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Problem 1. It’s about the project.

Problem 2. (Sampling And Reconstruction)

For the zero-order interpolator we have:

1. It follows from the following chain of equalities where we use the facts that p0(t)⋆δ(t−
nT ) = p0(t − nT ) and the linearity of the convolution. The latter implies that the

convolution may be brought in and out of a sum:

x0(t) =
∑

x(nT )p0(t− nT )

=
∑

x(nT )[δt − nT ) ⋆ p0(t)]

= [
∑

x(nT )δ(t− nT )] ⋆ p0(t)

= [x(t)ET (t)] ⋆ p0(t).

2. The Fourier transform of x0(t) = [x(t)ET (t)] ⋆ p0(t) is

x0F(f) = [xF(f) ⋆
1

T
E 1

T
(f)]p0F(f)

= [
∑

xF(f − n

T
)]p0F(f).

In the proof of the sampling theorem, i.e., when sampling is done using ET (t), we have a

similar expression but without the multiplicative term p0F(f). In that case we can use

an ideal lowpass filter to remove all but the baseband term of
∑

xF(f − n
T
), obtaining

(in the frequency domain) xF(f). The undesirable effect of the multiplicative term

p0F(f) is to shape all the replicas of xF(f) in
∑

xF(f − n
T
), including the baseband

term. Hence there is some distortion that can not be removed by an ideal lowpass

filter. The desirable side effect is that it reduces the amplitude of the other replicas of

xF(f). This makes it easier to essentially remove them via a non-ideal lowpass filter.



3. An accurate reconstruction becomes easier as B and T become smaller. We can see

this in the time domain and in the frequency domain. B small implies slow variation

in the time domain an in turns it implies that the stepwise reconstruction x0(t) closely

tracks x(t). The lowpass filter will remove the jumps and the result is a fairly accurate

reproduction of the original. The analysis in the frequency domain is more insightful

since it allows to separately account for the effect of B, T , and of the lowpass filter,

namely: If B is small, the effect of the multiplicative term to xF(f) in
∑

xF(f − n
T
) is

small. In fact its absolute value is |T sinc(fT )| which is essentially flat around f = 0.

If T is small, then the replicas of xF(f) are further apart, which makes it easier to

(essentially) remove them with a non-ideal lowpass filter.

Arguing similarly for the first-order interpolator we have:

1. This is immediately obvious from a picture. In fact for the interval t ∈ [0, T ], the sum

of the two pulses ap1(t) + bp1(t − T ) is exactly the straight line that goes form a at

t = 0 to b at t = T .

2. The analysis in the frequency domain follows exactly the same lines as for the zeroth-

order case. The only difference is that p0F(f) (which is a sinc) becomes p1F(f) which

is a sinc squared. The effect on xF(f) becomes worse since the sinc squared decays

faster as we move away from f = 0. However, this effect is negligible in both cases if B

is small. On the other hand, the fact that the sinc squared decays faster is good news

for the lowpass filter which has to work less hard to remove the replicas of xF(f).

Problem 3. (DC-to-DC Converter )

1. Using Picket-Fence formula we have

pτ (f) = τsinc(fτ)× 1

T

∞∑
−∞

δ(f − n

T
) =

τ

T

∞∑
−∞

sinc(
nτ

T
)δ(f − n

T
)

Using the fact that multiplication in the time domain corresponds to convolution in

the frequency domain we have yF(f) = xF(f) ⋆
τ
T

∑∞
−∞ sinc(nτ

T
)δ(f − n

T
) which gives

yF(f) =
τ
T

∑∞
−∞ sinc(nτ

T
)xF(f − n

T
).

2. The effect of the ideal sampling in the frequency domain is creating periodic replicas

of xF(f) in the frequency domain with period 1
T
and scaled by 1

T
. In this case we have

approximately the same effect but different replicas are scaled by τ
T
sinc(nτ

T
).

3. If τ goes to T then sinc(nτ
T
) will be zero for all n except n = 0 which is 1. Hence, in

the summation only the first term or xF(f) remains which is also obvious from time

domain representation because in the time domain τ = T results in pτ (t) = 1 and so

the output is the input itself. As τ approaches 0 all of the coefficients τ
T
sinc(nτ

T
) go to

zero and the output will be zero which is also obvious from the time domain.
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4. Assume that our input signal is a very low frequency signal and in the extreme case a

constant signal with amplitude A then the Fourier transform of xF(f) will be Aδ(f)

if we input this signal to DC-to-DC Converter circuit then the output signal Fourier

transform will be
∑∞

−∞
Aτ
T
sinc(nτ

T
)δ(f − n

T
). If using a lowpass filter we extract DC

component of the signal its amplitude is Aτ
T

and by changing τ we can control this DC

component.

Problem 4. (Communication Link Design)

1. Total transmission bandwidth is 10 MHz and we can send 10 Msps (mega symbol per

second). The required bit rate is 40 Mbps (mega bit per second) and so every symbol

should carry 4 bits. Hence, we can use 16-QAM constellation for transmission.

2. The symbol error probability of 16-QAM is approximately 4Q( d√
2N0

) which is also an

upper bound for the bit error probability and d is the minimum distance between

adjacent points in the constellation. Using the inequality Q(x) < 1
2
exp(−x2

2
), x > 0

we can use 2 exp(− d2

4N0
). Setting the probability of the error to 10−5 we obtain d2 =

2.051× 10−19. The mean symbol energy of 16-QAM is easily checked to be 5d2

2
and so

Es = 5.127 × 10−19. Every symbol carries 4 bits and so Eb = Es
4
= 1.282 × 10−19. Bit

rate of the link is 40 Mbps and hence required power at the input of the receiver will

be P = RbEb = 5.127× 10−12 W.

3. The distance between the transmitter and the receiver is 5 Km and the attenuation

factor of the cable is 16 dB/Km and so the total attenuation is 80 dB and accounting

this attenuation the required transmission power is 5.127× 10−4 W.
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