ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences Handout 12 Homework 6 Information Theory and Coding October 25, 2011 PROBLEM 1. Construct a Tunstall code with M=8 words in the dictionary for a binary memoryless source with P(0)=0.9, P(1)=0.1. PROBLEM 2. Suppose that a discrete memoryless source U_1, U_2, \ldots with alphabet \mathcal{U} is governed by one of K probability distributions. In other words, U_1, U_2, \ldots are i.i.d. random variables with probability distribution p_U , and for some $k = 1, \ldots, K$, p_U satisfies $p_U(u) = p_k(u)$ for all u. Let $\alpha_1, \ldots, \alpha_K$ be numbers such that $\alpha_k > 0$ and $\sum_{k=1}^K \alpha_k = 1$. (a) Let $q(u) = \sum_{k=1}^{K} \alpha_k p_k(u)$. Show that there exist a prefix-free code \mathcal{C} such that $$\operatorname{length}(\mathcal{C}(u)) \leq \lceil \log_2(1/q(u)) \rceil.$$ (b) Let $L_k(\mathcal{C}) = \sum_u p_k(u) \operatorname{length}(\mathcal{C}(u))$ be the average codeword length of a code \mathcal{C} if the distribution of the source is p_k . Let $H_k = \sum_u p_k(u) \log_2(1/p_k(u))$ be the entropy of the source under the same assumption. Show that for the code in part (a), $$0 \le L_k - H_k < 1 + \log_2(1/\alpha_k)$$ for every k. (c) Show that there is a prefix-free code \mathcal{C} for which $$\max_{1 \le k \le K} [L_k(\mathcal{C}) - H_k] \le 1 + \log K.$$ (d) Rather than encoding letters one by one, now consider encoding the source in blocks of L letters. Show that there exists a prefix-free code such that $$\frac{E_k[\text{number of bits}]}{\text{source letter}} \le H_k + \frac{1 + \log K}{L}$$ for each $1 \le k \le K$, where E_k is the expectation under the assumption that $p_U(u) = p_k(u)$. PROBLEM 3. Let $U_1, U_2, ...$ be the letters generated by a memoryless source with alphabet \mathcal{U} , i.e., $U_1, U_2, ...$ are i.i.d. random variables taking values in the alphabet \mathcal{U} . Suppose the distribution p_U of the letters is known to be one of the two distributions, p_1 or p_2 . That is, either - (i) $\Pr(U_i = u) = p_1(u)$ for all $u \in \mathcal{U}$ and $i \geq 1$, or - (ii) $Pr(U_i = u) = p_2(u)$ for all $u \in \mathcal{U}$ and $i \geq 1$. Let $K = |\mathcal{U}|$ be the number of letters in the alphabet \mathcal{U} , let $H_1(U)$ denote the entropy of U under (i), and $H_2(U)$ denote the entropy of U under (ii). Let $p_{j,\min} = \min_{u \in \mathcal{U}} p_j(u)$ be the probability of the least likely letter under distribution p_j . For a word $w = u_1 u_2 \dots u_n$, let $p_j(w) = \prod_{i=1}^n p_j(u_i)$ be its probability under the distribution p_j , define $p_j(\text{empty string}) = 1$. Let $\hat{p}(w) = \max_{j=1,2} p_j(w)$. (a) Given a positive integer α , let \mathcal{S} be a set of α words w with largest $\hat{p}(\cdot)$. Show that \mathcal{S} forms the intermediate nodes of a K-ary tree \mathcal{T} with $1 + (K - 1)\alpha$ leaves. [Hint: if $w \in \mathcal{S}$ what can we say about its prefixes?] Let W be the leaves of the tree \mathcal{T} , by part (a) they form a valid, prefix-free dictionary for the source. Let $H_1(W)$ and $H_2(W)$ be the entropy of the dictionary words under distributions p_1 and p_2 . - (b) Let $Q = \min_{v \in \mathcal{S}} \hat{p}(v)$. Show that for any $w \in \mathcal{W}$, $\hat{p}(w) \leq Q$. - (c) Show that for $j = 1, 2, H_j(W) \ge \log(1/Q)$. - (d) Let W_1 be the set of leaves w such that $p_1(\text{parent of } w) \geq p_2(\text{parent of } w)$. Show that $|W_1|Qp_{1,\min} \leq 1$. - (e) Show that $|W| \leq \frac{1}{Q}(1/p_{1,\min} + 1/p_{2,\min})$. - (f) Let $E_j[\text{length}(W)]$ denote the expected length of a dictionary word under distribution j. The variable-to-fixed-length code based on the dictionary constructed above emits $$\rho_j = \frac{\lceil \log |\mathcal{W}| \rceil}{E_j \lceil \operatorname{length}(W) \rceil} \quad \text{bits per source letter}$$ if the distribution of the source is p_i . Show that $$\rho_j < H_j(U) + \frac{1 + \log(1/p_{1,\min} + 1/p_{2,\min})}{E_j[\text{length}(W)]}.$$ (Hint: relate $\log |\mathcal{W}|$ to $H_i(W)$ and recall that $H_i(W) = H_i(U)E_i[\operatorname{length}(W)]$.) (g) Show that as α gets larger, this method compresses the source to its entropy for both the assumptions (i), (ii) given above. PROBLEM 4. From the notes on the Lempel-Ziv algorithm, we know that the maximum number of distinct words c a string of length n can be parsed into satisfies $$n > c \log_K(c/K^3)$$ where K is the size of the alphabet the letters of the string belong to. This inequality lower bounds n in terms of c. We will now show that n can also be upper bounded in terms of c. - (a) Show that, if $n \ge \frac{1}{2}m(m-1)$, then $c \ge m$. - (b) Find a sequence for which the bound in (a) is met with equality. - (c) Show now that $n < \frac{1}{2}c(c+1)$.