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Homework 8

Reading Part for this week: Chapter 4 until and including Section 4.4.2 (Growing BT

Linearly with k).

Reading Part for next Wednesday: From Section 4.4.3 (Growing BT Exponentially

with k) till Section 5.2 (The Ideal Lowpass Case). Read also Appendix 5A (Fourier Series)

(10p)

Problem 1. (Average Energy of PAM)

Let U be a random variable uniformly distributed in [−a, a] and let S be a discrete random

variable, independent of U , which is uniformly distributed over {±a,±3a, · · · ,±(m − 1)a}
where m is an even integer. Let V be another random variable defined by V , S + U .

1. Find the distribution of the random variable V .

2. Find the variance of the random variables U and V .

3. Find the variance of S by using the variance of U and V . (Hint: For independent

random variables, the variance of the sum is the sum of the variances.)

4. Notice that the variance of S is actually the average energy of a PAM constellation

consisting of m points with nearest neighbor at distance 2a. Verify your answer with

the expression given in Example 4.4.57 of the lecture note.

Problem 2. (Pulse Amplitude Modulated Signals)

Consider using the signal set

si(t) = siφ(t), i = 0, 1, . . . ,m− 1,

where φ(t) is a unit-energy waveform, si ∈ {±d
2
,±3

2
d, . . . ,±m−1

2
d}, and m ≥ 2 is an even

integer.



1. Assuming that all signals are equally likely, determine the average energy Es as a

function of m. (Hint: You may use the result of the previous problem.)

2. Draw a block diagram for the ML receiver, assuming that the channel is AWGN with

power spectral density N0

2
.

3. Give an expression for the error probability.

4. For large values of m, the probability of error is essentially independent of m but the

energy is not. Let k be the number of bits you send every time you transmit si(t) for

some i, and rewrite Es as a function of k. For large values of k, how does the energy

behave when k increases by 1?

Problem 3. (Root-Mean Square Bandwidth)

The root-mean square (rms) bandwidth of a low-pass signal g(t) of finite energy is defined by

Wrms =

[∫∞
−∞ f

2|G(f)|2df∫∞
−∞ |G(f)|2df

]1/2
where |G(f)|2 is the energy spectral density of the signal. Correspondingly, the root mean-

square (rms) duration of the signal is defined by

Trms =

[∫∞
−∞ t

2|g(t)|2dt∫∞
−∞ |g(t)|2dt

]1/2
.

We want to show that, using the above definitions and assuming that |g(t)| → 0 faster than

1/
√
|t| as |t| → ∞, the time bandwidth product satisfies

TrmsWrms ≥
1

4π
.

1. Use Schwarz inequality and the fact that for any c ∈ C, c+c∗ = 2<{c} ≤ 2|c|, to prove

that {∫ ∞
−∞

[g∗1(t)g2(t) + g1(t)g
∗
2(t)]dt

}2

≤ 4

∫ ∞
−∞
|g1(t)|2dt

∫ ∞
−∞
|g2(t)|2dt.

2. In the above inequality insert

g1(t) = tg(t)

and

g2(t) =
dg(t)

dt

and show that[∫ ∞
−∞

t
d

dt
[g(t)g∗(t)] dt

]2
≤ 4

∫ ∞
−∞

t2|g(t)|2dt
∫ ∞
−∞

∣∣∣∣dg(t)

dt

∣∣∣∣2 dt.
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3. Integragte the left hand side by parts and use the fact that |g(t)| → 0 faster than

1/
√
|t| as |t| → ∞ to obtain[∫ ∞

−∞
|g(t)|2dt

]2
≤ 4

∫ ∞
−∞

t2|g(t)|2dt
∫ ∞
−∞

∣∣∣∣dg(t)

dt

∣∣∣∣2 dt.
4. Argue that the above is equivalent to∫ ∞

−∞
|g(t)|2dt

∫ ∞
−∞
|G(f)|2df ≤ 4

∫ ∞
−∞

t2|g(t)|2dt
∫ ∞
−∞

4π2f 2|G(f)|2df.

5. Complete the proof to obtain

TrmsWrms ≥
1

4π
.

6. As a special case, consider a Gaussian pulse defined by

g(t) = exp(−πt2).

Show that for this signal

TrmsWrms =
1

4π

i.e., the above inequality holds with equality. (Hint: exp(−πt2) F←→ exp(−πf 2).)

Problem 4. (Orthogonal Signal Sets)

Consider the following situation: A signal set {sj(t)}m−1j=0 has the property that all signals

have the same energy Es and that they are mutually orthogonal:

< si, sj > = Esδij. (1)

Assume also that all signals are equally likely. The goal is to translate this signal set into a

minimum-energy signal set {s∗j(t)}m−1j=0 . It will prove useful to also introduce the unit-energy

signals φj(t) such that sj(t) =
√
Esφj(t).

1. Find the minimum-energy signal set {s∗j(t)}m−1j=0 .

2. What is the dimension of span{s∗0(t), . . . , s∗m−1(t)}? For m = 3, sketch {sj(t)}m−1j=0 and

the corresponding minimum-energy signal set.

3. What is the average energy per symbol if {s∗j(t)}m−1j=0 is used? What are the savings in

energy (compared to when {sj(t)}m−1j=0 is used) as a function of m?

Problem 5. (m-ary Frequency Shift Keying)

m-ary Frequency Shift Keying (MFSK) is a signaling method described as follows: si(t) =

A
√

2
T

cos(2π(fc + i∆f)t)1[0,T ](t), i = 0, 1, · · · ,m− 1 where ∆f is the minimum frequency

separation of the different waveforms.
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1. Assuming that fcT is an integer, find the minimum ∆f as a function of T in order to

have an orthogonal signal set.

2. In practice the signals si(t), i = 0, 1, · · · ,m − 1 may be generated by changing the

frequency of a signal oscillator. In passing from one frequency to another a phase shift

θ is introduced. Again, assuming that fcT is an integer, determine the minimum ∆f

as a function of T in order to be sure that A cos(2π(fc + i∆f)t+ θi) and A cos(2π(fc +

j∆f)t+ θj) are orthogonal for i 6= j and for arbitrary θi and θj?

3. In practice we can’t have complete control over fc. In other words, it is not always

possible to set fcT exactly to an integer number. Argue that if we choose fc >> m∆f

then for all practical purposes the results of the two previous parts are still valid.

4. Assuming that all signals are equiprobable what is the mean power of the transmitter?

How it behaves as a function of k = log2(m)?

5. What is the approximate frequency band of the signal set?

6. What is the BT product for this constellation? How it behaves as a function of k?

7. What is the main drawback of this signal set?
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