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Abstract

We consider ergodic coherent MIMO channels. We characterize the optimal

input distribution for various fading matrix distributions. First, we describe how

symmetries in the fading matrix distribution are preserved as symmetries in the op-

timal input covariance and thus yield to specification of the optimal input. We will

see that group structures and notion of commutant appear as key elements. Second,

we investigate the Kronecker model, in this case we will show how an asymmetric

structure in the problem is also preserved in the optimal input structure.

Notations:

We define the following subsets of the n× n complex matrices Mn(C), n ≥ 1:
H(n): the hermitian matrices,
H+(n): the hermitian positive semidefinite matrices,
H∗

+(n): the hermitian positive definite matrices,
U(n): the unitary matrices,
S(n): the symmetric group of all permutations matrices,
C(n): the group of cyclic permutations matrices,
Z2(n): the group of diagonal matrices with {−1,+1} elements.

1 Introduction

We consider a channel in which a vector input x ∈ X = Ct, t ≥ 1, is received as a vector
output y ∈ Y = Cr, r ≥ 1, under the following assumptions. At each use i ≥ 1 of the
channel:

• an r × t matrix Hi is drawn from an ergodic process having marginal probability
measure µH ,

• an r × 1 vector ni is drawn i.i.d from a complex circularly-symmetric gaussian
(C.C.S.G.) random variable of covariance matrix K, independently from the Hi’s,

• the transmitter, without knowing the Hi’s and ni’s, sends xi,

• the receiver gets yi = Hixi + ni together with Hi (and hence the term “coherent”).



Moreover, the inputs {xi} are constrained in the following way. If we want to use a
code C = {c(1), . . . , c(M)} ⊂ X n, n ≥ 1, then the code has to satisfy that for every
1 ≤ m ≤ M : 1

n
b(c(m)) ∈ Dt, where b(c(m)) =

∑n
i=1 c(m)ic(m)∗i and where Dt ⊂ H∗

+(t)
is a given compact set. Let C be the capacity of this channel under this constraint.
Then, denoting by X a random vector (r.ve.) in Ct, we know from standard information
theoretic arguments that

C(µH,Ct) = max
X∈Ct

I(X;Y,H)

where

1. Ct = {X|EXX∗ ∈ Dt} and Dt ⊂ H∗
+(t) a compact set

2. N
(d)
∼ NCr(K) with K ∈ H∗

+(r)

3. H is a C
r×t-random matrix with probability measure µH ,

4. (X,H,N) are mutually independent,

5. Y = HX +N .

When t = 1, we maximize the mutual information over random variable (r.v.) X having
variance in a compact set of R+, with maximal value, say, P ∈ R+. In this case, the op-
timal input is known to be a C.C.S.G. r.v. with variance P , no matter what µH is. More
generally, one can show with usual arguments that in the vector settings the gaussian
distribution is still optimal, but an optimization remains to be done on the covariance
matrices in Dt, the result of which may depend on the distribution µH .
In the case where H has i.i.d. C.C.S.G. entries and Dt is the set of covariance matrices
with trace bounded by a given value P ∈ R, it has been shown in [1] that the optimal
covariance matrix is P

t
It and the capacity is linearly increasing with min(t, r).

Questions:

1. The solution found when H has i.i.d C.C.S.G. entries is not surprising, in the sense
that there are enough symmetries in the problem so that we expect a symmetric solu-
tion. But what does enough symmetry mean? What can we say when we have different
symmetric structures, such as for example when we only have i.i.d entries? What are
the relevant concepts of symmetry and how can we convert them into specification of the
solution?
2. What can we do when we have asymmetric structures?

We will develop some algebraic tools and present a result that gives an answer to the
first question. We will see how group structure and notion of commutant comes into
the picture as key features. This result is also applicable to other functionals than the
capacity of MIMO channels.
We will then investigate the Kronecker model (defined later) to get an understanding of
the second question.

2 General expression of the capacity

Definition 1. We define the optimal inputs by

Xc(µH ,Ct) = arg max
X∈Ct

I(X;HX +N,H),



where arg maxX∈Ct
f(X), for a real function f , denotes the set of the elements x satisfying

f(x) ≥ f(y), ∀y ∈ Ct.

We now use the assumptions we made on the channel to give a more specific expression
for the capacity and the optimal inputs. The fact that the gaussian distribution maxi-
mizes the entropy under a covariance constraint lead to the following result.

Proposition 1. According to previous definitions and assumptions, we have

C(µH ,Ct) = max
Q∈Dt

ψ(Q),

where

ψ(Q) = E
µHφ(HQH∗), φ(A) = log det(I +K−1A) (1)

and
Xc(µH ,Ct) ∼ NCt(Qc),

where
Qc = arg max

Q∈Dt

ψ(Q).

Back to our questions: To develop an understanding of the question of symmetry,
we consider the following situations. Imagine that there is not difference of output
probability when sending the input x or a permuted version of it, say, Px, where P
is a permutation matrix. This is to say that the distribution of H is the same as the
distribution of HP . What if we had another symmetry, such as when the channel behaves
the same whenever x is sent or a modified version of it in which we changed the sign of
some of its components, for example Zx, where Z is a diagonal matrix with 1 and −1 on
the diagonal.
The first observation is that if H has same the distribution as HP , it also has same
distribution as HP n, n ≥ 1. More generally, if H has same distribution as Hs, for all s
in a set S ⊂ GLn(C) (the set of invertible matrices in Mn(C)), then this is still true for
the group generated by S. This motivates the following definition.

Definition 2. For a group G ⊂ Mn(C), if Hg
(d)
≃ H , ∀g ∈ G, then H is said to be

G-invariant on the right.

Examples of groups in Mn(C) are U(n), Z2(n), C(n) and S(n) (with the usual matrix
multiplication). We now gave a definition to quantify symmetries in the problem, through
the group of invariance of H , the question is then: how do we use this invariance in
order to get knowledge on the optimal input? In the next section we will see that this is
done through the commutant.

3 Invariance in Conjugation and Commutant

Definition 3. Let G be a group in Mn(C) and D ⊂Mn(C).

• Invariance in conjugation: we say that Ψ : D → R is invariant in G-conjugation
if



1. D is invariant in G-conjugation in the sense gDg−1 = D, ∀g ∈ G.

2. Ψ(gdg−1) = Ψ(d), ∀d ∈ D, g ∈ G.

• We denote by G a random variable with values in G and probability measure
PG ∈ M1(G). We define dPG := EPGGDG−1 and UG the normalized Haar measure
on the right on G.

• The commutant algebra of G is defined by Comm(G) = {a ∈ Mn(C)|ag =
ga, ∀g ∈ G}

Interpretation and examples: Examples of functions which are invariant inG-conjugation
are all functions of the form x Ef(MxM−1) where f is any measurable function and
M is a random matrix that is G-invariant on the right, which, we recall, is defined by

Mg
(d)
= M , ∀g ∈ G. The reason for which a “conjugation” invariance is interesting in

our MIMO settings is a consequence of the fact that we are working with second order
moment constraint and implying that the mutual information has precisely the above
described form (cf. (1)). We will see in the next proposition why the commutant notion
is relevant in our problem, here are first some examples of commutant algebras:

Comm(Z2(n)) is the set diagonal matrices in Mn(C),

Comm(S(n)) = {αIn + βJn|α, β ∈ C}, where Jn = 1n×n,

Comm(U(n)) = {αIn|α ∈ C}.

Proposition 2. Let G ⊂ Mn(C) be a compact group and D ⊂ Mn(C) a convex set. Let

Ψ : D
C0

→ R a concave function which is invariant in G-conjugation. Then

Ψ(d) ≤ Ψ(dPG) ≤ Ψ(dUG), ∀d ∈ D,

in particular, among the maximizers of the function Ψ in D there is one that belongs to

Comm(G).

Proof. Let d ∈ D and PG, QG ∈M1(G). Because D is convex and GDG−1 = D, dPG ∈ D.
By Jensen’s inequality, we have

E
PGΨ(GdG−1) ≤ Ψ(dPG),

but by hypothesis, Ψ(GdG−1) = Ψ(d), ∀d ∈ D, thus last inequality becomes

Ψ(d) ≤ Ψ(dPG).

Note that
(dPG)

QG
= dPG⋆QG ,

with PG ⋆QG =
∫

G
(τh)∗QGPG(dh), where (τh)∗QG(Γ) = QG(Γh−1), for Γ ∈ BG. Further-

more,
PG ⋆ UG = UG ⋆ PG = UG.

Therefore we have
Ψ(d) ≤ Ψ(dPG) ≤ Ψ((dPG)

UG) = Ψ(dUG),

which proves the first part of the proposition. Finally, observe that for d ∈ D, dUG ∈
Comm(G) ∩D, proving the second assertion.



4 Symmetries in MIMO

We consider the MIMO channel functional ψ(Q) = EµH log det(I+K−1HQH∗), described
in proposition (1), with Dt assumed to be convex.

Corollary 1. Let G1, G2 be two groups in U(t). If Dt is invariant in G1-conjugation and

µH is such that HG2
(d)
= H, then

Qc ∈ Comm(G1 ∩G2) ∩ Dt.

Proof. Observe that the function ψ in (1) is strictly concave and (G1 ∩ G2)-invariant,
also note that u−1 = u∗ for u ∈ U(t), then use proposition 2.

Corollary 1a: Total power constraint: for a given P ∈ R+, we consider Q ∈ Dt = {Q ∈
H∗

+(t)|tr(Q) ≤ P}. If µH is invariant in G-conjugation for a subgroup G of U(t), then
Qc ∈ Comm(G) ∩ Dt.
Simply observe that Dt is invariant in U(t)-conjugation. Two interesting cases of sub-
groups of U(t) are S(t) and Z2(t). From what we saw in the examples of the commutant,
if we consider a distribution µH invariant under Z2(t), then Qc is diagonal and if it is
invariant under S(t), then Qc will have the same value for all components inside the
diagonal (P

t
if one works in Dt) and also the same value for all elements outside the diag-

onal, as long as it stays a positive definite matrix. Examples of Z2(t)-invariant random
matrices are matrices with independent symmetric entries (symmetric means that

Hij

(d)
≃ −Hij) and examples of S(t)-invariant ones are matrices with i.i.d. entries or

jointly gaussian entries having a covariance matrix of the form αIt + βJt.

Corollary 1b: Considering X ∈ Ct, if H is S(t)Z2(t)-invariant, which is for example the

case when Hij are i.i.d. and Hij

(d)
≃ −Hij , ∀1 ≤ i ≤ r, 1 ≤ j ≤ t, then Qc = P

t
It.

This is a particular case of corollary 1a, where we consider the product group S(t)Z2(t) ⊂
U(t) containing all permutations matrices with +1 and −1. In this case we have that
Comm(S(t)Z2(t)) contains only multiples of the identity and since Q ∈ Dt has normal-
ized trace, the result follows. Note that we did not assume that the entries of H are
gaussian (which is a particular case of the above case) in order to get P

t
It as a maxi-

mizer. Also note that the group S(t) could be replaced by C(t) and we would get the
same conclusion. Generally, this will be true as long as we have a group G of invariance
where Comm(G) contains only the multiple of the identity.

Corollary 1c: Local power constraint: if X is constrained by E|Xi|2 ≤ Pi for given
Pi ∈ R+, ∀1 ≤ i ≤ t, and if H is Z2(t)-invariant, then Qc = diag(P1, . . . , Pt).

The constraint E|Xi|
2 ≤ Pi implies that Q ∈ D̃t = {Q ∈ H+(t)|Qii ≤ Pi, ∀1 ≤ i ≤ t},

now we no longer have that D̃t is invariant in U(t)-conjugation, but we still have, for
example, invariance in Z2(t)-conjugation. Therefore, if H is Z2(t)-invariant, the optimal
covariance matrix will be commuting with this group, which means it is diagonal and
thus the optimal diagonal elements are the corresponding Pi’s.

Conclusion: As it has been illustrated in previous example, the problem of symmetry
should be generally approached in the following way: first identify the invariance prop-
erty of the domain Dt in which we are working (we saw examples of total (see corollary
1a) and local (see 1c) power constrain, several intermediary cases are possible), then



identify the invariance property of the fading matrix distribution µH , once we have these
two groups of invariance, we know that we can restrict our search of Qc to matrices
commuting with these groups and staying in Dt. Which means that the commutant

is summarizing the set exploiting the information given by the symmetries

in the problem. We saw that in some cases (see corollary 1b) this allows us to fully
specify the optimal input covariance matrix, whereas in other cases, it only reduces the
dimension of the optimization problem (such as for example in corollary 1b, when we
have a Z2(t)-invariance, we are left with t degrees of freedom for Qc instead of t2+t

2
at

the beginning).

In other words, the final picture is the following: what is quantifying the symmetry is
the group of invariances of H and how it is transformed into a specification of the
optimal input is done via the commutant of this group.

5 Asymmetries in MIMO

Suppose now that H = WB, where W has r × t i.i.d C.C.S.G entries and B = diag(b),
with b ∈ Rt

+ and that b1 ≤ . . . ≤ bn. Can we then expect that the optimal covariance
matrix should preserve this ordering in some sense?

The Kronecker model: We consider X ∈ Ct = {X|EXX∗ ∈ Dt}, Dt = {Q ∈
H∗

+(t)|tr(Q) ≤ P} H = AWB, where W is a r× t random matrix, A ∈Mr(C) non-zero,
B ∈Mt(C) non-zero with SVD B = UB diag(b)V ∗

B and µW is U(t)-invariant on the right.

We will now present two propositions that will contribute to describe the optimal input
for such a channel. If the random matrix W was replaced by the identity, we know that
the optimal input covariance is diagonal with diagonal qc given via “water-filing” on the
singular values of B (cf. [1]). Two particular properties of the “water-filing” solution are
the following. First, if bi ≥ bj then qc

i ≥ qc
j (with equality if bi = bj). Then, if bi < bi+1

are two consecutive values in b, and if bi+1 is bigger enough than bi, then we might end
up by sharing the whole power P on the t− i biggest values of b. We will see in the next
two propositions that this two properties are preserved.

Proposition 3. We have
Qc = VB diag(qc)V ∗

B

where qc satisfies

qc
i ≥ 0,

t∑

i=1

qc
i = P, qc

i ≥ qc
j if bi > bj, and qc

i = qc
j if bi = bj .

Note: If B = It and µW is G-invariant on the right with G ≤ U(t), then Qc ∈
Comm(G) ∩ Dt.

Remark: This proposition says that the optimal covariance matrix has for eigenvec-
tors, the eigenvectors on the right of B, and has eigenvalues which are monotonically
distributed with respect to the singular values of B.

Let λ1(M) ≤ . . . ≤ λn(M) denote the ordered eigenvalues of any matrix M ∈ H(n).



Lemma 1. Let n ≥ 1, P ∈ H∗
+(n) and H ∈ H(n). We then have,

λk(H + P ) > λk(H), ∀k = 1, 2, . . . , n.

Proof of proposition 4. From proposition 1, we know that Xc ∼ NCt(Qc) where

Qc = arg max
Q∈Dt

ψA,B(Q)

and
ψA,B(Q) = E

µ log det(I +K−1AWBQB∗W ∗A∗).

(Note that A affects the function ψ in the same way as K, in other words, we could
consider one of this two matrix to be the identity, for example, assume i.i.d. components
for the noise and set Ã = K− 1

2A.)

If B = Ir any invariance properties on the right for µW will be preserved for AW , thus
the note after the proposition is a direct consequence of corollary 1.

For general B, we have from the SVD theorem that there exist UB, VB ∈ U(t) and b ∈ Rt
+

such that B = UB diag(b)V ∗
B . Assuming W to be unitary invariant allow us to write

ψA,B(Q) = ψA,diag(b)(V
∗
BQVB).

Therefore, as V ∗
BQVB ∈ Dt, we can focus on

Q
′

c = arg max
Q∈Dt

ψA,diag(b)(Q).

Now, ψA,diag(b) is Z2(t)-invariant, thus from proposition 1, we have

Q
′

c = arg max
diag(q)∈Dt

ψA,diag(b)(diag(q)).

Let qc be the the vector such that diag(qc) is the maxima of ψA,diag(b) (which is a concave
function on a compact set). First note that if bi = bj then ψA,diag(b) is S(t)ij-invariant,
where S(t)ij is the subgroup of permutations keeping the diagonal elements different than
i and j invariant (transposition), thus we get from proposition 1 that qc

i = qc
j .

Now, let P
′

= P −
∑t

i=3 q
c
i , such that qc

1 + qc
2 = P

′

. We will show that if b1 > b2, then
for any 0 ≤ P

′

≤ P ,

∂q1ψA,diag(b)(diag(q))
∣∣
(P

′

2
, P

′

2
,qc

3,...,qc
t )
> ∂q2ψA,diag(b)(diag(q))

∣∣
(P

′

2
, P

′

2
,qc

3,...,qc
t )
,

which, by the concavity of ψdiag(q), implies that

qc
1 > qc

2.

By symmetry of the problem, this clearly implies the result for any components i and j
(other than 1 and 2).

We have

ψA,diag(b)(diag(q)) = E log det(I +

t∑

i=1

qib
2
iAwi(Awi)

∗)



where wi is the i-th column of W . For an invertible matrix M , we have the formula

∂mij
log det(M) = (M−1)ji,

therefore we have

∂qj
ψA,diag(b)(diag(q)) = b2jE tr

(
I +

t∑

i=1

qib
2
iAwi(Awi)

∗

)−1

Awj(Awj)
∗.

Let us denote Xi = Awi(Awi)
∗, which are hermitian positive semidefinite matrices, as

well as
(
I +

∑t
i=1 qib

2
iXi

)
which is in addition positive definite and invertible. We define

Z =
∑t

i=3 qib
2
iXi and Zc =

∑t
i=3 q

c
i b

2
iXi, we then rewrite

∂q1ψA,diag(b)(diag(q)) = b21E tr
(
I + q1b

2
1X1 + q2b

2
2X2 + Z

)−1
X1 (2)

and

∂q2ψA,diag(b)(diag(q)) = b22E tr
(
I + q1b

2
1X1 + q2b

2
2X2 + Z

)−1
X2

= b22E tr
(
I + q1b

2
1X2 + q2b

2
2X1 + Z

)−1
X1 (3)

where in the last line we interchanged the random matrices X1 and X2, as W is S(t)-
invariant. To conclude the proof, we have to show that if b1 > b2

b21E tr

(
I +

P
′

2
b21X1 +

P
′

2
b22X2 + Zc

)−1

X1 > b22E tr

(
I +

P
′

2
b21X2 +

P
′

2
b22X1 + Zc

)−1

X1,

for any 0 ≤ P
′

≤ 1. This is clearly verified in the scalar case (r = 1). In the matrix case,
a couple of more steps (using the previous lemma) are required to show that the result
hold.

We now define

χ1 : [0, 1] → R

ε 7→ χ1(ε) = b21tr
(
I + P

′

2
b21X1(ε) + P

′

2
b22X2(ε) + Zc

)−1

X1(ε)

and

χ2 : [0, 1] → R

ε 7→ χ2(ε) = b22tr
(
I + P

′

2
b21X2(ε) + P

′

2
b22X1(ε) + Zc

)−1

X1(ε)

where
Xi(ε) = Xi + εIr.

Note that for i = 1, 2, χi are continuous function. Therefore, limε%0 χi(ε) = χi(0).
Moreover, from (2), we have

Eχ1(0) = ∂q1ψA,diag(b)(diag(q))
∣∣
(P

′

2
, P

′

2
,qc

3,...,qc
t )

and from (3)
Eχ2(0) = ∂q2ψA,diag(b)(diag(q))

∣∣
(P

′

2
, P

′

2
,qc

3,...,qc
t )
.



Now, let us consider ε ∈ (0, 1], we have that Xi(ε) is surely in H∗
+(r), thus surely

invertible, so we can write

χi(ε) = tr

(
P

′

2
Ir +Mi

)−1

or equivalently

χj(ε) =

r∑

i=1

1
P ′

2
+ λi(Mj)

, j = 1, 2

where

M1 := X−1
1 (ε)

(
b−2
1 Ir +

P
′

2
b−2
1 b22X2(ε) + b−2

1 Zc

)

and

M2 := X−1
1 (ε)

(
b−2
2 Ir +

P
′

2
b−2
2 b21X2(ε) + b−2

2 Zc

)
.

If we try to directly insert X−1
1 (ε) in the parenthesis of above expressions, we will not

be able to apply lemma 1 part (ii), as X−1
1 (ε)X2(ε) may not be hermitian, even though

X−1
1 (ε) ∈ H∗

+(r) surely and X2(ε) ∈ H+(n) surely. However, from lemma 1 part (i), we
have that the non-zero eigenvalues of M1 are the same as the ones of

X
− 1

2
1 (ε)

(
b−2
1 Ir +

P
′

2
b−2
1 b22X2(ε) + b−2

1 Zc

)
X

− 1
2

1 (ε)

which is equal to

b−2
1 X−1

1 (ε) +
P

′

2
b−2
1 b22X

− 1
2

1 (ε)X2(ε)X
− 1

2
1 (ε) + b−2

1 X
− 1

2
1 (ε)ZcX

− 1
2

1 (ε) =: N1

and that the non-zero eigenvalues of M2 are the same as the ones of

X
− 1

2
1 (ε)

(
b−2
2 Ir +

P
′

2
b−2
2 b21X2(ε) + b−2

2 Zc

)
X

− 1
2

1 (ε)

which is equal to

b−2
2 X−1

1 (ε) +
P

′

2
b−2
2 b21X

− 1
2

1 (ε)X2(ε)X
− 1

2
1 (ε) + b−2

2 X
− 1

2
1 (ε)ZcX

− 1
2

1 (ε) =: N2.

And now we have
N1 −N2 ∈ H∗

+(r) surely,

therefore, we conclude from lemma 1 that

χ1(ε) > χ2(ε) surely, ∀ε ∈ (0, 1].

Thus, by the continuity of χi on [0, 1] and monotony of the expectation, we have

χ1(0) ≥ χ2(0) =⇒ qc
1 ≥ qc

2

and we conclude the proof. �

Proposition 4. Let b1 ≤ b2 ≤ . . . ≤ bt. We assume that r = 1, w1j
i.i.d.
∼ NC(1),

∀1 ≤ j ≤ t. Then, for all j = 1, . . . , t, there exists b̄ = b̄(bj) ≥ 0 such that

if bj+1 ≥ b̄ then qc
i = 0, ∀i = 1, . . . , j.



Proof. In this setting we have C(µH ,Dt) = log(1 +P
∑t

i=1 qidiXi) =: f(q), with b2i = di,

Xi
i.i.d.
∼ E(1), ∀1 ≤ i ≤ t and q ∈ Θ(t). Let Zj = 1 + P

∑
i6=j,j+1 qiXi. We then have

∂qj
f(q) = E

PdjXj

Zj + PdjXj + Pdj+1Xj+1

.

Let 0 < T ≤ 1 and p(j) be a vector with p
(j)
j+1 = T , p

(j)
j = 0 and thus

∑
i6=j,j+1 p

(j)
i = 1−T .

From the concavity of f , if

∂qj
f(q)|q=p(j) < ∂qj+1

f(q)|q=p(j), ∀0 < T ≤ 1, (4)

then qc
i = 0, ∀i = 1, . . . , j. Now, (4) becomes

E
Z + TPdjXj

Z + TPdj+1Xj+1

< 1, ∀0 < T ≤ 1,

so if

E
z + TPdjXj

z + TPdj+1Xj+1

= E
z/T + PdjXj

z/T + Pdj+1Xj+1

< 1, ∀z ≥ 1, 0 < T ≤ 1,

we are done. Last inequality is equivalent to

E
1

z + Pdj+1Xj+1
<

1

z + Pdj
, ∀z ≥ 1.

Let F (a) = E
1

z+aX
, aj+1 = Pdj+1 and aj = Pdj, we now wonder when we have

F (aj+1/z) <
1

1 + aj/z
, ∀z ≥ 1.

For a given β ∈ R+, let α(β) be the smallest number satisfying F (α(β)) < 1
1+β

. Then if
for any possible values of aj,

ā(aj) = sup
z≥1

zα(aj/z) < +∞,

we deduce that for aj ≥ ā(aj), we satisfy F (aj+1/z) <
1

1+aj/z
, ∀z ≥ 1. One can show

that α is a continuous increasing concave function with α(0) = 0 and because of that,

ā(aj) = supz≥1 zα(aj/z) = α(aj). And we conclude by setting b̄(bj) =

√
ā(Pb2j )

P
.

Comments:

The function F is also known as the Ei or exponential integral. The knowledge of the
function α gives the one of b̄. So we are interested in the reciprocal of the function

1
F (·)

− 1. From that we get that the function b̄2(bj) is continuous convex and increasing

with b̄(0) = 0, having a derivative of 1 at 0 and of 0 at infinity. One can compute it to
evaluate the ranges where the power allocation is zero.
Conclusion: We have a new water-filling situation, in the sense that we verify the
two properties exposed in the beginning of this section. However the optimal power
allocation is not the same one as in the case of a deterministic fading matrix B.
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