Problem 1. For a Markov chain, given X_0 and X_n are independent given X_{n-1}. Thus
\[H(X_0|X_nX_{n-1}) = H(X_0|X_{n-1}) \]
But, since conditioning reduces entropy,
\[H(X_0|X_nX_{n-1}) \leq H(X_0|X_n). \]
Putting the above together we see that
\[H(X_0|X_{n-1}) \leq H(X_0|X_n). \]

Problem 2. (a) Since the words of a valid and prefix condition dictionary reside in the leaves of a full tree, the Kraft inequality must be satisfied with equality: Consider climbing up the tree starting from the root, choosing one of the D branches that climb up from a node with equal probability. The probability of reaching a leaf at depth l_i is then D^{-l_i}. Since the climbing process will certainly end in a leaf, we have
\[1 = \Pr(\text{ending in a leaf}) = \sum_i D^{-l_i}. \]
(b) Multiplying both sides of the expression above by $D^{l_{\text{max}}}$, where l_{max} is the maximum length of a string, we have
\[D^{l_{\text{max}}} = \sum_i D^{l_{\text{max}}-l_i} \]
We also have that $\forall j \geq 0, D^j = 1 \mod (D-1)$. Taking $\mod (D-1)$ on both sides of the above expression, we have that
\[1 = (\sum_i D^{l_{\text{max}}-l_i}) \mod (D-1) \]
\[= (\sum_i D^{l_{\text{max}}-l_i} \mod (D-1)) \mod (D-1) \]
\[= (\sum_i 1) \mod (D-1) \]
\[= (\text{Number of words}) \mod (D-1) \]
(c) If the dictionary is valid but not prefix-free, by removing all words that already have a prefix in the dictionary we would obtain a valid prefix-free dictionary. Since this reduced dictionary would satisfy the Kraft inequality with equality, the extra words would cause the inequality to be violated.

Problem 3.
(a) The number of 100-bit binary sequences with three or fewer ones is
\[\binom{100}{0} + \binom{100}{1} + \binom{100}{2} + \binom{100}{3} = 1 + 100 + 4950 + 161700 = 166751. \]
The required codeword length is $\lceil \log_2 166751 \rceil = 18$. (Note that the entropy of the source is $-0.005 \log_2(0.005) - 0.995 \log_2(0.995) = 0.0454$ bits, so 18 is quite a bit larger than the 4.5 bits of entropy per 100 source letters.)
(b) The probability that a 100-bit sequence has three or fewer ones is

\[\sum_{i=0}^{3} \binom{100}{i} (0.005)^i (0.995)^{100-i} = 0.60577 + 0.30441 + 0.7572 + 0.01243 = 0.99833 \]

Thus the probability that the sequence that is generated cannot be encoded is 1 – 0.99833 = 0.00167.

(c) In the case of a random variable \(S_n \) that is the sum of \(n \) i.i.d. random variables \(X_1, X_2, \ldots, X_n \), Chebyshev’s inequality states that

\[\Pr(|S_n - n\mu| \geq a) \leq \frac{n\sigma^2}{a^2}, \]

where \(\mu \) and \(\sigma^2 \) are the mean and variance of \(X_i \). (Therefore \(n\mu \) and \(n\sigma^2 \) are the mean and variance of \(S_n \).) In this problem, \(n = 100, \mu = 0.005, \) and \(\sigma^2 = (0.005)(0.995) \). Note that \(S_{100} \geq 4 \) if and only if \(|S_{100} - 100(0.005)| \geq 3.5 \), so we should choose \(a = 3.5 \). Then

\[\Pr(S_{100} \geq 4) \leq \frac{100(0.005)(0.995)}{(3.5)^2} \approx 0.04061. \]

This bound is much larger than the actual probability 0.00167.

Problem 4.

(a) Since the \(X_1, \ldots, X_n \) are i.i.d., so are \(q(X_1), q(X_2), \ldots, q(X_n) \), and hence we can apply the strong law of large numbers to obtain

\[
\lim -\frac{1}{n} \log q(X_1, \ldots, X_n) = \lim -\frac{1}{n} \sum \log q(X_i)
= -E[\log q(X)] \quad \text{w.p. } 1
= -\sum p(x) \log q(x)
= \sum p(x) \log \frac{p(x)}{q(x)} - \sum p(x) \log p(x)
= D(p|q) + H(X).
\]

(b) Again, by the strong law of large numbers,

\[
\lim -\frac{1}{n} \log q(X_1, \ldots, X_n) = \lim -\frac{1}{n} \sum \log \frac{q(X_i)}{p(X_i)}
= -E\left[\log \frac{q(X)}{p(X)}\right] \quad \text{w.p. } 1
= -\sum p(x) \log \frac{q(x)}{p(x)}
= \sum p(x) \log \frac{p(x)}{q(x)}
= D(p||q).
\]

Problem 5.
(a) Let I be the set of intermediate nodes (including the root), let N be the set of nodes except the root and let L be the set of all leaves. For each $n \in L$ define $A(n) = \{m \in N : m$ is an ancestor of $n\}$ and for each $m \in N$ define $D(m) = \{n \in L : n$ is a descendant of $m\}$. We assume each leaf is an ancestor and a descendant of itself. Then

$$E[\text{distance to a leaf}] = \sum_{n \in L} P(n) \sum_{m \in A(n)} d(m) = \sum_{m \in N} d(m) \sum_{n \in D(m)} P(n) = \sum_{m \in N} P(m)d(m).$$

(b) Let $d(n) = -\log Q(n)$. We see that $-\log P(n_j)$ is the distance associated with a leaf. From part (a),

$$H(\text{leaves}) = E[\text{distance to a leaf}] = \sum_{n \in N} P(n)d(n) = -\sum_{n \in N} P(n)\log Q(n) = -\sum_{n \in N} P(\text{parent of } n)Q(n)\log Q(n) = \sum_{m \in I} \sum_{n \mid n \text{ is a child of } m} Q(n)\log Q(n) = \sum_{m \in I} P(m)H_{m^\theta}$$

(c) Since all the intermediate nodes of a valid and prefix condition dictionary have the same number of children with the same set of Q_n, each $H_n = H$. Thus $H(\text{leaves}) = H \sum_{n \in I} P(n) = HE[L]$.

3