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School of Computer and Communication Sciences

Principles of Digital Communications: Assignment date: May 9, 2012

Summer Semester 2012 Due date: May 16, 2012

Homework 11

Reading Part for next Wednesday: From Section 6.4 (Bit-Error Probability) till end of

chapter 6 (9p).

Problem 1. (Project Plan)

Now where you have implemented the transmitter, it is time to implement the receiver. By

next Wednesday try to do the following two tasks: 1) Implement the receiver portion of the

system. 2) By putting different parts together, try to get a live system that is able to send

some amount of information and receive it. At this stage, your focus should be on getting a

simpleset version of your system to run and you should not be concerned about the quality

(error probability, delay, speed, etc) of it. Next Wednesday please bring your laptop so that

we can have a look at a small demo of your syestem.

Problem 2. (Power Spectral Density)

Block-Orthogonal signaling may be the simplest coding method that achieves Pr{e} → 0 as

N → ∞ for a non-zero data rate. However, we have seen in class that the price to pay is

that block-orthogonal signaling requires infinite bandwidth to make Pr{e} → 0. This may

be a small problem for one space explorer communicating to another; however, for terrestrial

applications, there are always constraints on the bandwidth consumption. Therefore, in

the examination of any coding method, an important issue is to compute its bandwidth

consumption. Compute the bandwidth occupied by the rate 1

2
convolutional code studied in

this chapter. The signal that is put onto the channel is given by

X(t) =

∞
∑

i=−∞

Xi

√

Esψ(t− iTs), (1)

where ψ(t) is some unit-energy function of duration Ts and we assume that the trellis extends

to infinity on both ends, but as usual we actually assume that the signal is the wide-sense

stationary signal

X̃(t) =

∞
∑

i=−∞

Xi

√

Esψ(t− iTs − T0), (2)



where T0 is a random delay which is uniformly distributed over the interval [0, Ts).

1. Find the expectation E[XiXj ] for i = j, for (i, j) = (2n, 2n+1) and for (i, j) = (2n, 2n+

2) for the convolutional code that was studied in class and give the autocorrelation

function RX [i− j] = E[XiXj] for all i and j. Hint: Consider the infinite trellis of the

code. Recall that the convolution code studied in the class can be defined as

X2n = DnDn−2

X2n+1 = DnDn−1Dn−2

2. Find the autocorrelation function of the signal X̃(t), that is

RX̃(τ) = E[X̃(t)X̃(t + τ)] (3)

in terms of RX [k] and Rψ(τ) =
1

Ts

∫

∞

−∞
ψ(t+ τ)ψ(t)dt.

3. Give the expression of power spectral density of the signal X̃(t).

4. Find and plot the power spectral density that results when ψ(t) is a rectangular pulse

of width Ts centered at 0.

Problem 3. (Trellis Section)

Draw one section of the trellis for the convolutional encoder shown below, where it is assumed

that dn takes values in {±1}. Each (valid) transition in the trellis should be labeled with

the corresponding outputs (x2n, x2n+1).

dn dn−1 dn−2

x2n = dn−1dn−2

x2n+1 = dndn−1dn−2

Problem 4. (Branch Metric)

Consider the convolutional code described by the trellis section below on the left. At time n

the output of the encoder is (x2n, x2n+1). The transmitted waveform is
√
Es

∑

xkψ(t− kT )

where ψ(t) is a (unit energy) Nyquist pulse. At the receiver we perform matched filtering

with the filter matched to ψ(t) and sample the output of the match filter at kT . Suppose

the output of the matched filter corresponding to (x2n, x2n+1) is (y2n, y2n+1) = (1,−2). Find

the branch metric values to be used by the Viterbi algorithm and enter them into the trellis

section on the right.
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Problem 5. (Viterbi Algorithm)

In the trellis below, the received sequence has already been preprocessed. The labels on the

branches of the trellis are the branch metric values. Find the maximum likelihood path.
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Problem 6. (Intersymbol Interference)

An information sequence U = (U1, U2, . . . , U5), Ui ∈ {0, 1} is transmitted over a noisy

intersymbol interference channel. The ith sample of the receiver-front-end filter (e.g. a filter

matched to the pulse used by the sender)

Yi = Si + Zi,

where the noise Zi forms an independent and identically distributed (i.i.d.) sequence of

Gaussian random variables,

Si =
∞
∑

j=0

Ui−jhj , i = 1, 2, . . .

and

hi =







1, i = 0

−2, i = 1

0, otherwise.

You may assume that Ui = 0 for i ≥ 6 and i ≤ 0.
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1. Rewrite Si in a form that explicitly shows by which symbols of the information sequence

it is affected.

2. Sketch a trellis representation of a finite state machine that produces the output se-

quence S = (S1, S2, . . . , S6) from the input sequence U = (U1, U2, . . . , U5). Label each

trellis transition with the specific value of Ui|Si.

3. Specify a metric f(s, y) =
∑

6

i=1
f(si, yi) whose minimization or maximization with

respect to s leads to a maximum likelihood decision on S. Specify if your metric needs

to be minimized or maximized. Hint: Think of a vector channel Y = S + Z, where

Z = (Z1, . . . , Z6) is a sequence of i.i.d. components with Zi ∼ N (0, σ2).

4. Assume Y = (Y1, Y2, · · · , Y5, Y6) = (2, 0,−1, 1, 0,−1). Find the maximum likelihood

estimate of the information sequence U . Please: Do not write into the trellis that you

have drawn in Part (b); work on a copy of that trellis.
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