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Solution of Homework 2

Problem 1. (Conditioning Technique)
1. We have

E{Y|N =k} = E{E{) _Xi|N =k}}
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where we used the independence of N and X;, i = 1,2,...,n. Hence E{Y|N} = %
and using the conditioning we have
E{Y} = E{E{Y|N}}
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2. Similar to the previous part we have
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Hence E{Y?|N} = NTZ + % Taking the expectation with respect to N and using the

formulas
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Problem 2. (Conditioning Technique)

1. Given X = z, Y is uniformly distributed between 0 and x hence

1 0<y<20<z<1
0 otherwise.

frix(yle) = {



2. We use the Bayes rule to find the marginal distribution of Y, fy (y) = fy|x (y|z) fx (z)dz.
Notice that for a specific Y = y the value of X is always greater than y hence we have

fY(?J):/ frix(lz) fx(z)dx
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where y € [0,1] and 0 otherwise. Using the marginal distribution of Y we can obtain
the E{Y} as follows

E{Y} = / yfy(y)dy

= —/O ylog(y)dy
= L 1osy) ~ 5)h

3. We have E{Y'|X = x} = 5. Using the conditioning on X = x we have
E{Y} = E{E{Y|X}}
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which is the same as the previous part.
Problem 3. (Conditioning Technique) By Symmetry
EYIX+Y =2} = FE{X|X+Y =2}
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which implies that E{X|X + Y} = XX



