
Chapter 8

Source coding

We are now ready derive the direct analog of Shannon’s lossless source coding
theorem, that was first analyzed by Schumacher.

In the classical case we are given a memoryless source which produces
strings x1x2...xn where each letter x ∈ {0, 1} and occurs with probability
Prob(X = x) = px. One shows that for n sufficiently large, the outputs of
the source can be faithfully be described by nR bits as long as R > H(X)
and also that this is not possible if R < H(X). Thus length n messages can
compressed be to length nR messages with negligible error as n→ +∞.

In the quantum case a memoryless source produces tensor product states
ρx1 ⊗ · · · ρxn each “letter” ρx belonging to a finite set A of d × d den-
sity matrices (the quantum alphabet) and occurring with probability px (so∑

x∈A px = 1). The quantum state of the source is therefore∑
x1...xn

px1 ...pxnρx1 ...ρxn =
(∑

x

pxρx
)⊗n

= ρ⊗n (8.1)

This is a density matrix of dimension dn×dn (the Hilbert space of pure states
has dimension dn; for example d = 2 for Qbits, d = 3 for ”quantum trits”
ect). We want to compress the source: this means that we want to represent
it faithfully by states (or density matrices) of a Hilbert space of dimension
dnR.

In general this problem is open. It is known that it is not possible to
achieve a compression rate R < χ({px, ρx}), but it is not known that any
rate higher than the Holevo quantity is achievable. However, Schumacher
solved the special case where the alphabet letters ρx ∈ A are pure states
ρx = |ϕx⟩⟨ϕx|. Namely any rate R > S(ρ) is achievable while it is not
possible to faithfully compress at rates R < S(ρ). Note that if the alphabet
consists of orthonormal states (say {|0⟩, |1⟩}) S(ρ) = H(X) so one recovers
the classical Shannon theorem. This should be so, since orthonormal states
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are perfectly distinguishable, so that the problem becomes equivalent to the
classical one. In the sequel we concentrate on sources of pure states that live
in Cd.

8.1 Notion of typical subspace

In the classical case, the space of length n strings is partitioned into Tn,ϵ∪T c
n,ϵ

where

Tn,ϵ =

{
{x1...xn|

∣∣∣∣ 1n
n∑

i=1

logd
1

p(xi)
−H(X)

∣∣∣∣ ≤ ϵ

}
(8.2)

is called the space of (weakly) typical sequences. This definition implies that
all typical sequences have approximately the same probability, namely

d−n(H(X)+ϵ) ≤ px1 ...pxn ≤ d−n(H(X)−ϵ) (8.3)

By the law of large numbers, for any ϵ and δ small positive we can find n
large enough such that

1− δ ≤ Prob(Tn,ϵ) ≤ 1 (8.4)

Summing (8.3) over typical sequences and using (8.4) we also deduce an
estimate on the number of typical sequences

(1− δ)dn(H(X)−ϵ) ≤ |Tn,ϵ| ≤ dn(H(X)+ϵ) (8.5)

Finally, any set Sn,ϵ of sequences that is too small in the sense that |Sn,ϵ| ≤
dnR with R ≤ H(X)− ϵ has negligible probability,

Prob(Sn,ϵ) ≤ δ + d−n(H(X)−ϵ−R) (8.6)

To see this write
Sn,ϵ = (Sn,ϵ ∩ Tn,ϵ) ∪ (Sn,ϵ ∩ T c

n,ϵ) (8.7)

and use (8.3) with the union bound.
These properties immediately suggest to encode only the typical sequences

and to throw away or code non-typical ones into a junk state. Because of (8.4)
this scheme will incur a decoding error with probability at most δ. Because
of (8.5) it is enough to use n(H(X)+ ϵ) nats for the encoding. Moreover be-
cause of (8.6) using less than n(H(X)− ϵ) nats will incur a finite probability
of error1.

1See Cover and Thomas for more details
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In the quantum case one defines a similar notion of typicality. Consider
a memoryless source that outputs with probability px letters |ϕ⟩x ∈ A which
belong to the Hilbert space H = Cd. The density matrix for the source is∑
x1...xn

px1 ...pxn |ϕx1⟩⟨ϕx1 | ⊗ ...⊗ |ϕxn⟩⟨ϕxn | =
(∑

x

px|ϕx⟩⟨ϕx|
)⊗n

= ρ⊗n (8.8)

One can find the spectral decomposition of this density matrix. Indeed let

ρ =
∑
a

λaPa (8.9)

be the spectral decomposition for the length one case (here we assume for
simplicity non-degeneracy of the eigenvalues, so Pa = |a⟩⟨a|). Then

ρ⊗n =
∑

a1...an

λa1 ...λanPa1 ⊗ ...⊗ Pan (8.10)

The eigenvalues λa are positive and sum to one, thus define a probability
distribution. Moreover the projectors Pa are mutually orthogonal, thus dis-
tinguishable. Therefore the density matrix ρ⊗n is also the density matrix of
a ”mathematical” memoryless classical source that outputs letters a (or Pa

or |a⟩) with probabilities pa. We stress that this is not the physical prepara-
tion of the state ρ⊗n. We can define a set of typical sequences of eigenvalues
and/or eigenstates

Tn,ϵ =

{
a1...an|

∣∣∣∣1n
n∑

i=1

logd
1

λai
− S(ρ)

∣∣∣∣ ≤ ϵ

}
(8.11)

Definition: typical subspace. Consider the projector

Pn,ϵ =
∑

a1...an∈Tn,ϵ

Pa1 ⊗ ...⊗ Pan (8.12)

The subspace Pn,ϵH⊗n is called the typical subspace. We have

ρ⊗n = Pn,ϵρ
⊗nPn,ϵ + (I − Pn,ϵ)ρ

⊗n(I − Pn,ϵ) (8.13)

The source coding scheme described in the next section is based on the
following theorem, which is the quantum analog of (8.3), (8.5) and (8.6).

Theorem 1. [typical subspace theorem] Fix ϵ and δ positive, small. For
n sufficiently large,
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• the density matrix has almost all its support on the typical subspace

1− δ ≤ TrPn,ϵρ
⊗n ≤ 1, (8.14)

• the dimension of the typical subspace is approximately dnS(ρ)

(1− δ)dn(S(ρ)−ϵ) ≤ TrPn,ϵ ≤ dn(S(ρ)+ϵ), (8.15)

• let Sn,ϵ be a projector on a subspace of dimension less than dnR with
R ≤ S(ρ) − ϵ. In other words TrSn,ϵ ≤ dnR with R ≤ S(ρ) − ϵ. For
such a projector we have

TrSn,ϵρ
⊗n ≤ δ + d−n(S(ρ)−ϵ−R). (8.16)

Proof. The basic difference with the classical case is that one has to deal a
bit more carefully with operator inequalities for the third statement2

First statement. Observe that

Pn,ϵρ
⊗nPn,ϵ =

∑
a1...an∈Tn,ϵ

λa1 ...λanPa1 ⊗ ...⊗ Pan (8.17)

So

TrPn,ϵρ
⊗n =

∑
a1...an∈Tn,ϵ

λa1 ...λan (8.18)

which is the probability of the set Tn,ϵ. The statement follows by the law of
large numbers (as in the classical case).

Second statement. Observe that

TrPn,ϵ =
∑

a1...an∈Tn,ϵ

1 = |Tn,ϵ| (8.19)

so the statement again follows like in the classical case. Note that here we
have assumed that the eigenvalues are not degenerate (if TrPa = ga we have
to modify the definition of typical sequences according to 1

λa
→ ga

λa
).

Third statement. We use the decomposition (8.13) to write TrSn,ϵρ
⊗n as

a sum of two contributions.

2We recall: a hermitian matrix A = A† is said to be (semi-definite) positive iff ⟨ϕ|A|ϕ⟩ ≥
0 for any |ϕ⟩; A ≥ B iff (A−B) ≥ 0; and A ≥ 0 implies C†AC ≥ 0.
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For the first one we have,

TrSn,ϵPn,ϵρ
⊗nPn,ϵ = TrSn,ϵPn,ϵρ

⊗nPn,ϵSn,ϵ

≤ d−n(S(ρ)−ϵ)TrSn,ϵ

≤ d−n(S(ρ)−ϵ−R) (8.20)

In the first equality we use the cyclicity of the trace and for the first inequality
we use the operator inequality Pn,ϵρ

⊗nPn,ϵ ≤ d−n(S(ρ)−ϵ) I.

For the second contribution we observe that M = (I −Pn,ϵ)ρ
⊗n(I −Pn,ϵ)

is a positive operator so by the cyclicity of the trace

TrSn,ϵ(I − Pn,ϵ)ρ
⊗n(I − Pn,ϵ) = Tr

√
MSn,ϵ

√
M

≤ Tr
√
M I

√
M = TrM

= Trρ⊗n(I − Pn,ϵ)

≤ δ (8.21)

In the inequality we used that Sn,ϵ ≤ I (true for any projector).

8.2 Source coding scheme

The source outputs words of length n,

|ϕx1⟩ ⊗ ...⊗ |ϕxn⟩ (8.22)

with probability px1 ...pxn . We specify a bock coding scheme for these words:
we would like to encode these words which belong to the Hilbert space H⊗n

by states in a Hilbert space H⊗nR were R < 1. This encoding should be
faithful in the sense that that it should be possible to recover, most of the
time, the original words by some decoding procedure.

Encoding procedure. We have to rely on a slightly more general encoding
process that encodes source states into density matrices. An encoding map is
a map from states of dimension dn to density matrices of dimension dnR×dnR

En : H⊗n → DM(H⊗nR)

|ϕx1⟩ ⊗ ...⊗ |ϕxn⟩ → E(|ϕx1⟩ ⊗ ...⊗ |ϕxn⟩)

Here DM(H⊗nR) is the space of density matrices of dimension dnR × dnR.
The compression rate per letter is R = nR

n
.
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Decoding procedure. Ideally we should map back the density matrix
E(|ϕx1⟩ ⊗ ... ⊗ |ϕxn⟩) to the input word |ϕx1⟩ ⊗ ... ⊗ |ϕxn⟩. This cannot be
done exactly, so we allow for a slightly more general definition,

Dn : DM(H⊗nR) → DM(H⊗n)

σ → D(σ)

Reliability criterion. The scheme (En,Dn) should be faithful. Let

ρoutput = D(E(|ϕx1⟩ ⊗ ...⊗ |ϕxn⟩)) (8.23)

We define a fidelity as the overlap between the input and output states,

F (|ϕx1⟩ ⊗ ...⊗ |ϕxn⟩) = ⟨ϕx1 , ..., ϕxn |ρoutput|ϕx1 , ..., ϕxn⟩ (8.24)

The average fidelity is

F̄n =
∑

x1,...,xn

px1 ...pxn⟨ϕx1 , ..., ϕxn |ρoutput|ϕx1 , ..., ϕxn⟩ (8.25)

One has to be careful with the notation here: in each term of the sum ρoutput
depends on the input state |ϕx1 , ..., ϕxn⟩.

The intuitive meaning of the fidelity can be better understood by looking
at the classical case. If the letters |ϕx⟩ are orthonormal then we are reduced
to a classical situation and the encoding-decoding operations can be done
by looking at a “look-up table”. In other words for a typical source word
we have perfect recovery so ρoutput = |ϕx1 , ..., ϕxn⟩⟨ϕx1 , ..., ϕxn| and F = 1;
while for a non typical source word we have ρoutput = |junk⟩⟨junk| and the
decoder simply declares an error and sets F = 0 (simply assume that |junk⟩ is
orthogonal to all source words). We see that in the classical case the average
fidelity is precisely equal to 1− Prob(error).

Theorem 2. [Schumacher’s theorem] Fix ϵ > 0, δ > 0 small.

• Fix R > S(ρ) + ϵ. Then one can find encoding-decoding schemes
(En,Dn) such that for n large enough F̄n ≥ 1 − 2δ. So asymptotically
loss-less compression is possible.

• Fix R < S(ρ)− ϵ. Then for any encoding-decoding scheme (En,Dn) we
have F̄n ≤ δ + d−n(S(ρ)−ϵ−R). Loss-less compression is not possible.

This theorem says that compression rates above S(ρ) are (faithfully)
achievable, while this is not the case for compression rates below S(ρ). Note



8.3. PROOF OF THEOREM 2. 7

that in general S(ρ) ≤ H(X). The fact that a quantum source is more
compressible than a classical one should not surprise the reader: this is an
expression of the fact that non-orthogonal alphabet letters cannot be per-
fectly distinguished so that a quantum source word is more redundant than
its classical counterpart.

8.3 Proof of theorem 2.

First we prove the achievability part and then proceed to the converse.

Achievability part. We specify the encoding map E . Take the measure-
ment apparatus defined by the two orthogonal projectors {Pn,ϵ, I − Pn,ϵ) on
the typical subspace and its orthogonal complement. Given a source word
|ϕx1 , ..., ϕxn⟩ perform a measurement. According to the measurement postu-
late the outcome is

Pn,ϵ|ϕx1 , ..., ϕxn⟩
⟨ϕx1 , ..., ϕxn⟩|Pn,ϵ|ϕx1 , ..., ϕxn⟩1/2

, with prob ⟨ϕx1 , ..., ϕxn |Pn,ϵ|ϕx1 , ..., ϕxn⟩

(8.26)
or

(I − Pn,ϵ)|ϕx1 , ..., ϕxn⟩
⟨ϕx1 , ..., ϕxn⟩|I − Pn,ϵ|ϕx1 , ..., ϕxn⟩1/2

, with prob (8.27)

⟨ϕx1 , ..., ϕxn |I − Pn,ϵ|ϕx1 , ..., ϕxn⟩
Now the first state is in the typical subspace Pn,ϵH⊗n so it can be described
by nS(ρ) quantum nats (because of theorem 1 the dimension of the typical
subspace is dnS(ρ)). One can find a basis of H⊗n such that this typical sub-
space is described by the first nS(ρ) terms of the tensor product. In other
words we can find a unitary operation U that transforms the state (8.26)
to the form (this unitary depends only on the original basis and the typical
space, not on the particular input state)∑

b1...bm

cb1...bnx1...xn
| b1...bm︸ ︷︷ ︸
nR terms

, 0, 0, ..., 0︸ ︷︷ ︸
n(1−R) terms

⟩ = |ψcompressed⟩ ⊗ | 0, 0, ..., 0︸ ︷︷ ︸
n(1−R) terms

⟩ (8.28)

The state |0n(1−R)⟩ is then discarded. The second possible outcome is not
coded since it lies in the non typical subspace. More precisely we describe all
such states as |junk⟩ a single specified quantum state (in the typical subspace,
say). We assume that the outcome is not observed during the compression
stage so its state is described by the mixture

E(|ϕx1 ...ϕxn⟩) =⟨ϕx1 , ..., ϕxn|Pn,ϵ|ϕx1 , ..., ϕxn⟩|ψcompressed⟩⟨ψcompressed|
+ ⟨ϕx1 , ..., ϕxn|I − Pn,ϵ|ϕx1 , ..., ϕxn⟩|junk⟩⟨junk| (8.29)
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For the decoding operation one first appends n(1−R) quantum letters in
the |0n(1−R)⟩ state that was discarded. then one performs the inverse unitary
operation U †. So the decoder map is given by

D(E(|ϕx1 ...ϕxn⟩)) (8.30)

= Pn,ϵ|ϕx1 ...ϕxn⟩⟨ϕx1 , ..., ϕxn |Pn,ϵ

+ ⟨ϕx1 , ..., ϕxn|I − Pn,ϵ|ϕx1 , ..., ϕxn⟩U † |junk, 0n(1−R)⟩⟨junk, 0n(1−R)|U

We now estimate the fidelity associated to this scheme (En,Dn). We
replace ρoutput given by (8.30) in the definition of the average fidelity. The
contribution from the first term is∑

x1...xn

px1 ...pxn⟨ϕx1 , ..., ϕxn |Pn,ϵ|ϕx1 ...ϕxn⟩2 (8.31)

≥
{ ∑

x1...xn

px1 ...pxn⟨ϕx1 , ..., ϕxn |Pn,ϵ|ϕx1 ...ϕxn⟩
}2

= (Trρ⊗nPn,ϵ)
2

≥ (1− δ)2

The first inequality is Cauchy-Schwartz, and the second comes from theorem
1. Finally the contribution from the second term is trivially positive (write
it down and see !). Thus we conclude that

F̄ ≥ (1− δ)2 ≥ 1− 2δ (8.32)

Converse part. Let

EN : |ϕx1 ...ϕxn⟩⟨ϕx1 ...ϕxn | → σ (8.33)

be a completely general encoding scheme (so σ is any dnR × dnR density
matrix). The first step of the decoder is to append |0n(1−R)⟩⟨0n(1−R)| to get
a state

σ ⊗ |0n(1−R)⟩⟨0n(1−R)| (8.34)

in the original Hilbert space. Here we restrict the proof to the special case
of unitary decoders3. So let

D : σ ⊗ |0nR⟩⟨0nR| → Uσ ⊗ |0nR⟩⟨0nR|U † (8.35)

3More general ones would correspond to a mappings between density matrices and
would require a more complicated proof.
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The density matrix (8.34) is constructed out of states of a dnR dimensional
subspace of H⊗n. Let Sn be the projector on that subspace, and note that

Uσ ⊗ |0nR⟩⟨0nR|U † = USn

(
σ ⊗ |0nR⟩⟨0nR|

)
SnU

† (8.36)

Now, the average fidelity is

F̄ =
∑

x1...xn

px1 ...pxn⟨ϕx1 ...ϕxn |USn

(
σ ⊗ |0nR⟩⟨0nR|

)
SnU

†|ϕx1 ...ϕxn⟩ (8.37)

≤
∑

x1...xn

px1 ...pxn⟨ϕx1 ...ϕxn|USnU
†|ϕx1 ...ϕxn⟩

= Tr(ρ⊗nUSnU
†)

We first used that any density matrix is smaller than the identity matrix,
so σ ⊗ |0nR⟩⟨0nR ≤ I, and then the cyclicity of the trace. Clearly USnU

† is
a projector on some dnR dimensional subspace of H⊗n with R < S(ρ) − ϵ.
Then, the third statement of theorem 1 implies

F̄ ≤ δ + d−n(S(ρ)−ϵ−R) (8.38)

This achieves the proof of the converse part for the class of unitary decoders.


