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Problem 1.

(a) Code I is prefix-free, Code II is not.

(b) Both codes are uniquely decodable: Code I because it is instantaneous, Code II
because the 1’s at the beginning of each code word act as markers that separates the
codewords and the decoding can be performed by counting the 0’s between the 1’s.

(c) Let X be the the indicator random variable of the event that the source letter is a1,
i.e.,

X =

{
1 if the source letter is a1,

0 otherwise

and let Y be the indicator random variable of the event that the first letter of the
codeword is a 1. The question is to find I(X;Y ). For Code I, we see that X = Y ,
and

I(X;Y ) = H(X)−H(X|Y ) = H(X) = −0.4 log 0.4− 0.6 log 0.6.

For Code II, we see that Y = 1 with probability 1 (and thus independent of X) and
thus I(X;Y ) = 0.

(d) Since each codeword of code II begins with the letter 1 and since the letter 1 only
appears at the beginning of codewords, this letter acts as an indicator of start of a
codeword.

Problem 2. Since the class of instantaneous codewords is a subset of the class of uniquely
decodable codewords, it follows that M̄2 ≤ M̄1. On the other hand, let {li} be the code-
word lengths of the uniquely decodable code for which M̄ = M̄2. Since {li} satisfies the
Kraft’s inequality, there exists an instantaneous code with these codeword lengths. For
this instantaneous code M̄ = M2 and we see that M̄1 ≤ M̄ = M2, and we conclude that
M̄1 = M̄2.

Problem 3.

(a) {00, 01, 100, 101, 1100, 1101, 1110, 1111}.

(b) For i > j observe that

Qi −Qj =
i−1∑
k=j

P (ak) ≥ P (aj) ≥ 2−lj .

So, the binary expansion of Qi and Qj must differ somewhere in the first lj bits (if
they did not the difference between Qi and Qj would have been less than 2−lj). Since
codewords for i and j are at least lj bits long, this implies that neither codeword can
be a prefix of the other. The bound on the average codeword length follows from

− log2 P (ai) ≤ li < − log2 P (ai) + 1.

This method of coding is also known as Shannon coding and predates Huffman coding.



Problem 4.

(a) Consider the longest and the shortest codewords. We know that there are at least
two longest codewords, suppose their length is l. Suppose the shortest codewords
has length s. If s and l differ by more than 1, then we can increase the length of
the shortest codeword by 1 (s′ = s+ 1) and shorten the two longest codewords by 1
(l′ = l − 1) and still satisfy Kraft inequality:

[2−s
′
+ 2−l

′
+ 2−l

′
]− [2−s + 2−l + 2−l] = 2−(l−1) − 2−(s+1) ≤ 0.

But since all the codewords are equally likely, this would have decreased the average
codeword length, contradicting the optimality of the Huffman code. Thus, the longest
and shortest codeword lengths can differ by at most 1, and, again by Kraft inequality,
their lengths must be j and j + 1.

(b) Let the number of codewords of length k be mk, k = j, j+1. Since Huffman procedure
yields a complete tree all intermediate nodes have two children. Thus, the 2j nodes
at level j of the tree are either codewords (mj of them) or each of their two children
are codewords (mj+1/2 of them). Thus

mj +mj+1/2 = 2j,

and also mj +mj+1 = x2j. From these two equations we find

mj = (2− x)2j and mj+1 = (x− 1)2j+1.

(c) By the result above the average codeword length is

[jmj + (j + 1)mj+1]/(x2j) = j + 2(x− 1)/x.

Problem 5.

(a) Let p = P (a1), thus P (a2) = P (a3) = P (a4) = (1− p)/3. By the Huffman construc-
tion (see figure below) we must have p > 2(1 − p)/3, i.e., q = 2/5 in order to have
n1 = 1.
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(b) With P (a1) = q, the figure below illustrates that a Huffman code exists with n1 > 1.
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(c) & (d) For K = 2, n1 is always 1. For K = 3, n1 = 1 is guaranteed by P (a1) > P (a2) ≥
P (a3). Now take K ≥ 4 and assume P (a1) > 2/5 and P (a1) > P (a2) ≥ · · · ≥ P (aK).
The Huffman procedure will combine aK−1 and aK to obtain a super-symbol with
probability

P (aK−1) + P (aK) < 2
3/5

K − 1
≤ 2/5.

Thus, in the reduced ensemble a1 is still the most likely element. Repeating the
argument until K = 3, we see that P (a1) > q guarantees n1 = 1 in all cases.

(e) For K < 3 no such q′ exists. For K ≥ 3, we claim q′ = 1/3. Assume a1 remains
unpaired until the 2nd to last stage (otherwise there is nothing to prove). At this
stage we have three nodes, and P (a1) < q′ must be strictly less than one of the other
two (otherwise all three would have been less than 1/3). Thus a1 will be combined
with one of them, leading to n1 > 1.

Problem 6.

H(X) = −
M∑
k=1

PX(ak) logPX(ak)

= −
M−1∑
k=1

(1− α)PY (ak) log[(1− α)PY (ak)]− α logα

= (1− α)H(Y )− (1− α) log(1− α)− α logα

Since Y is a random variable that takes M − 1 values H(Y ) ≤ log(M − 1) with equality if
and only if Y takes each of its possible values with equal probability.
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