
Chapter 3

Quantum key distribution

One of the first applications of quantum mechanics to the field of information
theory has been the 1984 proposal of Bennett and Brassard for a secure
protocol to distribute a secret key that is common to two distant parties.
Since then, there have been a few other similar protocols and a new field has
emerged, called “quantum cryptography”. In this chapter we limit ourself
to the original protocol - now called BB84 - and to a simpler one found by
Bennet in 1992. In a later chapter we will also give another protocol proposed
by Ekert in 1991, and based on entangled Einstein-Podolsky-Rosen pairs of
particles.

The general idea of BB84 is as follows. Alice sends a string of classical bits
- the secret key - to Bob by using intermediate quantum mechanical Qbits (in
practice these are photons transmitted in optic fibers). Any attempt by Eve
to capture some information about the key amounts to observe the Qbits, but
according to the postulates of QM this observation will perturb the quantum
system. Alice and Bob are then able to detect this perturbation, thus the
presence of Eve, and abort communication.

The subject is in fact more complicated because in reality the channel
(the optic fiber) is noisy and it is non-trivial to distinguish Eve from noise.
Besides the operations performed by Alice and bob are not perfect. The proof
of security (see [2]) for BB84 is therefore dependent on precise assumptions
on the physical set-up. It involves a combination of non-trivial methods
from classical and quantum information theory and is beyond the scope of
this course. Here we will analyze only two basic attacks from Eve, assuming
the channel is not noisy and the operations of Alice and Bob are perfect.

Quantum cryptography is not only a theoretical idea. It is also a truly
experimental subject since the protocols have been implemented and shown
to work in the laboratory (first at IBM in 1989 over a distance of 32 cm)
and later outside the lab on distances of few tens to hundreds of kilometers
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Figure 3.1: Alice and Bob exchange a private key over an optic fiber

(Geneva, Los Alamos ...). See [1] for a general review. Nowadays there exist
companies proposing commercial systems1. Recent implementations allow
the exchange of secret keys over a distance of 100km (resp. 250km) at a
rate of 6000 (resp. 15) bits per second [3]. require extensive knowledge of
optics and will not be discussed here. Recently the commercial systems have
been challenged by a hacking procedure exploiting the physical limitations
of photo-detectors on Bob’s side [4].

3.1 Key generation according to BB84

There are four essential phases: the encoding procedure of Alice, the decoding
procedure of Bob, a public discussion between the two parties, and finally
the common secret key generation. Figure 3.1 illustrates the general set-up
described below.

Encoding procedure of Alice. She generates a classical random binary
string x1, ..., xN , xi ∈ {0, 1} that she keeps secret. The common key will be
a subset of these bits. She also generates a second classical random binary
string e1, ..., eN , ei ∈ {0, 1} that she keeps secret for the moment. Alice then
encodes the classical bits xi into Qbits as follows:

• For ei = 0 she generates a Qbit in the state |xi⟩. Concretely this can
be done by sending a beam through a polarizer in the Z basis (figure
3.2) {

|0⟩, |1⟩
}

For xi = 0 (resp. xi = 1) the polarizer is oriented horizontally (resp.
vertically) and so photons are prepared in polarization state |0⟩ (resp.
|1⟩). A single photon is then selected from the outgoing beam (this of
course is an idealization)

1Idquantique, MagiQ
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Figure 3.2: orientations of polarizer for preparation of photons in Z basis

Figure 3.3: orientations of polarizer for preparation of photons in X basis

• For ei = 1 she generates a Qbit in the state*2 H|xi⟩. Concretely this
can be done by sending photons through a polarizer in the X basis
(figure 3.3 { 1√

2
(|0⟩+ |1⟩), 1√

2
(|0⟩ − |1⟩)

}
For xi = 0 (resp,. xi = 1) the polarizer is rotated to the right (resp.
left) and photons are prepared in polarization state 1√

2
(|0⟩+ |1⟩) (resp.

1√
2
(|0⟩+ |1⟩)).

Summarizing, Alice sends a string of Qbits |Aei,xi
⟩ = Hei|xi⟩, i = 1, ..., N

through a channel (in practice the channel is an optical fiber).

Decoding procedure of Bob. Bob generates a random classical binary
string d1, ..., dN , di ∈ {0, 1} that he keeps secret for the moment. He decodes
the received Qbits of Alice as follows:

• If di = 0 he performs a measurement of the received Qbits |Aei,xi
⟩ in

the Z basis {
|0⟩, |1⟩

}
.

The photon state after the measurement

|yi⟩ ∈ {|0⟩, |1⟩}.

is recorded in the bit yi. To do this concretely he uses the analyzer-
detector apparatus described in the first chapter: the analyzer is placed

2We remind the reader that H is the Hadamard matrix

(
1 1
1 −1

)
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D

Figure 3.4: analyzer-detector set-up for the measurement of polarization in Z
basis

D

Figure 3.5: analyzer-detector set-up for the measurement of polarization in X
basis

horizontally (figure 3.4); if the detector clicks this means the photons
state has collapsed in the |0⟩ state and if the detector does not click,
it means that the photon state has collapsed to |1⟩. We stress that,
according to the measurement postulate, these outcomes are truly ran-
dom. Only Bob knows about them.

• If di = 1 he performs a measurement of the received Qbits |Aei,xi
⟩ in

the X basis { 1√
2
(|0⟩+ |1⟩, 1√

2
(|0⟩ − |1⟩

}
.

The photon sate after the measurement is in

H|yi⟩ ∈
{ 1√

2
(|0⟩+ |1⟩), 1√

2
(|0⟩ − |1⟩)

}
When the output is H|yi⟩, and he records the bit yi.

To do this concretely he uses the analyzer-detector apparatus described
in the first chapter: the analyzer is rotated to the right (figure 3.5) at 45
degrees; if the detector clicks this means the photons state has collapsed
in the H|0⟩ state while if the detector does not click it means that the
photon state has collapsed to H|1⟩. We stress again that, according to
the measurement postulate, these outcomes are truly random and that
only Bob knows about them.

In summary Bob has decoded the Qbits sent by Alice to a classical binary
string y1, ..., yN . This string is the outcome of measurements of Bob and
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cannot be predicted (God does play with dice ... the statistics of the outcomes
can however be calculated according to the measurement postulate).

Public discussion. Alice has at her disposal two binary strings: e1, ..., eN
used to choose the encoding basis, and x1, ..., xN that was mapped to Qbits.
Bob also has two binary strings: d1, ..., dN used to choose a measurement
basis and y1, ..., yN that are his measurement outcomes.

Alice and Bob compare e1, ..., eN and d1, ..., dN over a public channel, but
keep their two other strings x1, ..., xN and y1, ..., yN secret. It important that
the public discussion starts only after Bob has finished his measurements.
They can deduce the following information (and anybody else hearing the
public discussion also can):

• If di = ei, i.e. if they used the same basis, then it must be the case that
yi = xi (the reader should convince himself of that by going through
some examples with polarizer, analyzer pairs - basically if Bob and
Alice used the same basis it is as if they lived in a classical world).

• If di ̸= ei, i.e. if they did not use the same basis, then genuine quantum
effects came into play when Bob did the measurement. According to
the measurement postulate: yi ̸= xi with probability 1

2
and yi = xi

with probability 1
2
. Let us formally prove this. Bob receives the Qbit

|Aei,xi
⟩ = Hei|xi⟩

and measures in the basis

{Hdi|0⟩, Hdi|1⟩}.

The outcome will be one of two basis states

Hdi|0⟩, with prob |⟨0|HdiHei|xi⟩|2

or
Hdi|1⟩, with prob |⟨1|HdiHei|xi⟩|2.

The reader can check that for ei ̸= di both probabilities are equal to 1
2

(and that for ei = di they are 0 and 1).

Key generation. Bob and Alice erase all bits xi and yi corresponding to
i such that ei ̸= di. They keep the remaining sub-strings of x1, ..., xn and
y1, ..., yn such that ei = di. They are assured that these two sub-strings
are identical, so this can potentially constitute the common secret key. The
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Figure 3.6: Set up of Eve’s lab along the optic fiber

length of this sub-string is close to N
2
since prob(ei ̸= di) =

1
2
. Finally Alice

and Bob perform a security test: according to quantum mechanics for this
perfect setting (without noise or Eve) one must have

prob(xi = yi|ei = di) = 1

Alice and Bob test this by exchanging a small fraction of the common sub-
string over the public channel. If the test succeeds they keep the rest of
the common sub-string secret: they have succeeded in generating a common
secret key.

3.2 Attacks from Eve

We assume that Alice has a perfect single-photon source, state preparation
is perfect, there is no channel noise, Bobs analyzer-detector apparatus makes
no detection errors. In summary when Eve is absent communication is error-
free, and any error discovered in the security test would come from Eve.
Furthermore we suppose that Eve may attack by performing operations on
one Qbit at a time on captured photons along the optic fiber and that she
has no access to the Alice and Bob’s labs. We also suppose that Eve has
perfect knowledge of the set-up in Alice and Bob’s labs: she knows that they
use X and Z basis (but not the successive random basis choices), she knows
what is their common vertical and horizontal directions, and the timing of
the photons.

We consider two possible attacks : “the measurement” and “unitary”
attacks. The two attacks consist of two steps. First Eve captures a photon,
and second she forwards the photon to Bob (see figure 3.6). For each attack
we will see that the basic postulates of QM imply that Bob and Alice discover
the presence of Eve. when this is the case they abort the protocol.
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Measurement attack. Suppose Eve captures a single photon in the optic
fiber. The captured photon is in one of the the states

|Aei,xi
⟩ ∈

{
|0⟩, |1⟩, H|0⟩, H|1⟩

}
and she tries to measure it. If Eve uses the Z basis her outcome is in {|0⟩, |1⟩}
and according to it she records a bit yEi ∈ {0, 1}. If she uses the X basis her
outcome is in {H|0⟩, H|1⟩} and she records a corresponding bit yEi ∈ {0, 1}.
Once she has finished the measurement she sends the photon to Bob in the
state left over by the measurement3. Two possibilities may occur:

• Eve has used the same basis than Alice: then her outcome is yEi = xi

and the photon state received by Bob is the “correct one”.

• Eve uses a different basis than Alice: then her outcome yEi = xi only
half of the time, so she sends the ”correct“ photon state to Bob only
half of the time.

Let us see what Alice and Bob find when they perform the security test.
Denote by EA the event ”Eve uses the same basis than Alice“.

prob(xi = yi|ei = di) = prob(xi = yi|ei = di, EA)prob(EA)

+prob(xi = yi|ei = di, notEA)prob(notEA)

= 1 · prob(EA) +
1

2
· (1− prob(EA))

=
1

2
(1 + prob(EA))

where we used

prob(xi = yi|ei = di, EA) = 1, prob(xi = yi|ei = di, not EA) =
1

2
(3.1)

Assuming that Eve has no information about the basis choices of Alice we
take prob(EA) = 1

2
. Then

prob(xi = yi|ei = di) =
3

4

so that Alice and Bob notice that when they used the same basis about a
fourth of their bits do not agree. They conclude that an eavesdropper is at
work and abort the communication.

3She could also further process this state by a unitary transformation but this will not
improve her performance
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Unitary attack. The problem of Eve is that when she makes a measurement
she has no information about the basis that Alice chose. One possible solution
would be to copy the traveling Qbits |Aei,xi

⟩, then let the original state go to
Bob, and keep the copy. When Alice and Bob enter in the public discussion
phase she learns about the basis of Bob in which to measure the Qbit and
thus for i such that ei = di she gets the same outcome as Bob yEi = yi = xi.

However the no-cloning theorem (which is a consequence of the unitary
evolution postulate) guarantees that there does not exist a unitary ”machine“
such that

U(|Aei,xi
⟩ ⊗ |blank⟩) = |Aei,xi

⟩ ⊗ |Aei,xi
⟩

The point here is that |Aei,xi
⟩ is one of

{|0⟩, |1⟩, 1√
2
(|0⟩+ |1⟩), 1√

2
(|0⟩ − |1⟩)}

which is a set of non-orthogonal states.
Eve could try to use two copy machines: one for copying the two states

of the Z basis and another for copying the two states of the X basis. But
this time she has no way of knowing which machine to use. She will use the
wrong machine half of the time and again Alice and Bob will find that

prob(xi = yi|ei = di) =
3

4

Discussion of security issues. In the above error-free set-up it is relatively
easy to generalize the proof of security in order to take into account any local
operation of Eve on single photons. In a more realistic context one has to
take into account the fact that the system is noisy. For example the optic
fiber is not perfect and the photo-detectors may give false counts. Therefore
the string sequences of Alice and Bob do not match perfectly even when
ei = di. For this reason one adds to the protocol two classical post-processing
steps: information reconciliation and privacy amplification. Both steps are
carried on the public classical channel. The first step is an error correcting
phase while the second allows to reduce the information that Eve might have
gained about the key during the correction phase. The detailed analysis is
non-trivial and the interested reader may consult the literature [2].

There are various problems that may arise due to physical limitations
that do not quite enter into the framework of the security proofs. Recently
a successful attack was implemented [4] by exploiting the fact that after a
photo-detector click, the detectors enter in a mode were they operate classi-
cally. By shining light on them Eve is able to maintain them in a classical
mode and in effect the Eve-Bob part of the transmission line is in effect
classical. In this Eve can achieve complete control of the key.
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3.3 The Bennett 1992 scheme

The analysis of BB84 has shown that the security ultimately relies on the fact
that Alice encodes Qbits in non-orthogonal states. The B92 scheme retains
this very fact and is even simpler than BB84. Below we just sketch the main
idea. There are again four main phases:

Alice encodes. Alice prepares a random binary string e1, ..., eN . She sends
to Bob |Aei⟩ = |0⟩ if ei = 0 and |Aei⟩ = H|0⟩ = 1

2
(|0⟩ + |1⟩) if ei = 1. The

encoding is thus Hei|0⟩.

Bob decodes. Bob generates a random binary string d1, ..., dN and measures
the received Qbit according to the value of di in the Z or X basis and obtains
an outcome in {|0⟩, |1⟩} or in {H|0⟩, H|1⟩}. He decodes the bit as yi = 0 if
the outcome is |0⟩ or H|0⟩ and yi = 1 if the outcome is |1⟩ or H|1⟩.

Public discussion. Bob announces over the public channel the bits yi. Note
that when ei = di we have yi = 0 with probability 1. On the other hand
when ei ̸= di we have yi = 0 with probability 1

2
and yi = 1 with probability

1
2
. Therefore from the public discussion Alice and Bob deduce that, given

yi = 1, surely di = 1− ei.

Key generation. Alice and Bob keep the secret bits (ei, di = 1 − ei) for i
such that yi = 1 and discard the rest. The length of this sub-string is about
N
2
. they perform a security test on a fraction of the sub-string on the public

channel by checking that

prob(di = 1− ei|yi = 1) = 1

Again it is not hard to check that this security condition is violated under a
measurement or a unitary attack of Eve. If that is the case Alice and Bob
abort communication.

3.4 Conjugate coding

In the encoding method of Alice above the two basis that are used correspond
to the basis diagonalizing the two Pauli matrices

Z =

(
1 0
0 −1

)
, X =

(
0 1
1 0

)
(3.2)

These two observables do not commute and are called conjugate observables
by analogy with position and momentum; therefore the two basis are some-
times called conjugate and the corresponding scheme called conjugate coding.
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Figure 3.7: unforgeable bank note: it buys one Schroedinger cat

In fact this scheme was first introduced in 1969 by Wiesner then a gradu-
ate student. Wiesner, basing himself on the principles of QM, indicated how
to ”fabricate unforgeable bank notes“. Unfortunately nobody took him seri-
ously, except for Bennett then also a graduate student, and his paper didn’t
get published till*4 1983. Bennett was one of the few persons who kept think-
ing about such problems and, with Gilles Brassard a computer scientist, had
the idea to reconsider conjugate coding in the context of cryptography.

Let us briefly explain the original idea of Wiesner. One generates a ran-
dom binary string e1, ..., e20, and prepares 20 photons in |0⟩, |1⟩ or 1√

2
(|0⟩ +

|1⟩), 1√
2
(|0⟩ − |1⟩), polarization states using Z or X polarizers. Then one

traps the 20 photons in 20 small cavities inside the bank note. The bank
note also contains a readable serial number which corresponds to the binary
string e1, ..., e20. Only the bank knows what is the mapping between the
serial number and the binary string (see figure 3.7).

Suppose somebody attempts to copy the bank note. Because of the no-
cloning theorem there is no single machine U which copies simultaneously
vertical and diagonal photon polarizations. If one uses two different machines
one will make mistakes (with prob 1− 2−20) because one doesn’t know when
to use a UZ or a UX . Moreover the bank can check if a bank note has been
forged or not. Indeed from the serial number it deduces the binary string
e1, ..., e20 and therefore knows the basis sequence used to prepare the photons.
A measurement in the correct basis (for each little cavity) is done to observe
if the photons have the correct polarization. Note that if the bank note has
not been forged it will not be destroyed by such a procedure. To summarize,
one may say that the bank knows what exact sequence of analyzers to use so
that the system behaves classically for the bank. For any other person that
does not possess this information the system behaves quantum mechanically.

4around 1982 quantum computation came into fashion because of an equally pioneering
work of Feynman
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