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Solution of Homework 3

Problem 1. (The “Wetterfrosch”)

(1) A and B must be chosen such that the suggested function become valid probability

density functions, i.e.
∫ 1

0
fY |H(y|i)dy = 1 for i = 0, 1. This yields A = 4/3 and

B = 6/7. (A quicker way is to draw the functions and find the area by looking at the

drawings.)

(2) Let us first find the marginal of Y , i.e.

fY (y) = fY |H(y|0)pH(0) + fY |H(y|1)pH(1) =
A+B

2
+

2B − 3A

12
y =

23

21
− 4

21
y,

Then, applying Bayes’ rule gives

pH|Y (0|y) =
fY |H(y|0)pH(0)

fY (y)
=
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and similarly

pH|Y (1|y) =
fY |H(y|1)pH(1)

fY (y)
=
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(3) The threshold is where the two functions are equal,
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or equivalently,

A− A

2
y = B +

B

3
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The y that satisfies this equation is our threshold θ, thus

θ =
A−B
B
3

+ A
2

= 0.5.



(4) The probability that we decide Ĥ(y) = 1 when in reality, H = 0, is just the probability

that y is larger than the threshold, given that H = 0, which is

Pr(Y > θ|H = 0) =

∫ 1

θ

fY |H(y|0)dy =

∫ 1

θ

(
A− A

2
y

)
dy

= (1− θ)A− A

2

1− θ2

2
.

(5) By analogy to (4),

Pr(Y < θ|H = 1) =

∫ θ

0

fY |H(y|1)dy =

∫ θ

0

(
B +

B

3
y

)
dy

= θB +
B

3

θ2

2
.

So we find

Pr(wrong) =
1

2
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(1− θ)A− A

2

1− θ2

2
+ θB +
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3

θ2

2

)
.

(6) To minimize Pr(wrong) over θ, we take the derivative with respect to θ, i.e.

d

dθ
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Setting this equal to zero, we find

θ =
A−B
B
3

+ A
2

= 0.5,

which verifies that the MAP decision rule (as derived in (3)) minimizes the probability

of erroneous weather forecast.

Problem 2. (Hypothesis Testing in Laplacian Noise)

(1) We find the following conditional densities for the observation Y under hypothesis H = 0

and H = 1, respectively:

fY |H(y|0) =
1

2
e−|y−a|

fY |H(y|1) =
1

2
e−|y+a|.

(2) Note that fY |H(y|0) is fZ(y−a) and fY |H(y|1) is fZ(y+a). From a picture of fY |H(y|0)

and fY |H(y|0) we see immediately that a maximum likelihood decision rule decides for

H = 0 when y > 0 and for H = 1 when y < 0.
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(3)

Pr{e|H = 0} = Pr(y < 0|H = 0) =

∫ 0

−∞
fY |H(y|0)dy

=

∫ 0

−∞

1

2
e−|y−a|dy =

∫ 0

−∞

1

2
e(y−a)dy

=
e−a

2
ey|0−∞ =

e−a

2
.

By symmetry, we find that

Pr{e|H = 1} =
e−a

2
,

and thus,

Pr{e} = Pr{e|H = 0}pH(0) + Pr{e|H = 1}pH(1) =
e−a

2
.

Problem 3. (Discrete additive Gaussian channel)

1. We define two hypotheses :

{
H0 : we send 0

H1 : we send 1.

Under
H0 : Ri ∼ N(−A, σ2) and P (Y1, ..., Yn|H0) =

1

(2πσ2)
n
2

e−
∑n
i=1

(Yi+A)2

2σ2

H1 : Ri ∼ N(A, σ2) and P (Y1, ..., Yn|H1) =
1

(2πσ2)
n
2

e−
∑n
i=1

(Yi−A)2

2σ2
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2. We find the likelihood ratio

L(Y1, ..., Yn) =
P (Y1, ..., Yn|H1)

P (Y1, ..., Yn|H0)
= e

2A
σ2

∑n
i≤1 yi

And the MAP rule is

L(Y1, ..., YN)
H0

≶
H1

1

As log(.) is an increasing function we can take the logarithm on both sides. Hence we

obtain
n∑
i=1

yi
H1

≶
H0

0

3. Under H1 ,
∑n

i=1 yi ∼ N(nA, nσ2). Hence

P (E|H1) = P

(
n∑
i=1

yi < 0|H1

)

= Q

(
nA√
nσ2

)
= Q

(√
n
A2

σ2

)
= Q(

√
nSNR)

Similarly we can show that P (E|H0) = Q(
√
nSNR). Hence P (E) = Q(

√
nSNR).

4. P (E) = Q(
√
nSNR) ≤ 1

2
e−n

SNR
2 , which goes exponentially fast to zero as a function

of n.

Problem 4. (Poisson Parameter Estimation)

(1) We can write the MAP decision rule in the following shape:

pY |H(y|1)

pY |H(y|0)

1

≷
0

pH(0)

pH(1)
. (1)

Plugging in, we find

λy1e
−λ1

λy0e
−λ0

1

≷
0

p0
1− p0

, (2)

and then (
λ1
λ0

)y 1

≷
0

p0
1− p0

eλ1−λ0 . (3)

Taking logarithms on both sides does not change the direction of the inequalities, therefore

y log

(
λ1
λ0

)
1

≷
0

log

(
p0

1− p0
eλ1−λ0

)
. (4)
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Now comes the critical step: the term log(λ1/λ0) can be negative, and if it is, then dividing

by it involves changing the direction of the inequality. This issue is discussed in more detail

in the next subsection.

(2) Suppose for the moment λ1 > λ0. Then, log(λ1/λ0) > 0, and the decision rule becomes

y
1

≷
0

log
(

p0
1−p0 e

λ1−λ0
)

log
(
λ1
λ0

) def
= θ. (5)

We compute

Pr{e|H = 0} = Pr(y > θ|H = 0) =
∞∑

y=dθe

pY |H(y|0) (6)

= 1−
bθc∑
y=0

λy0
y!
e−λ0 , (7)

and by analogy

Pr{e|H = 1} = Pr(y < θ|H = 1) =

bθc∑
y=0

pY |H(y|1) (8)

=

bθc∑
y=0

λy1
y!
e−λ1 . (9)

Thus, the probability of error becomes

Pr{e} = p0

1−
bθc∑
y=0

λy0
y!
e−λ0

+ (1− p0)
bθc∑
y=0

λy1
y!
e−λ1 . (10)

Now, suppose that λ1 < λ0. Then, log(λ1/λ0) < 0, and we have to swap the inequality sign,

thus

y
1

≶
0

log
(

p0
1−p0 e

λ1−λ0
)

log
(
λ1
λ0

) def
= θ. (11)

The rest of the analysis goes along the same lines, and finally, we obtain

Pr{e} = p0

bθc∑
y=0

λy0
y!
e−λ0 + (1− p0)

1−
bθc∑
y=0

λy1
y!
e−λ1

 . (12)

The case λ0 = λ1 yields log(λ0/λ1) = 0, so the decision rule becomes 0
1

≷
0
θ, independent of

the observation y. Thus, we may exclude the case λ0 = λ1 from our discussion.
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(3) Here, we are in the case λ1 > λ0, and we find θ ≈ 4.54. We thus evaluate

Pr{e} =
1

3

(
1−

4∑
y=0

2y

y!
e−2

)
+

2

3

4∑
y=0

(
10y

y!
e−10

)
≈ 0.1472. (13)

(4) We find θ ≈ 7.5163

Pr{e} =
1

3

(
1−

7∑
y=0

2y

y!
e−2

)
+

2

3

7∑
y=0

(
20y

y!
e−20

)
≈ 0.000885. (14)

The two Poisson distributions are much better separated than in (3); therefore, it becomes

considerably easier to distinguish them based on one single observation y.

Problem 5. (IID versus First-Order Markov)

An explanation regarding the title of this problem: i.i.d. stands for: independent and iden-

tically distributed; this means that all the observations Y1, . . . , Yk have the same probability

mass function and are independent of each other. First-order Markov means that the obser-

vations Y1, . . . , Yk depend on each other in a particular way: the probability mass function

of observation Yi depends on the value of Yi−1, but given the value of Yi−1, it is independent

of the earlier observations Y1, . . . , Yi−2. Thus, in this problem, we observe a binary sequence,

and we want to know whether it has been generated by an i.i.d. source or by a first-order

Markov source.

1. Since the two hypotheses are equally likely, we find

L(y)
def
=

fY |H(y|1)

fY |H(y|0)

1

≷
0

pH(0)

pH(1)
= 1.

Plugging in,

1/2 · (1/4)l · (3/4)k−l−1

(1/2)k

1

≷
0

1.

where l is the number of times the observed sequence changes either from zero to one

or from one to zero, i.e. the number of transitions in the observed sequence.

2. The sufficient statistic here is simply the number of transitions l; this entirely specifies

the likelihood ratio. This means that when observing the sequence y, all you have to

remember is the number of transitions; the rest can be thrown away immediately.

We can write the sufficient statistic as

T (y) = Number of transitions in the observed sequence.

The irrelevant data h(y) would be the actual location of these transitions: These

locations do not influence the MAP hypothesis testing problem. For the functions
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g0(·) and g1(·), (refer to the problem on sufficient statistics at the end of chapter 2) we

find

g0(T (y)) =

(
1

2

)k
g1(T (y)) =

1

2

1

4

T (y)3

4

k−T (y)−1
.

3. So, in this case, the number of non-transitions is (k − l) = s, and the log-likelihood

ratio becomes

log
1/2 · (1/4)k−s · (3/4)s−1

(1/2)k
= log

(1/4)k−s · (3/4)s−1

(1/2)k−1

= (k − s) log(1/4) + (s− 1) log(3/4)− (k − 1) log(1/2)

= s log
3/4

1/4
+ k log

1/4

1/2
+ log

1/2

3/4
.

Thus, in terms of this log-likelihood ratio, the decision rule becomes

s log
3/4

1/4
+ k log

1/4

1/2
+ log

1/2

3/4

1

≷
0

0.

That is, we have to find the smallest possible s such that this expression becomes larger

or equal to zero. This is

s =

⌈
k log 1/4

1/2
+ log 1/2

3/4

log 1/4
3/4

⌉
.

Plugging in k = 20, we obtain that the smallest s is s = 13.

Note: Do you understand why it does not matter which logarithm we use as long as we use

the same logarithm everywhere?

Problem 6. (One Bit over a Binary Channel with Memory)

(1) From the receiver operation we see that Y1 is available and is equal to Ŷ1. Now Ŷ2 =

Y2⊕Y1 but now we know Y1 and if we calculate module 2 sum of Y1 and Ŷ2 we will have

Ŷ2 + Y1 = Y2 ⊕ Y1 ⊕ Y1 = Y2 and so we can recover Y2 from Ŷ1 and Ŷ2 and continuing

this way at stage m we have computed Y1, Y2, · · · , Ym from Ŷ1, Ŷ2, · · · , Ŷm and now if

we compute Ŷm+1 ⊕ Ym we will obtain Ym+1 and so we can recover all of the sequence

of Y from sequence Ŷ and so sequence Y is a function of sequence Ŷ but sequence Ŷ

is a function of sequence Y by construction and so these two sequences are equivalent

and so (Ŷ1, Ŷ2, · · · , Ŷn) is a sufficient statistic for (Y1, Y2, · · · , Yn).
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(2) For the bit 0 the sequence we sent is (X
(0)
1 , · · · , X(0)

n ) so for the sequence Ŷ we have

Ŷ1 = Y1 = X
(0)
1 + Z1 and Ŷi = Yi ⊕ Yi−1 = X

(0)
i ⊕ X

(0)
i−1 ⊕ Zi ⊕ Zi−1 but from noise

construction method we see that Zi ⊕Zi−1 = Ni so simplifying the result we will have

Ŷi = X
(0)
i + X

(0)
i−1 + Ni. Using a similar method for bit 1 we have Ŷ1 = X

(1)
1 + Z1 and

Ŷi = X
(1)
i ⊕X

(1)
i−1 +Ni which holds for i = 2, 3, · · · , n.

(3) First of all we see that the effective processing of channel and receiver results in a channel

X → Ŷ in which transmitted sequence (X1, X2, · · · , Xn) is transformed to sequence

(X1, X2 ⊕X1, · · · , Xn ⊕Xn−1) at the output of the receiver processor. As can be seen

from the part (2) the noise term added to the output sequence is (Z1, N2, · · · , Nn).

We know that Z1 is independent of Ni and has the same distribution as Ni so noise

term is a sequence of iid binary random variable so it behaves similar to n independent

uses of binary symmetric channel. For the binary symmetric channel we know that

in order to minimize the probability of the error transmitted sequences under two

hypotheses should differ from each other in every term for example all zero and all

one sequences (0, 0, · · · , 0) and (1, 1, · · · , 1) have this property. In this case the signal

term in the received sequence is (X1, X2⊕X1, · · · , Xn⊕Xn−1) so we should choose Xi

such that signal terms has the maximum distance under different hypotheses. It can

be showed that alternating 0 and 1 sequences (1, 0, 1, 0, · · · ) for H1 and all 0 sequence

(0, 0, 0, 0, · · · ) for H0 result in maximal distance because in the former, at the output

of the receiver processor, we will reach to all one sequence (1, 1, 1, 1, · · · ) and in the

latter to all zero sequence (0, 0, · · · , 0) which have the maximum mutual distance and

result in minimum probability of error in MAP post-processor.
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