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Principles of Digital Communications: Assignment date: March 14, 2012

Summer Semester 2012 Due date: March 21, 2012

Homework 5

Project: Now where you have formed the groups for your project, we start slowly with

some of the necessary ingredients which you will need to build your communications system.

Decide on what programming language you will use. Then find out how to address both the

loudspeaker as well as the microphone of your laptop. Write a small routine which can play

a sound wave consisting of a 400 Hz sine wave for exactly one second. Write another routine

which records and stores the recoding in a file.

Reading Part for the next week: Appedix 2.B (From Densities After One-To-One Dif-

ferentiable Transformations) and Appendix 2.C (Gaussian Random Vectors).

Problem 1. (QAM with Erasure)

Consider a QAM receiver that outputs a special symbol called “erasure” and denoted by δ

whenever the observation falls in the shaded area shown in the figure. Assume that s0 is

transmitted and that Y = s0 + N is received where N ∼ N (0, σ2I2). Let P0i, i = 0, 1, 2, 3

be the probability that the receiver outputs Ĥ = i and letP0δ be the probability that it

outputs δ. Determine P00, P01, P02, P03 and P0δ.
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Comment: When does the observer makes sence? If we choose b small enough we can

make sure that the probability of the error is very small (we say that an error occurred if

Ĥ = i, i ∈ {0, 1, 2, 3} and H 6= Ĥ). When Ĥ = δ, the receiver can ask for a retransmission

of H. This requires a feedback channel from the receiver to the sender. In most practical

applications such a feedback channel is available.

Problem 2. (Gaussian Hypothesis Testing)

Assume that we have an n-dimensional observation Y = (Y1, ..., Yn). Under Hi , Y ∼
N(µi, σ

2
i In), i = 0, 1, where µ0 and µ1 are n-dimensional vectors and In is the identity

matrix of dimension n. Also suppose that H0 and H1 are equiprobable.

1. (a) If σ1 = σ0 = σ, find the MAP rule and the corresponding decision regions in Rn.

How do they look like ?

(b) Find the error probability as a function of µ0, µ1 and σ.

2. (a) If µ0 = µ1 = 0 and σ0 < σ1, find the MAP rule and the corresponding decision

regions.

(b) For the simple case of n = 2, find the error probability using the following steps :

i. Show that if Y1 and Y2 are N(0, σ2) then Y 2
1 + Y 2

2 is an exponential random

variable with parameter 1
2σ2 . Hint: an exponential random variable z with

parameter λ has the following density:

fz(z) =

{
λe−λz if z ≥ 0;

0 otherwise.

ii. Find the conditional and the mean error probability as a function of σ0 and

σ1.

iii. Show that as ρ = σ1
σ0
→∞, the error probability goes to zero.

Problem 3. (Repeat Codes and Bhattacharyya Bound)

Consider two equally likely hypotheses. Under hypothesis H = 0, the transmitter sends

s0 = (1, . . . , 1) and under H = 1 it sends s1 = (−1, . . . ,−1). The channel model is the

AWGN with variance σ2 in each component. Recall that the probability of error for a ML

receiver that observes the channel output Y is

Pe = Q

(√
N

σ

)
.

Suppose now that the decoder has access only to the sign of Yi, 1 ≤ i ≤ N . That is, the

observation is

W = (W1, . . . ,WN) = (sign(Y1), . . . , sign(YN)). (1)
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1. Determine the MAP decision rule based on the observation W . Give a simple sufficient

statistic, and draw a diagram of the optimal receiver.

2. Find the expression for the probability of error P̃e of the MAP decoder that observes

W . You may assume that N is odd.

3. Your answer to (b) contains a sum that cannot be expressed in closed form. Express

the Bhattacharyya bound on P̃e.

4. For N = 1, 3, 5, 7, find the numerical values of Pe, P̃e, and the Bhattacharyya bound

on P̃e.

Problem 4. (Tighter Union Bhattacharyya Bound: Binary Case)

In this problem we derive a tighter version of the Union Bhattacharyya Bound for binary

hypotheses. Let

H = 0 : Y ∼ fY |H(y|0)

H = 1 : Y ∼ fY |H(y|1).

The MAP decision rule is

Ĥ(y) = arg max
i
PH(i)fY |H(y|i),

and the resulting probability of error is

Pr{e} = PH(0)

∫
R1

fY |H(y|0)dy + PH(1)

∫
R0

fY |H(y|1)dy.

1. Argue that

Pr{e} =

∫
y

min
{
PH(0)fY |H(y|0), PH(1)fY |H(y|1)

}
dy.

2. Prove that for a, b ≥ 0, min(a, b) ≤
√
ab ≤ a+b

2
. Use this to prove the tighter version

of Bhattacharyya Bound, i.e,

Pr{e} ≤ 1

2

∫
y

√
fY |H(y|0)fY |H(y|1)dy.

3. Compare the above bound to the one derived in class when PH(0) = 1
2
. How do you

explain the improvement by a factor 1
2
?

Problem 5. (Applying the Tight Bhattacharyya Bound)

As an application of the tight Bhattacharyya bound, consider the following binary hypothesis

testing problem

H = 0 : Y ∼ N (−a, σ2)

H = 1 : Y ∼ N (+a, σ2)

where the two hypotheses are equiprobable.
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1. Use the Tight Bhattacharyya Bound to derive a bound on Pe.

2. We know that the probability of error for this binary hypothesis testing problem is

Q( a
σ
) ≤ 1

2
exp

{
− a2

2σ2

}
, where we have used the result Q(x) ≤ 1

2
exp

{
−x2

2

}
derived in

lecture 1. How do the two bounds compare? Are you surprised (and why)?

Problem 6. (Bhattacharyya Bound for DMCs)

Consider a Discrete Memoryless Channel (DMC). This is a channel model described by an

input alphabet X , an output alphabet Y and a transition probability1 PY |X(y|x). When we

use this channel to transmit an n-tuple x ∈ X n, the transition probability is

PY |X(y|x) =
n∏
i=1

PY |X(yi|xi).

So far we have come across two DMCs, namely the BSC (Binary Symmetric Channel) and

the BEC (Binary Erasure Channel). The purpose of this problem is to realize that for

DMCs, the Bhattacharyya Bound takes on a simple form, in particular when the channel

input alphabet X contains only two letters.

1. Consider a source that sends s0 when H = 0 and s1 when H = 1. Justify the following

chain of inequalities.

Pe
(a)

≤
∑
y

√
PY |X(y|s0)PY |X(y|s1)

(b)

≤
∑
y

√√√√ n∏
i=1

PY |X(yi|s0i)PY |X(yi|s1i)

(c)
=

∑
y1,...,yn

n∏
i=1

√
PY |X(yi|s0i)PY |X(yi|s1i)

(d)
=

∑
y1

√
PY |X(y1|s01)PY |X(y1|s11) . . .

∑
yn

√
PY |X(yn|s0n)PY |X(yn|s1n)

(e)
=

n∏
i=1

∑
y

√
PY |X(y|s0i)PY |X(y|s1i)

(f)
=

∏
a∈X ,b∈X ,a 6=b

(∑
y

√
PY |X(y|s0i)PY |X(y|s1i)

)n(a,b)

.

where n(a, b) is the number of positions i in which s0i = a and s1i = b.

1Here we are assuming that the output alphabet is discrete. Otherwise we need to deal with densities

instead of probabilities.
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2. The Hamming distance dH(s0, s1) is defined as the number of positions in which s0 and

s1 differ. Show that for a binary input channel, i.e, when X = {a, b}, the Bhattacharyya

Bound becomes

Pe ≤ zdH(s0,s1),

where

z =
∑
y

√
PY |X(y|a)PY |X(y|b).

Notice that z depends only on the channel whereas its exponent depends only on s0
and s1.

3. What is z for:

(a) The binary input Gaussian channel described by the densities

fY |X(y|0) = N (−
√
E, σ2)

fY |X(y|1) = N (
√
E, σ2).

(b) The Binary Symmetric Channel (BSC) with the transition probabilities described

by

PY |X(y|x) =

{
1− δ, if y = x,

δ, otherwise.

(c) The Binary Erasure Channel (BEC) with the transition probabilities given by

PY |X(y|x) =


1− δ, if y = x,

δ, if y = E

0, otherwise.

(d) Consider a channel with input alphabet {±1}, and output Y = sign(x + Z),

where x is the input and Z ∼ N (0, σ2). This is a BSC obtained from quantizing

a Gaussian channel used with binary input alphabet. What is the crossover

probability p of the BSC? Plot the z of the underlying Gaussian channel (with

inputs in R) and that of the BSC. By how much do we need to increase the input

power of the quantized channel to match the z of the unquantized channel?
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