on n. Using the fact that the smallest and largest eigenvalues of 1

nXpX∗
p

are near (1 −√p/n)2 and (1 +
√

p/n)2 respectively, the eigenvalues of Tp and
BM

p n are near each other for suitably large M . It is then a matter of showing
eigenvalues do not cross over from one support region to another as the number
of samples increases from n to Mn. This work is presently in preparation.

This work should be viewed as an extension of the results in Section 2.2.2
on the extreme eigenvalues of Sp = (1/n)XpX

∗
p . In particular, it handles the

extreme eigenvalues of Bp (see the corollary to Theorem 1.1 in Bai and Silverstein
(1998)). At the same time it should be noted that the proof of exact separation
relies heavily on a.s. convergence of the extreme eigenvalues of Sp. As mentioned
earlier, the moment method seems to be the only way in proving Theorem 2.15.
On the other hand, the Stieltjes transform appears essential in proving exact
separation, partly from what it reveals about the limiting distribution.

3. Results and Conjectures on the Rate of Convergence

I will finish up with my views on the rate of convergence issue concerning the
spectral distribution of sample covariance matrices raised in Section 3.2.2. The
natural question to ask is: what is the speed of convergence of Wp ≡ FBp−F yp,Hp

to 0? Here is some evidence the rate may be 1/p in the case Hp = I[0,∞), that
is, when Bp = Sp = (1/n)XX∗ (Section 2.1.2).

In Jonsson (1982) it is shown that the distribution of{
n

∫
xrd(FSp(x) − E(FSp(x)))

}∞

r=1

converges (R∞) to that of a multivariate normal, suggesting an error rate of
1/p. Continuing further, with the aid of moment analysis, the following has been
observed.

Let Yp(x) = p
∫ x
0 [FSp(t) − (E(FSp(t))] dt. It appears that, as p → ∞,

p(E(FSp(x))−F yp,1[1,∞)(x)) converges to certain continuous function on [0, (1+√
c)2], and the covariance function CYpYp(x1, x2) ≡ E(Yp(x1)Yp(x2)) → CY Y (x1,

x2), continuous on [0, (1+
√

y)2]× [0, (1+
√

y)2]. Both functions depend on y and
E(X4

11). Moreover, it can be verified that CY Y is the covariance function of a
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continuous mean zero Gaussian process on [0, (1 +
√

c)2]. The uniqueness of any
weakly convergent subsequence of {Yp} follows by the above result in Jonsson
(1982) and the a.s. convergence of the largest eigenvalue of Sp (see Theorem
3.1 of Silverstein (1990)). Thus, if tightness can be proven, weak convergence
of Yp would follow, establishing the rate of convergence of 1/p for the partial
sums of the eigenvalues of Sp. It should be noted that the conjecture on Yp is
substantiated by extensive simulations.

It seems that the integral making up Yp is necessary because ∂2CY Y
∂x1∂x2

(x1, x2),
which would be the covariance function of p(FSp(x) − [E(FSp(x)]) in the limit,
turns out to be unbounded at x1 = x2. As an illustration, when E(X4

11) = 3 (as
in the Gaussian case) ∂2CY Y

∂x1∂x2
(x1, x2) =

1
2π2

ln

[
4y−((x1−(1+y))(x2−(1+y))+

√
(4y−(x1−(1+y))2)(4y−(x2−(1+y))2)

4y−((x1−(1+y))(x2−(1+y))−√(4y−(x1−(1+y))2)(4y−(x2−(1+y))2)

]

for (x1, x2) ∈ [(1 − √
y)2, (1 +

√
y)2] × [(1 − √

y)2, (1 +
√

y)2], 0, otherwise. It
therefore appears unlikely pWp converges weakly.

Of course weak convergence of Yp does not immediately imply α(p)Wp → 0
for α(p) = o(p). It only lends support to the conjecture that 1/p is the correct
rate. Further work is definitely needed in this area.
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REJOINDER

Z. D. Bai
Thanks to Professor Jack Silverstein and Dr. G. J. Rodgers for their ad-

ditions to developments in the theory of spectral analysis of large dimensional
random matrices not reported on in my review paper. I would like to make some
remarks on the problems arising from their comments.

1. Spectrum Separation of Large Sample Covariance Matrices

Jack Silverstein reported a new result on spectrum separation of large sample
covariance matrices obtained in Bai and Silverstein (1998), after my review paper
was written. It is proved there that under very general conditions, for any closed
interval outside the support of the limiting spectral distribution of a sequence of
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large dimensional sample covariance matrices, and with probability 1 for all large
n, the sample covariance matrix has no eigenvalues falling in this interval. He
also reported that a harder problem of exact spectrum separation is under our
joint investigation. Now, I take this opportunity to report that this problem has
been solved in Bai and Silverstein (1999). More specifically, the exact spectrum
separation is established under the same conditions of Theorem 1.1 of Bai and
Silverstein (1998).

1.1. Spectrum separation of large sample covariance matrices

Our setup and basic assumptions are the following.
(a) Xij , i, j = 1, 2, ... are independent and identically distributed (i.i.d.) complex

random variables with mean 0, variance 1 and finite 4th moment;
(b) n = n(p) with yn = p/n → y > 0 as n → ∞;
(c) For each n, Tn is a p × p Hermitian nonnegative definite matrix satisfying

Hn ≡ FTn
D−→ H, a cumulative distribution function (c.d.f.);

(d) ‖Tn‖, the spectral norm of Tn, is bounded in n;
(e) Sn = n−1T1/2

n XnX∗
nT

1/2
n , Sn = n−1X∗

nTnXn, where Xn = (Xij), i =
1, . . . , p, j = 1, . . . , n, and T1/2

n is a Hermitian square root of Tn.
The matrix Sn is of major interest and the introduction of the matrix Sn is

for mathematical convenience. Note that

FSn =
(

1 − yn

)
I[0,∞) + ynFSn

and
mFSn (z) = −1 − yn

z
+ ynmFSn (z).

As previously mentioned, under conditions (a) - (e), the limiting spectral
distribution (LSD) of Sn exists and the Stieltjes transform of the LSD of Sn is
the unique solution, with nonnegative imaginary part for z on the upper half
plane, to the equation

zy,H(m) = − 1
m

+ y

∫
t

1 + tm
dH(t).

The LSD of Sn is denoted by F y,H . Then, for each fixed n, F yn,Hn can be
regarded as the LSD of a sequence of sample covariance matrices for which the
LSD of the population covariance matrices is Hn and limit ratio of dimension
to sample size is yn. Its Stieltjes transform is then the unique solution with
nonnegative imaginary part, for z on the upper half plane, to the equation

zyn,Hn(m) =
1
m

(
−1 + yn

∫ (
tm

1 + tm

)
dHn(t)

)
(1)

z′yn,Hn
(m) =

1
m2

(
1 − yn

∫ (
tm

1 + tm

)2

dHn(t)

)
. (2)
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It is easy to see that for any real x 	= 0, the function mF yn,Hn (x) and its derivative
are well defined and continuous provided −1/x is not a support point of Hn.

Under the further assumption that
(f) the interval [a, b] with a > 0 lies in an open interval outside the support of

F yn,Hn for all large n,
Bai and Silverstein (1998) proved that with probability one, for all large n, Sn

has no eigenvalues falling in [a, b].
To understand the meaning of exact separation, we give the following de-

scription.

1.2. Description of exact separation

From (1), it can be seen that F yn,Hn and its support tend to F y,H and the
support of it, respectively. We use F yn,Hn to define the concept exact separation
in the following.

Denote the eigenvalues of Tn by 0 = λ1(Tn) = · · · = λh(Tn) < λh+1(Tn) ≤
· · · ≤ λp(Tn) (h = 0 if Tn has no zero eigenvalues). Applying Silverstein and
Choi (1995), the following conclusions can be made. From (1) and (2), one can
see that mzyn,Hn(m) → −1+yn(1−Hn(0)) as m → −∞, and mzyn,Hn(m) > −1+
yn(1 − Hn(0)) for all m < −M for some large M . Therefore, when m increases
along the real axis from −∞ to −1/λh+1(Tn), the function zyn,Hn(m) increases
from 0 to a maximum and then decreases to −∞ if −1 + yn(1 − Hn(0)) ≥ 0;
it decreases directly to −∞ if −1 + yn(1 − Hn(0)) < 0, where Hn(0) = h/p.
In the latter case, we say that the maximum value of zyn,Hn in the interval
(−∞,−λh+1(T)) is 0. Then, for h < k < p, when m increases from −1/λk(Tn)
to −1/λk+1(Tn), the function zyn,Hn in (1) either decreases from ∞ to −∞,
or decreases from ∞ to a local minimum, then increases to a local maximum
and finally decreases to −∞. Once the latter case happens, the open interval
of zyn,Hn values from the minimum to the maximum is outside the support of
F yn,Hn . When m increases from −1/λp(Tn) to 0, the z value decreases from ∞ to
a local minimum and then increases to ∞. This local minimum value determines
the largest boundary of the support of F yn,Hn . Furthermore, when m increases
from 0 to ∞, the function zyn,Hn(m) increases from −∞ to a local maximum
and then decreases to 0 if −1 + yn(1 − Hn(0)) > 0; it increases directly from
−∞ to 0 if −1 + yn(1 − Hn(0)) ≤ 0. In the latter case, we say that the local
maximum value of zyn,Hn in the interval (0,∞) is 0. The maximum value of
zyn,Hn in (−∞,−λh+1(T)) ∪ (0,∞) is the lower bound of the support of F yn,Hn .

Case 1. y(1−H(0)) > 1. For all large n, we can prove that the support of F y,H

has a positive lower bound x0 and yn(1 − Hn(0)) > 1, p > n. In this case, we
can prove that Sn has p − n zero eigenvalues and the nth largest eigenvalues of
Sn tend to x0.
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Case 2. y(1−H(0)) ≤ 1 or y(1−H(0)) > 1 but [a, b] is not in [0, x0]. For large
n, let in ≥ 0 be the integer such that

λTn
in

> −1/mF y,H (b) and λTn
in+1 < −1/mF y,H (a).

It is seen that only when mF y,H(b) < 0, the exact separation occurs. In this case,
we prove that

P (λSn
in

> b and λSn
in+1 < a for all large n ) = 1.

This shows that with probability 1, when n is large, the number of eigenvalues of
Sn which are greater than b is exactly the same as that of the eigenvalues of Tn

which are greater than −1/mF y,H (b), and contrarily, the number of eigenvalues
of Sn which are smaller than a is exactly the same as that of the eigenvalues of
Tn which are smaller than −1/mF y,H(a).

1.3. Strategy of the proof of exact spectrum separation

Consider a number of sequences of sample covariance matrices of the form

Sn,k = (n + kM)−1T1/2
n Xn,kX∗

n,kT
1/2
n ,

where M = Mn is an integer such that M/n → c > 0, for some small c > 0, and
Xn,k = (Xij) with dimension p × (n + kM).

We need to prove the following.
(i) Define yk = y/(1 + kc) and ak < bk by

mF y,H (a) = mF yk,H (ak) and mF y,H(b) = mF yk,H (bk).

We show that when c > 0 is small enough,

P (λ�n(Sn,k) < ak and λ�n+1(Sn,k) > bk for all large n) = 1,

and thus that

P (λ�n(Sn,k+1) < ak+1 and λ�n+1(Sn,k+1) > bk+1 for all large n) = 1.

(ii) Let K be so large that p/(n+KM) := yKn→yK = y/(1+Kc)<(−1/mF y,H (b)
+1/mF y,H (a)/(9maxn ‖Tn‖). Then, by Corollary 7.3.8 of Horn and Johnson
(1985), we have

max
i≤p

|λi(Sn,K) − λi(Tn)| ≤ ‖T 1/2
n (Sn,K − I)T1/2

n ‖
≤ max

n
‖Tn‖max(λp(Sn,K) − 1, 1 − λ1(Sn,K))

→ max
n

‖Tn‖(2yK + y2
K) < (−1/mF y,H (b) + 1/mF y,H (a)/3. (3)



METHODOLOGIES IN RANDOM MATRICES 675

From (ii), it follows that with probability 1, for all large n, λin+1(Sn,K) >

(bK + aK)/2 and λin(Sn,K) < (bK + aK)/2. Then by Bai and Silverstein (1998),
λin+1(Sn,K) > bK and λin(Sn,K) < aK . That is, the exact spectrum separa-
tion holds for the sequence {Sn,K , n = 1, . . .. Applying (i), the exact spectrum
separation remains true for any sequence {Sn,k, n = 1, . . . .}

2. On Replica Method

People working in the area of spectral analysis of large dimensional random
matrices are aware that the theory was motivated by early findings, laws or con-
jectures, in theoretical physics, see the first paragraph of the introduction of
my review paper (BaiP, hereafter). However, very few papers in pure probabil-
ity or statistics refer to later developments in theoretical physics. Therefore, I
greatly appreciate the relation of later developments in theoretical physics by G.
J. Rodgers in his comments (RodC, hereafter), including the replica method and
some valuable references.

From my point of view, the replica method starts at the same point as does
the method of Stieltjes transform, analyzes with different approaches, and finds
the same conclusions. At first, we note that the function Z(µ) defined in (1) of
RodC is in fact (2πi)N/2det1/2(H − µI). From this, one can derive that

2
πN

∂

∂µ
log Z(µ) =

1
πN

N∑
j=1

1
λj − µ

= π−1mn(µ),

where mn(·) is defined in (3.3) of BaiP. Note that [Zn(µ)]av = EZn(µ). Conse-
quently, the function in (2) of RodC is in fact

ρ(µ) = Im
2

πN

∂

∂µ
log EZn(µ).

For all large N , we should have ρ(µ) ∼ π−1ImEmn(µ), which is asymptotically
independent of n. This shows that the two methods start from the same point.

The method of Stieltjes transformation analyzes the resolvent of the random
matrices by splitting

mn(µ) =
1
N

tr(H − µI)−1

into a sum of weakly dependent terms, while the replica method continues its
analysis on the expected function [Zn(µ)]av.

Now, we consider the Hubbard-Stratonovich transformation, in which a set
of i.i.d standard normal variables xαj are used to substitute for the variables

σ−1
N∑

i=1

ξj
i φiα

(
N∑

i=1

φ2
iα

)−1/2

.
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The validity of this normal approximation is a key point in the replica method
and might be the reason to call it “non-rigorous” in RodC.

For each fixed α and j, it is not difficult to show that as N → ∞, the variable
σ−1∑N

i=1 ξj
i φiα is asymptotically normal for φi,α’s satisfying

∑N
i=1 φ2

iα = 1, except
in a small portion on the unit sphere. However, I do not know how to show the
asymptotic independence between σ−1∑N

i=1 ξj
i φiα for different (j, α)’s. If this

can be done, then many problems in the spectral analysis of large dimensional
random matrices, say, the circular law under the only condition of the finite
second moment, can be reduced to the normal case, under which the problems
are well-known or easier to deal with. More specifically, the conjectures are the
following.

Conjecture 1. Let X be an n × N matrix with i.i.d. entries of mean zero and
variance 1, and let H be uniform distributed on the p×n (p ≤ n) matrix space of
p orthonormal rows. Then as p, n, N proportionally tend to infinity, the p × N

entries of HX are asymptotically i.i.d. normal.

Of course, there is a problem on how to define the terminology asymptot-
ically i.i.d. since the number of variables goes to infinity. For use in spectral
analysis of large dimensional random matrices, we restate Conjecture 1 as the
following.

Conjecture 2. Let X be an n × N matrix with i.i.d. entries of mean zero and
variance 1, and let E be uniform distributed on the n × n orthogonal matrix
space. Then as n, N proportionally tend to infinity, the limiting behavior of all
spectrum functionals of the matrix HX are the same as if all entries of X are
i.i.d. normal.

More specifically, we have

Conjecture 3. Let X be an n × N matrix with i.i.d. entries of mean zero
and variance 1. There exists an n × n orthogonal matrix H such that as n, N

proportionally tend to infinity, the limiting behavior of all spectrum functionals
of the matrix HX are the same as if all entries of X are i.i.d. normal.

This seems to be a very hard but interesting problem.
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