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Solution of Homework 8

Problem 1. (Average Energy of PAM)

1. The pdf of S can be written as fg(s) = Z%:_mﬂ d(s — (2i — 1)a) while the pdf of
Uis fu(u) = 5-1[_qq(u). As S and U are independent the pdf of V = S + U is the
convolution of fg and fy. From a sketch of fs and fy we immediately see that fy is

uniform in [—ma, mal.

2. U and V have symmetric distribution around zero so the mean value of both is zero.
E{V?} = [™ v fy(v)dv = fﬂa v i — @ Hence, var(V') = # By symmetry,

var(U) = %

3. U and S are independent random variables and so var(V) = var(S + U) = var(S) +

var(U). Hence, var(S) = M

4. Actually we have derived the expression for the average energy of PAM given in the
Example 4.4.57 where the distance between the adjacent points is d = 2a.

Problem 2. (Pulse Amplitude Modulated Signals)

1. From the previous problem we know that the mean energy of the PAM constellation

(m? _ (m2?2-1)d?

with distance d = 2a is equal to %MZ Replacing a by g we have & = “——

2. The received signal is
y(t) = si(t) + N(t)
where N (t) is a white Gaussian noise process.

The ML detector passes the received signal into a filter with impulse response ¢(—t).
Let y be the output at time ¢ = 0. The decision is ¢ if 7 is the index that minimizes
1Y — sil .



3. The conditional probabilities of error are

Pr (e|si ~ M) — Pr (e|si ~ w>
(e olcko)

s 22) < (<P ) ()

Pr(e) = %Pr (e|si _ f(m— 1)d) N mT; 25, (e|si # i(mT_Ud>

hence
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4. Let m = 2%, then & = & (k) = £(4* — 1) and
E(k+1)
T vy
E,(k)

Problem 3. (Root-Mean Square Bandwidth)

1. If we deﬁne inner product of two function, which may be complex valued, by < f, g >=
f f*(t)g(t)dt then we have | < f,g > |*> << f,f >< g,g > by Schwartz in-
equality. It can also be checked that < f,g >=< g¢g,f >*. Using this definition

{ffooo[gi*(t)gz(t) +91(t)g§(t)]dt} =< g1,02 >+ < g2, 1 >=<Gg1,92 > + < g1, 92 >*=

(< 91,92 >). Hence, | { [ 65 (0)ga(t) + g1 (g3 (1))t } P = 4R(< g1, g0 ) < 4 <
g1, 91 >< g2, g2 > and writing the expression for < g;,¢9; > and < g, g2 > we have

{72 0109200 + gu(®)gs (0t} P < 472, 1on (1) 2t [, oo (8) Pt
2. Expanding the expression and using the fact that ¢ is a real number we have

’

[ oo <[ [ 0o o+ eswyd o]

Using the result in the previous part and setting ¢,(t) = tg(t) and ga2(t) = g (t) we

have
[ iwnsana] < [ egopa [ ]440

2

dt




3. Integrating by part we have

o0

| e )de = dgP1= -~ [ g

(o] o
First component is zero by the problem statement and so remains the second compo-
nent. Hence, replacing in the result of previous part we have

[Cistora] <o [ e [ |20

4. From Parseval’s relation we have

[ 1stopie= [ icpar

o0 [ee]

2
dt

Further more we know that the Fourier transform of dfj—g) is j2nfG(f) and applying

the Praseval’s relation to dil—sf) we have
| 1= [ e P

replacing in the result of the previous part we have

| lawpar [ iapa < anp [ elgora [ Pionpa
5. Simply, dividing the right part of the equality in the previous part by the left part and
using the definition of Ty,s and Wi, we obtain TysWims > -

E.

6. For the Gaussian pulse, it is easily checked that the shape of the pulse squared is similar
to the Gaussian distribution with ¢?> = -1 and which also needs some normalization

4
factor. Putting altogether we have

- J72 12 exp(—nt?)|[*dt
rms. ffooo | exp(—mt2)|2dt

2no

% exp(—t?/20?)dt

2mo

[ exp(—t2/202)dt]

Using the fact that
exp(—mt?) PN exp(—mf?).

we have
w2 = i
rms 471_'
Thus for the Gaussian pulse, we have
1
TrmsWrms = -
47



Problem 4. (Orthogonal Signal Sets)

1. To find the minimum-energy signal set, we first compute the centroid of the signal set:

SO

2. Notice that Z;n:_ol s5(t) = 0 by the definition of s%(¢), j=0,1,---,m—1. Hence, the

m signals {s§(t),---,sk_,(t)} are linearly dependent. This means that their space has

m—1
dimensionality less than m. We show that any collection of m—1 or less is linearly inde-
pendent. That would prove that the dimensionality of the space {s}(t), -, sk _;1(t)}

) “m—1

is m — 1. Without loss of generality we consider sj(t),--- sk _,(t). Assume that

) Om—2
Z?ZOQ a;s3(t) = 0. Using the definition of s%(t) j = 0,1,---,m — 1 we may write
ZT:_OZ(% —B)sj(t) = Bsm—1(t) = 0 where f = = Z;':Ol aj. But so(t),s1(t), -+, Sm-1(t)
is an orthogonal set and this implies § =0and a; =8 =0 j=0,1,---,m—2. That
means that a; =0 j=0,1,--- ,m—2. Hence, s5(t) j=0,1,---,m—2 are linearly
independent. We have proved that the new set spans a space of dimension m — 1.

3. It is easy to show that n-tuple corresponding to s is \/EsmT_l at position j and ‘/%
at all other positions. Clearly |[s¥||* = (m — 1)&5 + &5(m — 1)* = £(1 — ). This is

independent of j so the average energy is also & (1 — %)

Problem 5. (m-ary Frequency shift Keying)

1. Orthogonality requires fOT cos(27(fe + IAf)t) cos(2m(f. + jAf)t)dt = 0 for every i #
1

j. Using the trigonometric identity cos(a) cos(8) = 3 cos(a + ) + 3 cos(a — 3), an

equivalent condition is % f?T[COS(Qﬂ'(i — JASft) + cos(2m(2f. + (i + j)AS)t)]dt = 0.
: . sin(2m(i—j)AFT) | sin(2r(2fet(iH5)AHT) _ :
Integrating we obtain 2 %(i_]?) At oo ﬂ.]) Ay~ =0 As f.T is assumed to be

. . . sin(27(i—7)AfT) sin(2m (i+7)AfT) .
an integer, the result can be simplified to Srl—AF T 2Lt )AS) = 0. As ¢ and

j are integer this result is zeros for ¢ # j if and only if 2rAfT is an integer multiple of

7. Hence, we obtain the minimum value of Af if 27 A fT = 7 which gives Af = %



sin(2m(i—j)AfT46;—6;)—sin(0;—0;)
27981 +

= 0. In this case we see that both parts become zero if and

. Proceeding similarly we will have orthogonality if and only if
sin(2m (i+7)A fT46;+6;)—sin(0;40,)
2m(2fe+(i+7)Af)
only if 2rA fT is an even multiple of 7 which means that the smallest Af is Af = %

which is twice the minimum frequency separation needed in the previous part. Hence,
the cost of phase uncertainty is a bandwidth expansion by a factor of 2.

. The condition we obtained for the orthogonality in the first part consist of two terms
as follows fOT[COS(Q’/T(i — Aft) +cos(2m(2f.+ (i +j)Af)t)|dt = 0. We saw that if f. T
is exactly an integer number then with have orthogonality with Af = ;L. Now assume

that f. >> MASf in this case the integral value will be Sin(;ﬂ;}f:f((ii% AA; )T which its

which approaches zero as f. becomes

: 1
absolute value is always less that R GTNAT
bigger and bigger. So if we choose Af = % and take f. >> mAf then we will have
approximately orthogonality. In a similar way when we have a random phase shift then

1 and take f. >> mAf to have orthogonality.

we can choose Af = %

. Integrating s;(t)? over [0,7] we obtain A? x 2 x £ x T'= A? which holds for every i.
Hence, the mean energy of the constellation is A? but this energy is transmitted during
[0, 7] so the mean power will be A?Q which is independent of k.

. We have M signals separated by Af. The approximate bandwidth is mAf. This
means bandwidth % in the former case, without random phase shift, and bandwidth
2k

= in the latter case in which we have a random phase shift.

. Practical systems have a constant B and a T which grows linearly with k. Even if we
let T' grow linearly with k, in the system considered here, B grows exponentially with
k. This is not practical.



