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P R E FA C E

¿is book is our attempt to summarize the state-of-the-art of iterative channel cod-
ing. Two other popular names which describe the same area are probabilistic coding
and codes on graphs. Iterative decoding was originally devised by Gallager in 1960
in his remarkable thesis and then long forgotten. It was rediscovered by Berrou,
Glavieux, and ¿itimajshima in 1993 in the form of turbo codes, and then inde-
pendently in the mid 90’s by MacKay and McNeal, Sipser and Spielman, as well as
Luby, Mitzenmacher, Shokrollahi, Spielman, and Steman in a form much closer to
Gallager’s original construction. Iterative techniques have had a strong impact on
coding theory and practice and, more generally, on the whole of communications.

¿e titleModern Coding¿eory is clearly a hyperbole. A er all, there have been
several other important recent developments in coding theory. To name just the
most prominent one, Sudan’s list decoding algorithm for Reed-Solomon codes and
its extension to so -decision decoding have sparked new life inwhat was considered
a fairly mature if not retired subject. So what is our excuse? Iterative methods are
in�uencing a wide range of applications within and beyond communications. ¿e
method and theory are strongly tied to advances in current computing technology
and it is therefore inherently modern. Nevertheless, the font on the book cover is
supposed to express the irony that the roots of “modern” coding go back to a time
when typewriters ruled the world.

¿is book is written with several audiences in mind. We hope that it will be
a useful text for a course in coding theory. If such a course is dedicated solely to
iterative techniques, most necessary material should be contained in this book. If
the course covers both classical algebraic coding and iterative topics, this book can
be used in conjunctionwith one of themany excellent books on classical coding.We
have excluded virtually all classical material on purpose, except for the most basic
de�nitions. We hope that this book will also be of use to the practitioner in the �eld
who is trying to decide what coding scheme to employ, how a new scheme can be
designed, or how an existing system can be improved.

It is important to note that the �eld of iterative decoding has not settled in the
same way as classical coding has. ¿ere are nearly as many �avors of iterative de-
coding systems – and graphical models to denote them – as there are researchers in
the �eld. We have therefore decided to focus more on techniques to analyze and de-
sign such systems rather than speci�c such instances. In order to present the theory
we have chosen Gallager’s original ensemble of low-density parity-check codes as a
representative example. ¿is ensemble is simple enough that the main results can
be presented easily. Once the basic concepts are absorbed, their extension to more
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vi preface

general cases is typically routine and several (but not an exhaustive list) of such ex-
tensions are discussed. In particular, we have included a thorough investigation of
turbo-codes. Another characteristic of this book is that we spend a considerable
number of pages on discussing iterative decoding over the binary erasure channel.
Why spend so much time on a very speci�c and limited channel model? It is prob-
ably fair to say that what we know about iterative decoding we learned �rst for the
binary erasure channel. Due to the special properties of this channel, its basic anal-
ysis needs not much more than pen and paper and some knowledge of calculus and
probability. All important concepts encountered during the study of the binary era-
sure channel seem to carry over to general channels, although our ability to prove
some of these extensions is in some cases defeated by technical challenges.

¿ere are many possible paths through this book. Our own personal preference
is to start with the chapter on factor graphs (Chapter 2). ¿e material covered in
this chapter has the special appeal that it uni�esmany themes of information theory,
coding, and communication. Although all three areas trace their origin to Shannon’s
1948 paper, they have subsequently diverged to a point where a typical textbook in
one area treats each of the other two topics at most in passing. ¿e factor graph
approach is a nice way to glue them back together. One and the same technique
allows for the computation of capacity, and deals with equalization, modulation and
coding on an equal footing. We then recommend to cover the core of the material
in Chapter 3 (binary erasure channel) and Chapter 4 (general channels) in a linear
fashion.

¿e remaining material can be read in almost any order according to the pref-
erences of the reader. At this point, e.g., it might be rewarding to broaden the view
and to go through some of the material on more general channels (Chapter 5). Al-
ternatively, you might be more interested in general ensembles. Chapter 6 discusses
turbo codes and Chapter 7 deals with various further ensembles and the issues of
graph design. We have not tried to give an exhaustive list of all known codes since
this list is growing daily and there is no sign that this growth will stop anytime soon.
Rather, we have tried to pick some representative examples.

Chapter 8 gives a brief look at a complementary way of analyzing iterative sys-
tems in terms of the expansion of the underlying bipartite graph.

¿e Appendix contains various chapters on topics which either describe tools
for analysis or are simply too technical to �t into the main part. Chapter A takes
a look at the encoding problem. Curiously, for iterative schemes the encoding task
can be of equal complexity (or even higher) than the decoding task. Appendix B dis-
cusses e�cient and accurateways of implementing density evolution. InAppendixC
we describe various techniques from probability which are useful in asserting that
most elements of a properly chosen ensemble behave “close” to the ensemble aver-
age. We take a close look at generating functions in Appendix D. In particular we
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discuss how to accurately estimate the coe�cients of powers of polynomials – a re-
current theme in this book. Finally, in Appendix E we collected a couple of lengthy
proofs.

Althoughwehave tried tomake thematerial as accessible as possible, the prereq-
uisites for various portions of the book vary considerably. Some seemingly simple
questions need quite sophisticated tools for their answer. A good example is thema-
terial related to theweight distribution of LDPC codes and their error �oor behavior.
In these cases, when the density of equations increases to a painful level, the casual
reader is advised not to get discouraged but rather to skip the proofs. Fortunately,
in all these cases the subsequent material depends very little on the mathematical
details of the proof.

If you are a lecturer and you are giving a beginning graduate level course we rec-
ommend that you follow the basic course outlined above but skip some of the less
accessible topics. For example, little is lost by simply stating that for “most” ensem-
bles the design rate is equal to the real rate without going through the proof.¿is is a
“natural” statement which is readily accepted. For general binary memoryless sym-
metric channels one can �rst focus onGallager’s decoding algorithmA.¿e analysis
for this case is very similar to the one for the binary erasure channel. A subsequent
discussion of the belief propagation decoder can skip some of proofs and so avoid
a discussion of some of the technical di�culties. If your course is positioned as an
advanced graduate level course thenmost of thematerial should be accessible to the
students.

We started out to write a thin book containing all there is to know about iter-
ative decoding. We ended up with a rather thick one and a number of regrettable
omissions. To mention just the most important ones: we do not cover the emerg-
ing theory of pseudo codewords and their connections to the error �oor for gen-
eral channels. We only scratched the surface of the rich area of interleaver design.
Rateless codes deserve a much more prominent role, and there is no discussion of
the powerful techniques borrowed from statistical mechanics which have been used
successfully in the analysis. Finally, we onlymention, but do not discuss, source cod-
ing by iterative techniques.

But rather than endingwith regrets, let us closewith the following (slightlymod-
i�ed) quote by Descartes: “[We] hope that posterity will judge [us] kindly, not only
as to the things which [we] have explained, but also as to those which [we] have
intentionally omitted so as to leave to others the pleasure of discovery.” ;-)

We have received much feedback over the years. We would like to thank A.
Ahmed,A.Amraoui, B. Bauer, J. Boutros, S.-Y.Chung,H.Croonie, C.Di,N.Dütsch,
J. Ezri, T. Filler, A. Guillen i Fabregas, M. Haenggi, T. Hehn, D. Huang, A. Karbasi,
B. Konsbruck, S. Korada, S. Kudekar, L. Gong, N. Macris, A. Orlitsky, H. P�ster, D.
Porrat, V. Rathi, K. S. Reddy, V. Skachek, I. Tal, L. Varshney, P. Vontobel, G. Wiech-
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man, and L. Zhichu for providing us with feedback and we apologize to all of you
whom we missed.

Special thanks go to A. Barg, C. Berrou, M. Durvy, D. Forney, G. Kramer, D.
MacKay, C. Méasson, S. Pietrobon, B. Rimoldi, D. Saad, E. Telatar, and Y. Yu for
their extensive reviews and the large number of suggestions they provided. Proba-
bly nobody read the initial manuscript more carefully and provided us with more
feedback than Igal Sason. We are very thankful to him for this invaluable help.

A. Chebira, J. Ezri, A. Gueye, T. Ktari, C.Méasson, C. Neuberg, and P. Reymond,
were of tremendous help in producing the �gures and simulations. ¿ank you for
all the work you did.

A considerable portion of this book is the direct result of our various collabora-
tions. We enjoyed working with A. Amraoui, L. Bazzi, S.-Y. Chung, C. Di, S. Dusad,
J. Ezri, D. Forney, H. Jin, N. Kahale, N.Macris, C.Méasson, A.Montanari, H. P�ster,
D. Proietti, V. Rathi, A. Shokrollahi, I. Sason, and E. Telatar, on many topics related
to this book.

Nobody has contributed more to the realization of this book than E. Telatar
(a.k.a. “Emre theWise”). He hand picked the font (MinionPro), designed the layout
(using the “memoir" package by P. Wilson), showed us how to program �gures in
Postscript by hand, was our last resort for any question LaTeX, andwe have bene�ted
from his expertise and advice in many other areas as well.

¿is book would not have been �nished without the constant encouragement
by P. Meyler from Cambridge. We thank A. Littlewood at Cambridge for her expert
handling and ... .

Last but not least, M. Bardet has managed to keep the chaos at bay at EPFL
despite RU’s best e�orts to the contrary. I would like to thank her for thismiraculous
accomplishment.

¿e idea for this book was born at the end of the last millennium when we were
both happy members of the Mathematics of Communications group at Bell Labs
headed by the late AaronWyner and then by JimMazo.Wewould like to thank both
of them for giving us the freedom to pursue our ideas. Since our departure fromBell
Labs, EPFL and Flarion Technologies/Qualcomm have been our hospitable homes.

T. Richardson
Richardson’s Island

R. Urbanke
Lausanne
September 1, 2020
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Chapter 1

I N T R O D U C T I O N

§1.1. Why You Should Read This Book
¿e technology of communication and computing advanced at a breathtaking pace
in the 20th century, especially in the second half. A signi�cant part of this advance
in communication began some 60 years ago when Shannon published his seminal
paper "AMathematical ¿eory of Communication." In that paper Shannon framed
and posed a fundamental question: how can we e�ciently and reliably transmit in-
formation? Shannon also gave a basic answer: coding can do it. Since that time the
problem of �nding practical coding systems that approach the fundamental limits
established by Shannon has been at the heart of information theory and commu-
nications. Recently, tremendous advances have taken place that bring us close to
answering this question. Perhaps, at least in a practical sense, the question has been
answered. ¿is book is about that answer.

¿e advance came with a fundamental paradigm shi in the area of coding that
took place in the early 90’s. In Modern Coding ¿eory, codes are viewed as large
complex systems described by random sparse graphical models and encoding as well
as decoding are accomplished by e�cient local algorithms.¿e local interactions of
the code bits are simple but the overall code is nevertheless complex (and so su�-
ciently powerful to allow reliable communication) because of the large number of
interactions. ¿e idea of random codes is in the spirit of Shannon’s original formu-
lation. What is new is the sparseness of the description and the local nature of the
algorithms.

¿ese are exciting times for coding theorists and practitioners. Despite all the
progress made, many fundamental questions are still open. Even if you are not in-
terested in coding itself, however, you might be motivated to read this book. Al-
though the focus of this book is squarely on coding, the larger view holds a much
bigger picture. Sparse graphical models and message-passing algorithms, to name
just two of the notions that are fundamental to our treatment, play an increasingly
important role in many other �elds as well. ¿is is not a coincidence. Many of the
innovations were brought into the �eld of coding by physicists or computer scien-
tists. Conversely, the success of modern coding has inspired work in several other
�elds.

Modern coding will not displace classical coding anytime soon. At any point in
time hundreds of millions of Reed-Solomon codes work hard to make your life less
error prone. ¿is is unlikely to change substantially in the near future. But mod-

1
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2 introduction

ern coding o�ers an alternative way of solving the communications problem. Most
current wireless communications systems have already adopted modern coding.

Technically, our aim is focused on Shannon’s classical problem:wewant to trans-
mit amessage across a noisy channel so that the receiver can determine this message
with high probability despite the imperfections of the channel. We are interested in
low-complexity schemes that introduce little delay and allow reliable transmission
close to the ultimate limit, the Shannon capacity.

We start with a review of the communications problem (Section 1.2), we cover
some classical notions of codes (Sections 1.3, 1.4, 1.5, 1.7, and 1.8), and we review the
channel coding theorem (Section 1.6). Section 1.9 gives an outline of the modern
approach to coding. Finally, we close in Section 1.10 with a review of the notational
conventions and some useful facts.

§1.2. Communications Problem
Consider the following communications scenario – the point-to-point communica-
tions problem depicted in Figure 1.1. A source transmits its information (speech, au-

source channel sink

Figure 1.1: Basic point-to-point communications problem.

dio, data, . . . ) via a noisy channel (phone line, optical link, wireless, storagemedium,
. . . ) to a sink. We are interested in reliable transmission, i.e., we want to recreate
the transmitted information with as little distortion (number of wrong bits, mean
squared error distortion, . . . ) as possible at the sink.

In his seminal paper in 1948, Shannon formalized the communications problem
and showed that the point-to-point problem can be decomposed into two separate
problems as shown in Figure 1.2. First, a source encoder transforms the source into
a bit stream. Ideally, the source encoder removes all redundancy from the source
so that the resulting bit stream has the smallest possible number of bits while still
representing the source with enough accuracy. ¿e channel encoder then processes
the bit stream to add redundancy. ¿is redundancy is carefully chosen to combat
the noise that is introduced by the channel.

To be mathematically more precise: we model the output of the source as a
stochastic process. For example, we might represent text as the output of a Markov
chain, describing the local dependency structure of letter sequences. It is the task of
the source encoder to represent this output as e�ciently as possible (using as few bits
as possible) given a desired distortion. ¿e distortion measure re�ects the “cost” of
deviating from the original source output. If the source emits points in Rn it might
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be natural to consider the squared Euclidean distance, whereas if the source emits
binary strings a more natural measure might be to count the number of positions in
which the source output and the word that can be reconstructed from the encoded
source di�er. Shannon’s source coding theorem asserts that, for a given source and
distortion measure, there exists a minimum rate R = R(d) (bits per emitted source
symbol) which is necessary (and su�cient) to describe this source with distortion
not exceeding d. ¿e plot of this rate R as a function of the distortion d is usually
called the rate-distortion curve. In the second stage an appropriate amount of redun-
dancy is added to these source bits to protect them against the errors in the channel.
¿is process is called channel coding.¿roughout the book wemodel the channel as
a probabilistic mapping and we are typically interested in the average performance,
where the average is taken over all channel realizations. Shannon’s channel coding
theorem asserts the existence of a maximum rate (bits per channel use) at which in-
formation can be transmitted reliably, i.e., with vanishing probability of error, over
a given channel. ¿is maximum rate is called the capacity of the channel and is de-
noted by C. At the receiver we �rst decode the received bits to determine the trans-
mitted information. We then use the decoded bits to reconstruct the source at the
receiver. Shannon’s source-channel separation theorem asserts that the source can be
reconstructed with a distortion of at most d at the receiver if R(d) < C, i.e., if the
rate required to represent the given source with the allowed distortion is smaller
than the capacity of the channel. Conversely, no scheme can do better. One great
bene�t of the separation theorem is that a communications link can be used for a
large variety of sources: one good channel coding solution can be used with any
source. Virtually all systems in use today are based on this principle. It is important

channel
encoder channel channel

decoder

source
encoder

source
decoder

source sink

Figure 1.2: Basic point-to-point communications problem in view of the source-
channel separation theorem.

though to be aware of the limitations of the source-channel separation theorem.¿e
optimality is only in terms of the achievable distortion when large blocks of data are
encoded together. Joint schemes can be substantially better in terms of complexity
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or delay. Also, the separation is no longer valid if one looks at multi-user scenarios.
We will not be concerned with the source coding problem or, equivalently, we

assume that the source coding problem has been solved. For us, the source emits a
sequence of independent identically distributed (iid) bits which are equally likely to
be zero or one. Under this assumption, we will see how to accomplish the channel
coding problem in an e�cient manner for a variety of scenarios.

§1.3. Coding: Trial and Error
How can we transmit information reliably over a noisy channel at a strictly positive
rate?At some levelwe have already given the answer: add redundancy to themessage
that can be exploited to combat the distortion introduced by the channel. By starting
with a special case we want to clarify the key concepts.

Xt Yt

1 − є

1 − є

є
є

1

-1

1

-1
Figure 1.4: BSC(є)

Example 1.3 (Binary SymmetricChannel). Consider the binary symmetric chan-
nelwith cross-over probability є depicted in Figure 1.4.We denote it by BSC(є). Both
input Xt and output Yt are elements of ��1�. A transmitted bit is either received
correctly or received �ipped, the latter occurring with probability є, and di�erent
bits are �ipped or not �ipped independently. We can assume that 0 < є < 1

2 without
loss of generality.

¿e BSC is the generic model of a binary-input memoryless channel in which
hard decisions aremade at the front end of the receiver, i.e., where the received value
is quantized to two values. n

First Trial: Suppose that the transmitted bits are independent and that P�Xt =
+1� = P�Xt = −1� = 1

2 . We start by considering uncoded transmission over the
BSC(є). ¿us, we send the source bits across the channel as is, without the insertion
of redundant bits. At the receiver we estimate the transmitted bit X based on the
observation Y. As we will learn in Section 1.5, the decision rule that minimizes the
bit-error probability, call it x̂MAP(y), is to choose that x > ��1� which maximizes
pX SY(x S y) for the given y. Since the prior on X is uniform, an application of Bayes
rule shows that this is equivalent to maximizing pY SX(y S x) for the given y. Since
є < 1

2 we conclude that the optimal estimator is x̂
MAP(y) = y.¿eprobability that the
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codes and ensembles 5

estimate di�ers from the true value, i.e., Pb = P�x̂MAP(Y) x X�, is equal to є. Since
for every information bit wewant to convey we send exactly one bit over the channel
we say that this scheme has rate 1. We conclude that with uncoded transmission we
can achieve a (rate,Pb)-pair of (1,є).

SecondTrial: If the error probability є is too high for our application, what trans-
mission strategy can we use to lower it? ¿e simplest strategy is repetition-coding.
Assume we repeat each bit k times. To keep things simple, assume that k is odd. So
if X, the bit to be transmitted, has value x then the input to the BSC(є) is the k-tuple
x,� ,x. Denote the k associated observations byY1�Yk. It is intuitive, and not hard
to prove, that the estimator that minimizes the bit-error probability is given by the
majority rule

x̂MAP(y1,� , yk) = majority of �y1,� , yk�.
Hence the probability of bit error is given by

Pb = P�x̂MAP(Y) x X� k odd= P�at least �k~2� errors occur� = Q
iAk~2
�k
i
�єi(1 − є)k−i.

Since for every information bit we want to convey we send k bits over the chan-
nel we say that such a scheme has rate 1

k . So with repetition codes we can achieve
the (rate,Pb)-pairs ( 1k ,PiAk~2 �ki�єi(1 − є)k−i). For Pb to approach zero we have to
choose k larger and larger and as a consequence the rate approaches zero as well.

Can we keep the rate positive and still make the error probability go to zero?

§1.4. Codes and Ensembles
Information is inherently discrete. It is natural and convenient to use �nite �elds to
represent it. ¿e most important instance for us is the binary �eld F2, consisting of
�0,1� with mod-2 addition and mod-2multiplication (0 + 0 = 1 + 1 = 0; 0 + 1 = 1;
0 ċ 0 = 1 ċ 0 = 0; 1 ċ 1 = 1). In words, if we use F2 then we represent information in
terms of (sequences of) bits, a natural representation and convenient for the purpose
of processing. If you are not familiar with �nite �elds, very little is lost if you replace
any mention of a generic �nite �eld F with F2. We write SF S to indicate the number
of elements of the �nite �eld F, e.g., SF2 S = 2. Why do we choose �nite �elds? As we
will see, this allows us to make use of algebraic operations in both the encoding as
well as the decoding, signi�cantly reducing the complexity.

Definition 1.5 (Code). A code C of length n and cardinality M over a �eld F is a
collection ofM elements from Fn, i.e.,

C(n,M) = �x[1],� ,x[M]�, x[m] > Fn,1 B m B M.

¿e elements of the code are called codewords. ¿e parameter n is called the block-
length. S
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Example 1.6 (Repetition Code). Let F = F2. ¿e binary repetition code is de�ned
as C(n = 3,M = 2) = �000,111�. n

In the above example we have introduced binary codes, i.e., codes whose com-
ponents are elements of F2 = �0,1�. Some times it is more convenient to think of
the two �eld elements as ��1� instead (see, e.g., the de�nition of the BSC in Ex-
ample 1.3). ¿e standard mapping is 0 � 1 and 1 � −1. It is convenient to use
both notations. We freely and frequently switch and, with some abuse of notation,
wemake no distinction between these two cases and simply talk about binary codes
and F2 even if the components take values in ��1�.
Definition 1.7 (Rate). ¿e rate of a codeC(n,M) is r = 1

n logSF SM. It is measured
in information symbols per transmitted symbol. S

Example 1.8 (Repetition Code). Let F = F2. We have r(C(3,2)) = 1
3 log2 2 =

1
3 .

It takes 3 channel symbols to transmit one information symbol. n

¿e following two de�nitions play a role only much later in the book. But it is
convenient to collect them here for reference.

Definition 1.9 (Support Set). ¿e support set of a codeword x > C is the set of
locations i > [n] = �1,� ,n� such that xi x 0. S

Definition 1.10 (Minimal Codewords). Consider a binary code C, i.e., a code
over F2. We say that a codeword x > C isminimal if its support set does not contain
the support set of any other (non-zero) codeword. S

¿e Hamming distance introduced in the following de�nition and the derived
minimum distance of a code (see De�nition 1.12) are the central characters in all of
classical coding. For us they only play a minor role.¿is is probably one of the most
distinguishing factors between classical and modern coding.

Definition 1.11 (HammingWeight andHammingDistance). Let u,v > Fn.¿e
Hamming weight of a word u, which we denote by w(u), is equal to the number of
non-zero symbols in u, i.e., the cardinality of the support set.¿eHamming distance
of a pair (u,v), which we denote by d(u,v), is the number of positions in which u
di�ers from v. We have d(u,v) = d(u−v,0) = w(u−v). Further, d(u,v) = d(v,u)
and d(u,v) C 0, with equality if and only if u = v. Also, d(ċ, ċ) satis�es the triangle
inequality

d(u,v) B d(u, t) + d(t,v),
for any triple u,v, t > Fn. In words, d(ċ, ċ) is a true distance in the mathematical
sense (see Problem 1.2). S
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Definition 1.12 (Minimum Distance of a Code). Let C be a code. Its minimum
distance d(C) is de�ned as

Sd(C) = min�d(u,v) � u,v > C,u x v� .
Let x > Fn and t > N. A sphere of radius t centered at the point x is the set of all

points inFn that have distance atmost t from x. If, for a codeC ofminimumdistance
d, we place spheres of radius t = �d−12 � around each codeword, then these spheres
are disjoint. ¿is follows from the triangle inequality: if u and v are codewords and
x is any element in Fn then d(C) B d(u,v) B d(u,x)+d(v,x). If x is in the sphere
of radius t around u then this implies that d(v,x) C d(C) − d(u,x) C d+1

2 A t. In
words, x is not in the sphere of radius t around v. Further, by de�nition of d, t is the
largest such radius.

¿e radius t has an important operational meaning that explains why much of
classical coding is centered on the construction of codes with large minimum dis-
tance. To be concrete, consider the binary case. Assume we use a code C(n,M,d)
(i.e., a code with M codewords of length n and minimum distance d) for trans-
mission over a BSC and assume that we employ a bounded distance decoder with
decoding radius t, t B �d−12 �. More precisely, given y the decoder chooses x̂BD(y)
de�ned by

x̂BD(y) =
¢̈̈
¦̈̈
¤
x > C, if d(x, y) B t,
error, if no such x exists,

where by “error” the decoder declares that it is unable to decode. ¿is is important:
using the triangle inequality we see that for a given y there can be at most one x > C
so that d(x, y) B t. ¿erefore, if the weight of the error does not exceed t then such
a combination �nds the correct transmitted word.¿erefore, a large t implies a large
resilience against channel errors.

0.2 0.4 0.6 0.80.0 r

0.1
0.2
0.3

δ(
r)

GV
Elias

Figure 1.13: Upper and lower bound on δ�(r).

How large can d (and hence t) be made in the binary case? Let δ = d~n denote
the normalized distance and consider for a �xed rate r, 0 < r < 1,

δ�(r) = lim sup
n�ª

max�d(C)
n
� C > C �n,2
nr��¡ ,
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where C �n,2
nr�� denotes the set of all binary block codes of length n containing
at least 2
nr� codewords. Problem 1.15 discusses the asymptotic Gilbert-Varshamov
bound

h−12 (1 − r) B δ�(r),
where h2(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function and
where for y > [0,1], h−12 (y) is the unique element x > [0, 12] such that h2(x) = y.
Elias introduced the following upper bound,

δ�(r) B 2h−12 (1 − r)(1 − h−12 (1 − r)).(1.14)

Both bounds are illustrated in Figure 1.13.
We can now answer the question posed at the end of the previous section. For

a �xed channel BSC(є) pick a rate r such that δ�(r) A 2є + ω, where ω is some
arbitrarily small but strictly positive quantity. We see from the Gilbert-Varshamov
bound that such a strictly positive r and ω exist if є < 1~4. By the de�nition of δ�,
we can �nd a code of rate r of arbitrarily large blocklength n which has a relative
minimum distance at least δ = 2є + ω. By Chebyshev’s inequality (see Lemma C.3
on page 486), for every positive probability P bounded away from 1 there exists a
positive constant c such that the number channel �ips in a block of length n is at
most nє+ c

º
nwith probability P. Assume that we employ a bounded distance de-

coder. If we choose n su�ciently large so that nє + c
º
n < δn~2 = nє + nω~2, then

the bounded distance decoder succeeds with probability at least P. Since P can be
chosen arbitrarily close to 1 we see that there exist codes which allow transmission
at a positive rate with arbitrarily small positive probability of error. ¿e above pro-
cedure is by no means optimal and does not allow us to determine up to what rates
reliable transmission is possible. We will see in Section 1.6 how we can characterize
the largest such rate.

Constructing provably good codes is di�cult. A standard approach to show the
existence of good codes is the probabilistic method: an ensemble C of codes is “con-
structed” using some random process and one proves that good codes occur with
positive probability within this ensemble. O en the probability is close to 1 – almost
all codes are good. ¿is approach, used already by Shannon in his 1948 landmark
paper, simpli�es the code “construction” task enormously (at the cost of a less useful
result).

Definition 1.15 (Shannon’s Random Ensemble). Let the �eld F be �xed. Con-
sider the following ensemble C(n,M) of codes of length n and cardinalityM.¿ere
are nM degrees of freedom in choosing a code, one degree of freedom for each
component of each codeword. ¿e ensemble consists of all SF SnM possible codes
of length n and cardinality M. We endow this set with a uniform probability dis-
tribution. To sample from this ensemble proceed as follows. Pick the codewords
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x[1],� ,x[M] randomly by letting each component x[m]i be an independently and
uniformly chosen element of F. S

We will see that such a code is likely to be “good” for many channels.

§1.5. MAP and ML Decoding and APP Processing
Assume we transmit over a channel with input F and output space Y using a code
C(n,M) = �x[1],� ,x[M]�. Let the channel be speci�ed by its transition probability
pY SX(y S x). ¿e transmitter chooses the codeword X > C(n,M) with probability
pX(x). (In communications the idea is that the transmitter wants to transmit one
ofMmessages and uses one codeword for each possible message.)¿is codeword is
then transmitted over the channel. Let Y denote the observation at the output of the
channel. To what codeword shouldY be decoded? If we decodeY to x̂(Y) > C, then
the probability that we have made an error is 1−pX SY(x̂(Y) S y).¿us, to minimize
the probability of block error we should choose x̂(Y) to maximize pX SY(x̂(Y) S y).
¿emaximum a-posteriori (MAP) decoding rule reads

x̂MAP(y) = argmaxx>CpX SY(x S y)
= argmaxx>CpY SX(y S x)

pX(x)
pY(y)by Bayes’ rule

= argmaxx>CpY SX(y S x)pX(x).

Ties can be broken in some arbitrary manner without a�ecting the error proba-
bility. As we indicated, this estimator minimizes the probability of (block) error
PB = P�x̂MAP(Y) x X�. If all codewords are equally likely, i.e., if pX is uniform,
then

x̂MAP(y) = argmaxx>CpY SX(y S x)pX(x) = argmaxx>CpY SX(y S x) = x̂ML(y),

where the right hand side represents the decoding rule of the maximum likelihood
(ML) decoder. In words, for a uniform prior pX the MAP and the ML decoders are
equivalent.

¿e key step in the MAP decoding process is to compute the a-posterior prob-
ability (APP) pX SY(x S y), i.e., the distribution of X given the observation Y. So we
call a MAP decoder also an APP decoder. Also, we will say that we perform APP
processing to mean that we compute the a-posterior probabilities.

§1.6. Channel Coding Theorem
We have already seen that transmission at a strictly positive rate and an arbitrarily
small positive probability of error is possible. What is the largest rate at which we
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can achieve a vanishing probability of error? Let us now investigate this question for
transmission over the BSC.

We are interested in the scenario depicted in Figure 1.16. For a given binary
code C(n,M) the transmitter chooses with uniform probability a codeword X >
C(n,M) and transmits this codeword over the channel BSC(є). ¿e output of the
channel is denoted byY. At the receiver the decoder estimates the transmitted code-
word given the observation Y using the MAP rule x̂MAP(y). How small can we
make the incurred block error probability PMAP

B (C,є) = P�x̂MAP(Y) x X� for given
parameters n and M? Let P̂MAP

B (n,M,є) be the minimum of PMAP
B (C,є) over all

choices of C > C(n,M).
X > C(n,M)

chosen uniformly
X BSC(є) Y decoder

Figure 1.16: Transmission over the BSC(є).

Theorem 1.17 (Shannon’s Channel Coding Theorem). If 0 < r < 1− h2(є) then
P̂MAP
B (n,2
rn�,є) n�ªÐ� 0.

Proof. Pick a code C from Shannon’s random ensemble C(n,2
rn�) introduced in
De�nition 1.15. Since the MAP decoder is hard to analyze we use the following sub-
optimal decoder. For some �xed ∆, ∆ A 0, de�ne ρ = nє +

»
2nє(1 − є)~∆. If x[m]

is the only codeword such that d(y,x[m]) B ρ then decode y as x[m] – otherwise
declare an error.

For u,v > ��1�n let

f(u,v) = � 0, if d(u,v) A ρ,
1, if d(u,v) B ρ,

and de�ne
g[m](y) = 1 − f(x[m], y) + Q

m′xm
f(x[m′], y).

Note that g[m](y) equals zero if x[m] is the only codeword such that d(y,x[m]) B ρ
and that it is at least one otherwise. Let P[m]B denote the conditional block error
probability assuming that X = x[m], i.e., P[m]B = P�x̂(Y) x X TX = x[m]�. We have

P[m]B (C,є) = Q
y�g[m](y)C1

pY SX[m](y S x[m]) B Q
y>��1�n

pY SX[m](y S x[m])g[m](y)

= Q
y>��1�n

pY SX[m](y S x[m])[1 − f(x[m], y)]
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+ Q
y>��1�n

Q
m′xm

pY SX[m](y S x[m])f(x[m
′], y)

=P�d(Y,x[m]) A ρ SX[m] = x[m]�
+ Q
y>��1�n

Q
m′xm

pY SX[m](y S x[m])f(x[m
′], y).

Note that d(y,x[m]) = w(y + x[m]), where y + x[m] is the vector of channel er-
rors (recall that over F2 addition and subtraction are the same). It follows that
d(Y,x[m]) is the sum of n independent Bernoulli random variables, call it Z. ¿en
Z is a random variable with mean nє and variance nє(1−є). Recall from above that
ρ = nє +

»
2nє(1 − є)~∆. ¿erefore, from Chebyshev’s inequality (see Lemma C.3

on page 486) we get

P�SZ − nєS C
»
2nє(1 − є)~∆� B nє(1 − є)∆

2nє(1 − є) =
∆
2
.

We can write PB(C,є) as
1
M

M
Q
m=1

P[m]B (C,є) B
∆
2
+

1
M

M
Q
m=1

Q
y>��1�n

Q
m′xm

pY SX[m](y S x[m])f(x[m
′], y).

Let EC(n,M)[ċ] denote the expectation with respect to the ensemble C(n,M). We
conclude that

P̂B(n,M,є) B EC(n,M)�PB(C,є)�

B
∆
2
+

1
M

M
Q
m=1

Q
y>��1�n

Q
m′xm

E�pY SX[m](y SX[m])f(X[m
′], y)�

(a)
=

∆
2
+

1
M

M
Q
m=1

Q
y>��1�n

Q
m′xm

E�pY SX[m](y SX[m])�E�f(X[m
′], y)�

=
∆
2
+

1
M

M
Q
m=1

Q
y>��1�n

Q
m′xm

E�pY SX[m](y SX[m])�
P
ρ�k=0 �nk�

2n

=
∆
2
+ (M − 1)P


ρ�
k=0 �nk�
2n

,

where in step (a) we used the fact that if we consider form′ x m the two associated
codewords X[m] and X[m′] as random variables then they are by construction (pair-
wise) independent. If we now use the boundPmk=0 �nk� B 2nh2(m~n), which is valid for
m B n~2 (see (1.59) and Problem 1.25), then as ρ B n~2 for su�ciently large n

P̂B(n,M,є) B ∆
2
+ (M − 1)2−n(1−h2(є+

¼
2є(1−є)

n∆ ))
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B
∆
2
+ 2nr2−n(1−h2(є+

¼
2є(1−є)

n∆ ))

=
∆
2
+ 2−n(1−h2(є+

¼
2є(1−є)

n∆ )−r)

B ∆ for n large enough if r < 1 − h2(є).

¿eproof is complete if we observe that this upper bound is valid for any ∆ A 0.

¿e above proof shows that there exist codes in C �n,2
nr�� which permit re-
liable transmission over the BSC(є) up to a rate of 1 − h2(є) bits per channel use.
Actually, a much stronger statement is true, namely almost any code in the above
ensemble can be used for transmission at vanishing probabilities of error.

Although we do not prove this here, the converse is true as well (see Prob-
lem 1.29): any attempt to transmit at a rate higher than 1−h2(є)must result in error
probabilities bounded away from zero. Indeed, one can show that the block error
probability PB must tend to one for any sequence of codes of increasing blocklength
and rate strictly above 1−h2(є). ¿erefore, 1−h2(є) is a threshold value, separating
what is achievable from what is not. It is called the Shannon capacity of the BSC(є)
and we denote it by CBSC(є) = 1 − h2(є).

Asmentioned before, theminimumdistance plays a central role in all of classical
coding. ¿e paradigm of classical coding can be summarized as follows: (i) �nd a
code with a large minimum distance and a strong algebraic structure; (ii) devise a
decoding algorithm which exploits the algebraic structure to accomplish bounded
distance decoding e�ciently (see page 7);¿is philosophy works well if we transmit
at a rate which is bounded away from capacity. But, as the next example shows, we
cannot hope to achieve capacity in this way.

Example 1.18 (Bounded Distance Decoder is Not Sufficient). Consider a
code of rate r, r > (0,1). By the Elias bound (1.14) the normalized minimum dis-
tance δ(r) is upper bounded by δ(r) B 2h−12 (1 − r)(1 − h−12 (1 − r)), so that

h−12 (1 − r) C
1
2
�1 −
»
1 − 2δ(r)� ,

for δ(r) > (0,1~2). From this we deduce the weaker bound h−12 (1 − r) A 1
2δ(r) +

� 12δ(r)�
2 which is easier to handle. If we transmit over the BSC(є) then the ex-

pected number of errors in a block of length n is nє. Further, for large n with high
probability the actual number of errors is within O(ºn) of this expected number
(see the previous proof on page 11). ¿erefore, if we employ a bounded distance
decoder we need 1

2δ(r) C є. If we combine this with the previous bound we get
h−12 (1 − r) A є + є2. ¿is is not possible if є A

º
3−1
2 since then the right hand side
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exceeds 1~2. It follows that such a bounded distance decoder cannot be used for reli-
able transmission over a BSC(є) if є > (

º
3−1
2 , 12). And for є > (0,

º
3−1
2 )we conclude

that r < 1−h2(є+є2) < 1−h2(є) = CBSC(є), i.e., capacity cannot be achieved either.
n

¿e above example is not to say that bounded distance decoders are not useful.
If we are willing to back of a little bit from the Shannon capacity and if є is not too
large then a bounded distance decoder might work well.

§1.7. Linear Codes and Complexity
By our remarks above, almost any code in C �n,2
nr�� is suitable for reliable trans-
mission at rates close to Shannon capacity at low error probability provided only
that the length n is su�ciently large (we have limited the proof of the channel cod-
ing theorem to the BSC but this theorem applies in a much wider setting). So why
not declare the coding problem solved and stop here? ¿e answer is that Shannon’s
theorem does not take into account the description, the encoding, and the decoding
complexities.

First consider the description complexity. We will not formally de�ne it. Infor-
mally, it is the amount ofmemory required to de�ne a code.Without further restric-
tion on the structure, already the description of a particular code quickly becomes
impractical as n grows, since it requires n2
nr� bits. Hence, as a �rst step towards a
reduction in complexity we restrict our attention to linear codes.

§1.7.1. Linear Codes

We say that a code C over a �eld F is linear if it is closed under n-tuple addition and
scalar multiplication:

αx + α′x′ > C, ∀x,x′ > C and ∀α,α′ > F .

In fact, it su�ces to check that

(1.19) αx − x′ > C, ∀x,x′ > C and ∀α > F .

Choosing α = 0 in (1.19) shows that if x′ > C then so is −x′. Further, choosing
α = 1 and x′ = x shows that the all-zero word is a codeword of any linear code.
Equivalently, since Fn is a vector space, condition (1.19) implies that a linear code is
a subspace of Fn.

For a linear code C the minimum distance d(C) is equal to theminimum of the
weight of all non-zero codewords,

d(C) = min�d(x,x′) � x,x′ > C,x x x′� = min�d(x − x′,0) � x,x′ > C,x x x′�
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= min�w(x − x′) � x,x′ > C,x x x′� = min�w(x) � x > C,x x 0� .

Since a linear code C of length n over F is a subspace of Fn, there must exist an
integer k, 0 B k B n, so that C has a dimension k. ¿is means that C contains SF Sk
codewords. In the sequel we denote by [n, k,d] the parameters of a linear code of
length n, dimension k, and minimum distance d. It is customary to call a k � n
matrix G, whose rows form a linearly independent basis for C, a generator matrix
for C. Conversely, given a matrix G > Fk�n of rank k we can associate with it the
code C(G),

(1.20) C(G) = �x > Fn � x = uG,u > Fk� .

In general many generator matrices G describe the same code (see Problem 1.6).

Definition 1.21 (Proper Codes). We say that the i-th position of a binary linear
code C is proper if there exists a codeword x > C so that xi = 1. If all positions
of C are proper we say that C is proper. Equivalently, a linear code is proper if its
generator matrix G contains no zero columns. S

Zero columns convey zero information – no pun intended – and sowe can safely
restrict our attention to proper codes in the sequel. Note also that if the i-th position
of C is proper then the number of codewords that contain a 1 in the i-th position
is equal to the number of codewords that contain a 0 in the i-th position (see Prob-
lem 1.5).

Definition 1.22 (Systematic Generator Matrix). A generator matrix G of a
linear code C[n, k,d] is said to be in systematic form if G = (Ik P), where Ik is a
k � k identity matrix and where P is a k � (n − k) matrix with entries in F. If G is
in systematic form and u > Fk is a vector containing the information bits (i.e., an
informationword) , then the corresponding codeword x = uG has the form (u,uP),
i.e., the �rst k components of x are equal to the information word u. S

To each linear code C we associate the dual code CÙ,

(1.23) CÙ = �v > Fn � xvT = 0,∀x > C� = �v > Fn � GvT = 0T� .

Assume that v and v′ are elements of CÙ and that x is an element of C. Since
xvT = 0 = x(v′)T implies x(αv − v′)T = 0 for any α > F, it follows that CÙ is a
linear code as well. ¿erefore it has a basis. It is customary to denote such a basis by
H. ¿is basis H is a generator matrix of the code CÙ. It is also said to be a parity-
check matrix of the original code C. Let G be a generator matrix for a code C and
let H be a corresponding parity-check matrix. By (1.23) the dual code is the set of
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solutions to the system of equationsGvT = 0T .¿erefore, sinceG has k (linearly in-
dependent) rows we know, by linear algebra, that the dual code has dimension n−k,
and thereforeH has dimension (n−k)�n: in fact, assume without loss of generality
that G is in systematic form, G = (Ik P). Represent v as v = (vs vp), where vs is of
length k and where vp is of length n− k. FromGvT = vTs +PvTp , we see that for each
of the SF Sn−k distinct choices of vp there is exactly one vs = −PvTp so thatGvT = 0T .

¿e dual code is therefore characterized by

CÙ = �v > Fn � v = uH,u > Fn−k� = �v > Fn � GvT = 0T� .
In the same manner we have

C = �x > Fn � x = uG,u > Fk� = �x > Fn � HxT = 0T� .
¿at the second description is true can be seen as follows. Clearly, for every x > C,
HxT = 0T . ¿is shows that C b �x > Fn � HxT = 0T�. But by assumption SCS =
SF Sk = T�x > Fn � HxT = 0T�T, since H has rank n − k.

Aswewill see, this latter description is particularly useful for our purpose. Given
a generator matrix G, it is easy to �nd a corresponding parity-check matrix H and
vice versa, see Problem 1.8.
Example 1.24 (Binary Hamming Codes). Let F = F2 and let m > N. Let H be a
m � (2m − 1) binary matrix whose columns are formed by all the binary m-tuples
except the all-zero m-tuple. We claim that H is the parity-check matrix of a binary
linear code of length n = 2m − 1, dimension 2m −m − 1, and minimum distance 3.
To see that the minimum distance is 3, note that any two columns of H are linearly
independent, but that there are triples of columns which are linearly dependent.
¿erefore, HxT = 0T has no solution for x > Fn2 with 1 B w(x) B 2 but it has
solutions withw(x) = 3. Clearly, C has dimension at least 2m−m−1 sinceH hasm
rows. Let us now show that Cmust have dimension at most 2m−m−1, i.e., we have
equality. Since C has distance 3, the spheres of radius 1 centered at each codeword
are disjoint. Let us count the total number of words contained in all these spheres:

SCS ��n
0
� + �n

1
�� = SCS(1 + n) = SCS2m.

From this it follows that SCS2m B 2n = 22m−1, where the right hand side represents the
total number of points in the space Fn2 . Turning this around we get SCS B 22

m
−m−1.

¿is shows that C has dimension at most 2m −m − 1. Codes such that the spheres
of radius t = �d−12 � centered around the codewords cover the whole space are called
perfect. As a particular example consider the casem = 3. ¿en

(1.25) H =
�
�
�

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

�
�
�
,
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andCHam, the code de�ned by the parity-checkmatrixH, is the [7,4,3] binaryHam-
ming code. n

In the above de�nitions we have assumed that the rows of G and H are linearly
independent. For the sequel it is useful to relax this de�nition.We call a k�nmatrix
G a generatormatrix even ifG has rank strictly less than k. We say that k~n is the de-
sign rate of the code. ¿e true rate is of course rank(G)~n. An equivalent statement
is true for a (n − k) � n parity-check matrix H.
Definition 1.26 (Elias’ Generator andGallager’s Parity-Check Ensemble).
Fix the blocklength n and the design dimension k. To sample from Elias’ generator
ensemble, construct a k � n generator matrix by choosing each entry iid according
to a Bernoulli random variable with parameter one-half. To sample from Gallager’s
parity-check ensemble, proceed in the same fashion to obtain a sample (n − k) � n
parity-check matrix. Although both ensembles behave quite similarly, they are not
identical. ¿is is most easily seen by noting that every code in the generator ensem-
ble has rate at most k~n and that some codes have a strictly smaller rate, whereas all
codes in the parity-check ensemble have rate at least k~n. A closer investigation of
the weight distribution of both ensembles is the topic of Problems 1.17 and 1.18. We
denote these two ensembles by G(n, k) andH(n, k), respectively. S

For the most part we are only concerned with the binary case and therefore,
unless explicitly stated otherwise, we assume in the sequel that F = F2.

Are linear ensembles capable of achieving capacity? Consider, e.g., the genera-
tor ensemble G(n, k) and transmission over the BSC(є). ¿at the answer is in the
a�rmative can be seen as follows: consider a slight twist on the ensemble G(n, k).
Pick a random elementC from G(n, k) and a random translation vector c.¿e code
is the set of codewords C+ c. We translate so as to eliminate the special role that the
all-zero word plays (since it is contained in any linear code). In this new ensemble
the codewords are uniformly distributed and pairwise statistically independent (see
Problem 1.16.) An inspection of the proof of ¿eorem 1.17 shows that these are the
only two properties which are used in the proof. But a translation of the codewords
leaves the error probability invariant so that also the ensemble G(n, k) itself is ca-
pable of achieving capacity. More generally, for any binary-input output-symmetric
(see De�nition 4.8) memoryless (see De�nition 4.3) channel linear codes achieve
capacity.

§1.7.2. Description/Encoding Complexity of Linear Codes

From the generator and parity-check representation of a linear code we see that its
description complexity is at mostmin�rn2,(1− r)n2� bits, where r is the rate of the
code. Further, from (1.20) it is clear that the encoding task, i.e., the mapping of the
information block onto the codeword can be accomplished in O(n2) operations.
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§1.7.3. MAP Decoding Complexity of Linear Codes

Let us now focus on the decoding complexity. To keep things simple, we restrict our-
selves to the case of transmission over the BSC(є). Assume we have a uniform prior
on the set of codewords. ¿e MAP or ML decoding rule then reads

x̂ML(y) = argmaxx�HxT=0TpY SX(y S x)
= argmaxx�HxT=0Tє

d(x,y)(1 − є)n−d(x,y)
= argminx�HxT=0Td(x, y)since є B 1

2
= argminx�HxT=0Tw(x + y)
= argmine+y�HeT=HyTw(e)e = x + y

= argmine+y�HeT=sTw(e),sT = HyT

¿e quantity sT = HyT is called the syndrome and it is known at the receiver. Con-
sider the following related decision problem.

Problem Π: ML Decision Problem

Instance: A binary (n−k)�nmatrixH, a vector s > �0,1�n−k, and an integer
w A 0.

Question: Is there a vector e > �0,1�n ofweight atmostw such thatHeT = sT?

Clearly, we can solve themaximum likelihooddecision problemoncewehave solved
the associated maximum likelihood decoding problem: for a given s �nd the maxi-
mum likelihood estimate x̂ML and, therefore, the “error” vector e. By de�nition this
is the lowest weight vector which “explains” the data and therefore the maximum
likelihood decision problem has an a�rmative answer for w C w(e) and a negative
answer otherwise. We conclude that the maximum likelihood decoding problem is
at least as “di�cult” as the above maximum likelihood decision problem.

In the theory of complexity a problem Π is said to belong to the class P if it can
be solved by a deterministic Turing machine in polynomial time in the length of the
input. Instead of a Turing machine one may think of a program written in (let’s say)
C running on a standard computer, except that this computer has in�nite mem-
ory. Simply speaking, problems in P are problems for which e�cient algorithms are
known: solving a system of linear equations and �nding the minimum spanning
tree or sorting are well-known examples in this class. Unfortunately, many prob-
lems which occur in practice appear not to belong to this class. A broader class is
the class NPwhich contains all problems which can be solved by a non-deterministic
Turing machine in polynomial time. A non-deterministic algorithm is one which,
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when confronted with a choice between two alternatives, can create two copies of
itself and simultaneously follow the consequences of both courses. For our discus-
sion it su�ces to know that all problems of the form “Does there exist a subset with a
speci�c property?”, assuming that this property is easily checked for any given sub-
set, belongs to the class NP. Of course, this may lead to an exponentially growing
number of copies. ¿e algorithm is said to solve the given problem if any one of
these copies produces the correct answer. Clearly, we have P ⊂ NP and whether this
inclusion is proper is an important open problem. Not necessarily all problems in
NP are equally hard. Assume that a speci�c problem Π in NP has the property that
any problem in NP can be reduced to Π in polynomial time. ¿en, ignoring poly-
nomial factors, it is reasonable to say thatΠ is as hard as any problem in NP.We say
that such a problem is NP-complete. It is widely believed that NP x P. Suppose this
is true. ¿is implies that there are no e�cient (polynomial-time in the size of the
input) algorithms that solve all instances of an NP-complete problem. We now are
faced with the following discouraging result.

Theorem 1.27. ¿eML Decision Problem for the BSC is NP-complete.

¿is means that there are no e�cient (polynomial in the blocklength) algo-
rithms known to date to solve the generalMLdecoding problem and that it is highly
likely that no such algorithm exist.

Does this mean that we should throw in the towel and declare that the e�cient
transmission of information at low error probability is a hopeless task? Not at all.
First, the above result only says that there is no e�cient algorithm known that solves
the ML decoding problem for all codes but it leaves open the possibility that some
subclasses of codes have an e�cient ML decoding algorithm. What we need are
codes which allow transmission of information close to capacity at low probability
of error and which are e�ciently decodable. Furthermore, as we saw already in the
proof of the channel coding theorem, there exist suboptimal decoders which are
powerful enough for the task.

§1.8. Rate, Probability, Complexity, and Length
¿e most important parameters for the transmission problem are: rate, probabil-
ity of (block or bit) error, delay, and complexity (encoding and decoding). Delay is
not an easy quantity to work with. It is therefore customary to consider instead the
blocklength of the coding system. If you know convolutional codes (see Section 6.1)
then you are aware that these two concepts are not necessarily the same. ¿e situ-
ation gets even more complicated if we consider transmission over channels with
feedback. But in the context of block coding schemes over channels without feed-
back (which is the focus of this book) we do not commit any fundamental error by
equating the two.
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Rate, probability of error, and blocklength are well-de�ned concepts. ¿e no-
tion of complexity on the other hand is fuzzy. As we have just discussed, there is a
fairly clean separation between polynomial and exponential complexity. However,
we typically discuss algorithms that have linear complexity in the blocklength and
we are concerned with the actual constants involved. ¿ese constants depend on
the technology we use to implement the system. In a hardware realization we typ-
ically mean the number of gates necessary or the number of connections required.
If the system is implemented as a program, then we are concerned about the num-
ber of operations and the amount of memory. It is therefore only of limited value to
give a formal de�nition of complexity and we are content with a more engineering
oriented notion.

For a �xed channel, we want to transmit at large rates r with low probability
of error P using simple encoding and decoding algorithms and short codes (small
n). Clearly there are trade-o�s: by their very nature longer codes allowmore reliable
transmission than shorter ones (or transmission at higher rates), and in a similarway
more complex decoding algorithms (like, e.g., ML decoders) perform better than
sub-optimal but lower-complexity algorithms. We want to determine all achievable
tuples

(r,P, χE, χD,n)
and their associated coding schemes, where χE and χD denote the encoding and
decoding complexity, respectively. ¿is is a tall order and we are currently far from
such a complete characterization. ¿e task becomes much simpler if we ignore one
of the quantities and investigate the trade-o�s between the remaining ones. Clearly,
the problem becomes trivial if we set no bounds on either the rate or the probability
of error. On the other hand the problem stays non-trivial if we allow unbounded
complexity or unbounded blocklengths.

A particularly useful transformation is to let δ = 1 − r~C, so that r = (1 − δ)C.
We call δ the multiplicative gap1 to capacity and we are interested in the region of
achievable tuples (δ,P, χE, χD,n).

§1.8.1. Unbounded Complexity

If we ignore the issue of complexity, we enter the realm of classical information the-
ory. We are interested in the behavior of the error probability as a function of the
blocklength n and the gap δ.

Example 1.28 (Error Exponents for Block Codes). Consider transmission us-
ing a binary linear block code C[n,nr] (a code of length n and dimension nr) via a
discrete binary memoryless channel with capacity C, C A 0, using a MAP decoder.

1 Not to be confused with the relative minimum distance.
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Figure 1.29: Error exponent of block codes (solid line) and of convolutional codes
(dashed line) for the BSC(є � 0.11).

Let PMAP
B (n, r) be the resulting block error probability for the optimal choice of the

code (the minimum of the error probability over all choices of the code with a given
rate). It is a celebrated result of information theory that PMAP

B (n, r) decreases expo-
nentially fast in the blocklength, i.e., we have

(1.30) e−n(E(r)+on(1)) B PMAP
B (n, r) B e−nE(r).

E(r) is called the error exponent. We have E(r) A 0 for all rates r in the range
r > [0,C), where C is the (Shannon) capacity of the channel. For the BSC we de-
termined its capacity in Section 1.6. (See Section 4.1.8 for the derivation of the ca-
pacity for more general channels.) Finally, on(1) denotes a quantity which tends to
zero as n tends to in�nity. Figure 1.29 depicts the error exponent E(r) (solid line)
for the BSC(є � 0.11). ¿is error exponent is known exactly for r > [rc,C], where
rc, 0 < rc < C, is called the critical rate. For rates r > [0, rc), only a lower bound
on E(r) is known. At C the (le ) derivative of E(r) vanishes but the second (le )
derivative is strictly positive, i.e., E(r) = (C− r)2α+O((C− r)3), where α is strictly
positive.¿erefore, if r(δ) = (1−δ)C, δ > [0,1], then E(δ) = δ2C2α+O(δ3). More
generally, for a “typical” discrete binary memoryless channels the error exponent as
a function of δ, δ > [0,1], has the form E(δ) = δ2C2α + O(δ3), where α is strictly
positive. We summarize: the error probability PMAP

b behaves roughly like e−nδ2C2α,
i.e., it decreases exponentially in nwith an exponent which is proportional to δ2.n

Example 1.31 (Error Exponents for Convolutional Codes). Consider trans-
mission using a binary convolutional code (see Section 6.1) of rate r and withmem-
orym via a discrete binary-input memoryless channel with capacity C, C A 0, using
a MAP decoder. Let PMAP

b (m, r) be the resulting bit error probability for an opti-
mal choice of the code. In analogy to the case of block codes, PMAP

b (m, r) decreases
exponentially fast inm, i.e,

(1.32) e−
m
r (E(r)+om(1)) B PMAP

b (m, r) B e−m
r E(r).
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Similar to the block code case, this error exponent is known exactly for r >
[Cc,C], where Cc, 0 < Cc < C, is called the critical rate. Figure 1.29 depicts the
error exponent E(r) (dashed line) for the BSC(є � 0.11). For rates r > [0,Cc) only
a lower bound on E(r) is known. As the main di�erence to the block code case, for
convolutional codes E(r) = (C − r)α + O((C − r)2), where α is strictly positive.
¿erefore, if r(δ) = (1 − δ)C, then E(δ) = δCα + O(δ2). More generally, for any
discrete binary-input memoryless channel the error exponent as a function of δ,
δ > [0,1], is given by E(δ) = δCα+O(δ2), where α is strictly positive. We summa-
rize: the error probability PMAP

B decreases exponentially inm but now the exponent
is proportional to δ. n

§1.8.2. Unbounded Delay

For some applications fairly large blocklengths (delays) are perfectly acceptable.
¿erefore it is worthwhile to investigate the behavior of coding schemes if we li 
the restriction on blocklengths and only focus on rate, probability of error, and com-
plexity. In the following we assume a naive computational model in which in�nite
precision arithmetic can be accomplished with unit cost.

Example 1.33 (Complexity of Block Codes). Consider again transmission with
a binary-input linear code C[n,nr] via a discrete binary memoryless channel with
capacity C, C A 0, using a MAP decoder. Generically, the complexity of a MAP de-
coder, measured per information bit, is equal to c

nr2
nmin(r,1−r), where c is a constant

depending on the implementation. ¿is can be seen as follows: there are 2nr code-
words. One straightforward approach is to determine the a-posterior probability
for each of them given the observation and to choose the argument which maxi-
mizes this measure. Normalized per information bit, this gives rise to a complexity
of c

nr2
nr. On the other hand, as discussed in Problem 1.19, the MAP decoder can

also be based on the parity-check matrix of the code, and this gives rise to a com-
plexity of c

nr2
n(1−r). An alternative generic MAP decoding scheme which also gives

rise to a complexity c
nr2

n(1−r) and which is based on the dual code is discussed in
Problem 4.43. If in (1.30) we �x PB and solve for n as a function of δ we get

n(δ) = O( 1
δ2
).

It follows that the decoding complexity χD(δ) is exponential in 1~δ2. ¿e encoding
complexity normalized per information bit is equal to χE(n, r) = cn, where c is
again a small constant. We conclude that

nχE(δ) = c
δ2C2α

.
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Example 1.34 (Complexity of Convolutional Codes). Consider once more
transmission with a binary convolutional code via a discrete binary memoryless
channel with capacity C, C A 0, using a ML decoder. ML decoding of these codes
can be accomplished e�ciently by means of the so-called Viterbi algorithm and the
decoding complexity per information bit is equal to χD(r) = 1

r2
m (see Section 6.1).

By going through essentially the same steps as before, we see that the decoding com-
plexity grows exponentially in 1

δ . ¿is is a large improvement compared to block
codes but still exponential in the inverse of the gap.

¿e above argument might give rise to confusion. How can convolutional codes
be better than block codes? A er all, we can always terminate a convolutional code
with negligible loss in rate and so construct an equivalent block code.¿e answer is
that in our discussion of block codes we assumed a generic decoder which does not
exploit any structurewhichmight be present in the block code. If a suitable structure
is present (as is the case for convolutional codes) we can do better. n

¿ere are many ways of combining given codes to arrive at a new code (see
Problems 1.3 and 1.4). A basic and fundamental such construction is the one of code
concatenation, an idea originally introduced by Forney. In this construction one uses
an inner code to convert the very noisy bits arriving from the channel into fairly reli-
able ones and then an outer codewhich “cleans up” any remaining errors in the block.
Such code constructions can substantially decrease the decoding complexity viewed
as a function of the blocklength n. But if we consider the decoding complexity as a
function of the gap to capacity δ, it still increases exponentially in 1~δ.

Another avenue for exploration is the �eld of sub-optimal decoding algorithms.
Although up to this point we have tacitly assumed that we performMAP decoding,
this is not necessary as we can see from the proof of the channel coding theorem
which itself uses a sub-optimal decoder.

Example 1.35 (Iterative Coding). Iterative coding is the focus of this book. Un-
fortunately the exact complexity versus performance trade-o� for iterative decoding
schemes is not known to date. In fact, it is not even known whether such schemes
are capable of achieving the capacity for a wide range of channels. It is conjectured
that

χD(δ, p) = χE(δ, p) = cδ ,

for some constant c which depends on the channel. To furnish a proof of the above
conjecture is without doubt the biggest open challenge in the realm of iterative de-
coding. According to this conjecture the complexity (per information bit) grows
linearly in the inverse to the gap as compared to exponentially.¿is is the main mo-
tivation for studying iterative decoding schemes. n
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§1.9. Tour of Iterative Decoding
We have seen that iterative decoding holds the promise of approaching the capacity
with unprecedentedly low complexity. Before delving into the details (and possibly
getting lost therein) let us give a short overview of the most important components
and aspects. We opt for the simplest non-trivial scenario. ¿ere is plenty of oppor-
tunity for generalizations later.

¿e �rst important ingredient is to represent codes in a graphicalway. Consider
again the Hamming code CHam[7,4,3] given in terms of the parity-check matrix
shown on page 15. By de�nition, x = (x1,� ,x7), x > F7

2, is a codeword of CHam if
and only if

x1 + x2 + x4 + x5 = 0,
x1 + x3 + x4 + x6 = 0,
x2 + x3 + x4 + x7 = 0.

We associate CHam[7,4,3] with the following graphical representation. We rewrite
the three parity-check constraints in the form (recall that we work over F2 so that
−x = x)

x1 + x2 + x4 = x5,(1.36)
x1 + x3 + x4 = x6,(1.37)
x2 + x3 + x4 = x7.(1.38)

¿ink of x1,x2,x3,x4 as the four independent information bits and x5,x6,x7 as
the derived parity bits. ¿e following visualization of the situation was introduced
by McEliece: represent the constraints via a Venn diagram. ¿is is shown in Fig-
ure 1.39. Each circle corresponds to one parity-check constraint – the number of
ones in each circle must be even. ¿e topmost circle corresponds to the constraint
expressed in (1.36). Consider �rst the encoding operation. Assume we are given
(x1,x2,x3,x4) = (0,1,0,1). It is then easy to �ll in themissing values for (x5,x6,x7)
by applying one parity-check constraint at a time as shown in Figure 1.40: from (1.36)
we deduce that x5 = 0, from (1.37) it follows that x6 = 1, and (1.38) shows that x7 = 0.
¿e complete codeword is therefore (x1,x2,x3,x4,x5,x6,x7) = (0,1,0,1,0,1,0).
Next, consider the decoding problem. Assume that transmission takes place over
the binary erasure channel (BEC) with parameter є (see page 71 for more details on
this channel) and that the received message is (0, ?, ?,1,0, ?,0). We want to recon-
struct the transmitted word. Figure 1.41 shows how this can be done. ¿e decoding
proceeds in a fashion similar to the encoding – we check each constraint (circle) to
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x4
x2 x1

x3x7 x6
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Figure 1.39: Venn diagram representation of C.

x4=1
x2=1 x1=0

x3=0x7=? x6=?

x5=?

x4=1
x2=1 x1=0

x3=0x7=0 x6=1

x5=0

Figure 1.40: Encoding corresponding to (x1,x2,x3,x4) = (0,1,0,1). ¿e number
of ones contained in each circle must be even. By applying one such constraint at
a time the initially unknown components x5, x6, and x7 can be determined. ¿e
resulting codeword is (x1,x2,x3,x4,x5,x6,x7) = (0,1,0,1,0,1,0).

see if we can reconstruct a missing value from the values we already know. In the
�rst step we recover x2 = 1 using the constraint implied by the top circle. Next we
determine x3 = 0 by resolving the constraint given by the le circle. Finally, using the
last constraint, we recover x6 = 1. Unfortunately this “local” decoder – discovering
one missing value at a time – does not always succeed. To see this, consider the case
when the received message is (?, ?,0, ?,0,1,0). A little thought (or an exhaustive
check) show(s) that there is a unique codeword in CHam, namely (0,1,0,1,0,1,0),
which is compatible with this message. But the local decoding algorithm fails. As
one can see in Figure 1.42, none of the three parity-check equations by themselves
can resolve any ambiguity.

In practice we encounter codes that have hundreds, thousands, or evenmillions
of nodes. In this case the Venn diagram representation is no longer convenient and
we instead use the so-called Tanner graph description (see Sections 2.2 and 3.3).¿e
basic principle however stays the same. Encoding and decoding is accomplished
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x4=1
x2=? x1=0

x3=?x7=0 x6=?

x5=0

x4=1
x2=1 x1=0

x3=?x7=0 x6=?

x5=0
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Figure 1.41: Decoding corresponding to the received message (0, ?, ?,1,0, ?,0). First
we recover x2 = 1 using the constraint implied by the top circle. Next we determine
x3 = 0 by resolving the constraint given by the le circle. Finally, using the last
constraint, we recover x6 = 1.

x4=?
x2=? x1=?

x3=0x7=0 x6=1

x5=0

Figure 1.42: Decoding corresponding to the received message (?, ?,0, ?,0,1,0). ¿e
local decoding fails since none of the three parity-check equations by themselves
can resolve any ambiguity.
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locally: speci�cally, we send messages along the edges of the Tanner graph which
represents the code and process these messages locally at each node.

We summarize: we have seen that we can represent codes in a graphical manner
and that we can use this graphical representation to perform both encoding and
decoding.¿e two algorithms are very similar and they are local.¿is local processing
on a graphical model is the main paradigm of iterative decoding. We have also seen
that sometimes the iterative decoder fails despite the fact that a unique decoding is
possible.

Figure 1.43 shows the block erasure probability of a so called (3,6)-regular low-
density parity-check code when transmission takes place over the binary erasure
channel under iterative decoding (see Chapter 3). ¿e channel is characterized by
the parameter є which denotes the erasure probability of each transmitted bit. ¿is
plot is representative of the typical behavior. For increasing lengths the individ-
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Figure 1.43: ELDPC�nx3, n2 x6� [P
BP
B (G,є)] as a function of є for n = 2i, i > [10].

ual curves become steeper and steeper and they converge to a limiting asymptotic
curve. Of particular importance is the value єBP which marks the zero crossing of
this asymptotic curve. For the example given we have єBP � 0.4294. Its operational
meaning is the following: for su�ciently large blocklengths we can achieve arbitrar-
ily small probability of error if we transmit over this channel with channel parameter
strictly less than єBP (if the fraction of erased bits is strictly less than єBP); but if we
choose the value of the channel parameter above єBP then the error probability is
bounded away from zero. ¿e value єBP acts therefore like a capacity for this par-
ticular coding scheme: it separates what is achievable from what is not. ¿e rate of
the code is one-half and we have єBP � 0.4294 < 1

2 = є
Sha, where єSha denotes the

Shannon threshold (the threshold which is achievable with optimal codes and un-
der optimal decoding). ¿is indicates that even in the limit of in�nite block lengths
we cannot achieve capacity with this particular coding scheme.

Is this failure to reach capacity due to the code or due to the suboptimal nature
of the decoder? We will see that if our example code were decoded optimally the
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threshold would be єMAP
� 0.48815, which still falls short of the Shannon thresh-

old, namely 0.5. We conclude that both code and decoding algorithm are to blame.
Why don’t we just use elements from Gallager’s parity-check ensemble, which we
know can achieve capacity? Unfortunately, iterative decoding does not work well on
elements of this ensemble. ¿erefore, in constructing codes that are capable of ap-
proaching Shannon capacity under iterative decoding we have to worry both about
constructing good codes (which under optimal decoding could achieve capacity),
and also about the performance of the suboptimal decoder compared to the optimal
one.

Figure 1.43 also gives insight into the �nite-length behavior. If we consider each
�nite-length curve, we see that it can be fairly cleanly separated into two regions
– the so called waterfall region in which the error probability falls o� sharply and
the error �oor region in which the curves are much more shallow. As we discuss in
Sections 3.23 and 4.13, the waterfall region is due to large decoding failures and in
this region the decay of the error probability is exponential in the blocklength. On
the other hand, the error �oor is due to small failures and in this region the decay is
only polynomial (see Sections 3.24 and 4.14).

In Figure 1.43 we did not plot the performance of a code but the average per-
formance of an ensemble. It is this ensemble approach which makes an analysis
possible. What can we say about the performance of individual instances? For indi-
vidual instances the contributions stemming from large failures are sharply concen-
trated around this ensemble average (see Sections 3.6.2 and 4.3.2). But the contri-
butions due to small weaknesses in the graph are no longer concentrated. In fact, in
the limit of large blocklengths, the distribution of these small weaknesses converges
to a well-de�ned limit (see ¿eorem D.31). ¿e code design involves therefore two
stages. First, we �nd ensembles that exhibit a large threshold (good behavior in the
waterfall regime). Within this ensemble we then �nd elements that have few small
weaknesses and, therefore, low error �oors.

§1.10. Notation, Conventions, and Useful Facts

Large parts of this book should be accessible to a reader with a standard background
in engineering mathematics but no prior background in coding. Some of the less
standard techniques that are useful for our investigation are summarized in the ap-
pendices.

A familiarity with some basic notions of information theory is helpful in places.
In fact not much is needed. We sometimes refer to the entropy of a random vari-
able X which we denote by H(X). Entropy is a measure of the “unpredictability”
of a random variable. ¿e smaller the entropy the easier it is to predict the out-
come of a random experiment. We use small letters for variables and capital let-

Preliminary version – October 18, 2007



28 introduction

ters for random variables: we say that the random variable X takes on the value
x. We write densities as pX(x), and sometimes we use the shorthand p(x). In the
case that X is discrete with probability distribution pX(x), the entropy is de�ned
as H(X) = −Px pX(x) log pX(x) where 0 log 0 is taken to be 0. If X has a density
then the equivalent quantity is called di�erential entropy and is de�ned in the natural
way as h(X) = − Rx pX(x) log pX(x)dx. Entropy and di�erential entropy share the
basic properties mentioned below and so we will not make any further notational
distinctions and simply refer to entropy. We sometimes invoke the so-called chain
rule: if X and Y are random variables then

H(X,Y) = H(X) +H(Y SX),(1.44)

where H(Y SX) = PxH(Y SX = x)pX(x) and where H(Y SX = x) is the entropy
of the random variable with probability distribution pY SX(y S x), where x is �xed.
¿is chain rule is a direct consequence of pX,Y(x, y) = pX(x)pY SX(y S x) (see Prob-
lem 1.26). ¿e rule extends in the natural way to more than two random variables:
e.g., H(X,Y,Z) = H(X) +H(Y SX) +H(Z SX,Y).

For the relatively simple channels we are concerned with the Shannon capacity,
i.e., themaximal rate at which we can reliably transmit, is given by

C = max
pX(x)

I(X;Y),(1.45)

where X denotes the input of the channel and Y the output and where the mutual
information I(X;Y) is equal to H(X) −H(X SY) = H(Y) −H(Y SX). ¿e mutual
information I(X;Y) is a measure of howmuch information Y contains about X (or
vice versa). Problem 1.29 asks you to re-derive the capacity of the BSC(є) from this
general formula.

A fundamental fact is that mutual information is non-negative, i.e., I(X;Y) C 0
(see Problem 1.27). Using the representation I(X;Y) = H(X) − H(X SY), we see
that conditioning does not increase entropy, i.e., we have

H(X) C H(X SY).(1.46)

We write

X� Y � Z(1.47)

to indicate that the triple X, Y, and Z forms a Markov chain, i.e., to indicate that
pX,Y,Z(x, y, z) = pX(x)pY SX(y S x)pZ SY(z S y). In this case we have

pX,Z SY(x, z S y) = pX SY(x S y)pZ SX,Y(z S x, y) = pX SY(x S y)pZ SY(z S y).
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In words, if X � Y � Z then X and Z are independent given Y. Conversely,
pX,Z SY(x, z S y) = pX SY(x S y)pZ SY(z S y) implies that X � Y � Z. By symme-
try of this condition we see that X� Y � Z implies Z � Y � X. We get a Markov
chain in a natural way if, for a pair of random variables X and Y, we let Z = f(Y)
for some function f(ċ). We can characterize Markov chains also in terms of mutual
information: the random variables X, Y, and Z form theMarkov chain X� Y � Z
if and only if I(X;Z SY) = 0.

We make use of the data processing inequality which states that for any triple of
random variables X, Y, and Z such that X� Y � Z, we have

H(X SY) B H(X SZ).(1.48)

Equivalently, we have I(X;Y) C I(X;Z). ¿is is a natural statement: processing can
never increase the mutual information.

Given a channel pY SX(y S x) and a function f(ċ), we say that Z = f(Y) is a su�-
cient statistic for X given Y if X� Z � Y, i.e., if X is independent of Y given Z (the
relationship X � Y � Z is always true if Z = f(Y) as we have just discussed). A
convenient necessary and su�cient condition that Z = f(Y) constitutes a su�cient
statistic is that pY SX(y S x) can be written in the form a(x, z)b(y) for some suitable
functions a(ċ, ċ) and b(ċ) (see Problem 1.22). For us the two most important con-
sequences of knowing that Z = f(Y) is a su�cient statistic for X given Y are that
(i) the optimum decision on X can be based on Z alone, and that (ii) H(X SY) =
H(X SZ). ¿e �rst claim is a direct consequence of the fact that pY SX(y S x) can
be written in the form a(x, z)b(y) and so the second term can be canceled in the
MAP rule (see Section 1.5). ¿e second claim follows from the data processing in-
equality since we know that in this case we have both X � Y � Z (which proves
H(X SY) B H(X SZ)) but also X� Z � Y (which provesH(X SZ) B H(X SY)). A
further relationship between the above quantities is discussed in Problem 1.23.

It is helpful to know the Fano’s inequality: assume that we want to estimate the
random variable X taking values in the �nite alphabetX knowing the random vari-
able Y. Let x̂(y) denote any estimation rule and let P�x̂(Y) x X� denote the result-
ing probability of error. Fano’s inequality asserts that (see Problem 1.28)

h(P) + P log(SX S − 1) C H(X SY).(1.49)

For the special case where X is a binary random variable Fano’s inequality reads

h(P) C H(X SY).(1.50)

Random variables X which have a Gaussian distribution appear frequently. In
the Gaussian case we have pX(x) = 1º

2πσ2
exp(−(x − µ)2~(2σ2)), where µ is the
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mean of X, µ = E[X], and σ2 is the variance of X, σ2 = E[(X− µ)2]. We denote this
density byN (µ,σ2).

If x is a real parameter taking values in [0,1], e.g., if x is a probability, we write
x̄ for 1 − x. If n > N then the set �1,� ,n� is o en abbreviated as [n].

Occasionally we want to bound the number of positive roots of a real valued
polynomial. Let p(x) = Pdi=0 pixi be a real-valuedpolynomial of degree d. Consider
the associated piecewise linear function whose graph interpolates the points (i, pi),
i > �0, . . . ,d�. We say that p(x) has v sign changes if this associated function crosses
the x-axis v times.

Example 1.51. Consider the polynomial p(x) = 1+ x4 −3.4x5 + x11. ¿e associated
piecewise linear graph passes the x-axis twice so that v = 2. n

Theorem 1.52 (Descarte’s Rules of Signs). Let p(x) be a real-valued polynomial
with v sign changes and r positive real roots. ¿en r B v and v − r is even.

Example 1.53. Consider again the polynomial p(x) = 1 + x4 − 3.4x5 + x11. Since
v = 2 there exists either no positive root or there are exactly two. In fact, since
p(0) = 1 A 0, p(1) = −0.4 < 0, and p(2) = 1956.2 A 0 we know that there are
exactly two. A numerical calculation shows that the two roots are at x � 0.89144
and at x � 1.11519. n

We frequently need to refer to some basic relations and estimates of factorials
and binomials. We summarize them here for reference.

n! = S
ª

0
e−ssnds,(1.54)

n! =
º
2πn(n~e)n(1 +O(1~n)),(1.55)

(n~e)n B n!,(1.56)

e−
k2
n nk~k! B �n

k
� B nk~k!,(1.57)

1
n + 1

2nh2(k~n) B �n
k
�,(1.58)

m
Q
k=0
�n
k
� B 2nh2(m~n), m B n~2,(1.59)

�2n
n
� = 4n~ºnπ(1 − 1~(8n) +O(n−2)).(1.60)

As you can see in (1.54), we write e for exp(1) to distinguish it from frequently
occurring variables named e.

In general, we make no special distinction between scalars and vectors. In a few
places, where confusion might otherwise arise, we denote a vector as x. We assume
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that vectors are row vectors. We sometimes write x ji as a shorthand for the set of
elements xi,xi+1,� ,xj. Given amatrixAand a suitable index setI , we letAI denote
the submatrix of A, restricted to the columns indexed by I . We use the abbreviation
iid to mean independent and identically distributed. If we deal with a set of (random)
variables X1,� ,Xn it is o en convenient to refer to all but one of them. In such a
case we write X�j as a shorthand for X1,� ,Xj−1,Xj+1,� ,Xn.

If f(x) is a convex-9 function (we write “convex-9” for a concave function like
f(x) = log(x) and “convex-8” for a convex function like x2) and pX(x) is a density
then Jensens’ inequality asserts that

S f(x)pX(x)dx B f�S xpX(x)dx�.(1.61)

Given a polynomial p(x) (or a function which is analytic around zero) we write
coef�p(x),xk� to denote the coe�cient of xk in its Taylor series expansion: coef�(1+
x)n,xk� = �nk�.

For a function a(t) let Ga(f) = R a(t)e−2πjtfdt denote its Fourier transform.
¿e Parseval theorem asserts that

S a(t)b�(t)dt = S Ga(f)G�b (f)df,
where � denotes complex conjugation.

If n > N we say that a function f(n) is O(g(n)) if there exists a constant c so
that Sf(n)S B cSg(n)S for all su�ciently large n > N. We say that f(n) is o(g(n))
if limn�ª Sf(n)S~Sg(n)S = 0. Finally, we write f(n) = Θ(g(n)) if there exist two
strictly positive constants c′ and c′′ so that c′Sg(n)S B Sf(n)S B c′′Sg(n)S for n suf-
�ciently large. If the underlying parameter n is not clear from context we explicitly
denote it by writing On(ċ), on(ċ), and Θn(ċ).

Unless said otherwise, all performance plots are for ensemble averages and not
for speci�c instances. Expectations are denoted as E[ċ]. ¿is makes the plots re-
producible. Of course, typically better performance can be achieved by carefully
selecting a speci�c instance from the ensemble.

We mark the end of a de�nition withS, the end of an example withn, and the
end of a proof with j.

¿eorems, lemmas, equations, �gures, tables, etc. are labeled by a common se-
quence of consecutive numbers within a chapter.¿is facilitates locating a referenced
item.

Maybe slightly unusually, the main text does not contain pointers to the litera-
ture.¿e typical lemma and theorem is a synthesis of either a sequence of papers or
has been discovered independently by several authors. Rather than interrupting the
�ow of ideas in the main text we have opted to collect a history of the developments
of the main results at the end of each chapter.
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By now, the list of papers in the area of iterative decoding measures in the (tens
of) thousands. We have therefore not even attempted to give an exhaustive account
of references but to give a su�cient number of pointers to the existing literature so
that you can locate the relevant material quickly. We apologize to all authors whose
paperswe have not included in our list. For convenience of the readerwe have placed
a list of references at the end of each chapter. Each bibliographic entry is followed
by a list of numbers within square brackets which indicate the pages on which this
particular reference is cited.

¿e order of the exercises roughly follows the order of the topics discussed in
the text. We have not ranked the exercises by di�culty.¿ose exercises that you can
solve are easy, the other ones are hard.

Notes

Information theory and coding were born in Shannon’s paper “A Mathematical ¿e-
ory of Communication” [56]. It was in this paper that Shannon formulated the com-
munications problem as we have presented it in Section 1.2 and where he showed
that the transmission task can be broken down into a source coding and a channel
coding problem. Our exposition of Shannon’s channel coding theorem in Section 1.6
for the BSC closely follows van Lint [61].

At around the same time, and working at the same location (Bell Labs), Ham-
ming constructed the �rst class of error-correcting codes [34]. Interestingly, Ham-
ming’s motivation was not Shannon’s capacity but the practical concern of correctly
operating a “computing”machine consisting ofmany relays. Such relays were inher-
ently unreliable and every couple of million relay operations an error would occur.
A large body of literature on coding was therea er concerned with �nding dense
packings of “Hamming”-spheres of radius half the minimum (Hamming) distance.

To date there exists an extensive literature on bounds on weight distributions.
We refer the reader to the Handbook of Coding ¿eory [51] which contains sev-
eral survey articles. ¿e lower bound on theminimum distance which we discuss in
Problem 1.13 is due to Gilbert [32]. A similar bound was independently discovered
by Varshamov [63]. Asymptotically these two bounds yield the same result, which is
the statement discussed in Section 1.4 and in Problem 1.15. ¿e upper bound on the
minimum distance stated in Section 1.4 is due to Elias, who presented this result in
class lectures in the early sixties. ¿e bound was also discovered by Bassalygo and
�rst appeared in print in [5]. A substantially tighter upper bound was derived by
McEliece, Rodemich, Rumsey, and Welch [47]. It is a tighter version of the linear
programming bound based on Delsarte’s association schemes [13]. For a discussion of
the weight distribution of random codes (linear and nonlinear) see Barg and Forney
[3] and the references therein.
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¿e union bound on the performance of a code based on its weight distribution
is the simplest of a large class of such bounds (see Problem 1.21). A considerably
more sophisticated approach was developed by Gallager in his thesis [28]. Good
starting points are the article and themonograph by Sason and Shamai [55, 53]which
discuss in depth the relationships between the numerous bounds proposed to date
and which contain an exhaustive list of references.

In 1971 Cook proved that any problem in NP can be reduced in deterministic
polynomial time to the satis�ability problem [11]. Later, Karp showed that the sat-
is�ability problem can be reduced to many other problems in NP in deterministic
polynomial time. ¿e collection of all these problem is the class of NP-complete
problems. ¿e fact that the ML decision problem is NP-complete for binary linear
codeswas shown by Berlekamp,McEliece, and vanTilborg [7] by reducing the prob-
lem to three-dimensional matching. ¿e intractability of computing the minimum
distance was later shown by Vardy [62]. ¿e classic reference relating to complexity
is the book by Garey and Johnson [31]. For survey articles concerning complexity
issues in coding theory see Barg [2], Sudan [59], Dumer, Micciancio, and Sudan
[16] as well as Spielman [58].

Elias as showed that linear codes achieve capacity on the BSC [17]. A proof that
linear codes achieve capacity on any BMS channel (¿eorem 4.70) is due to Do-
brushin [15] and can also be found in Gallager [30].

BCH codes were discovered by Bose and Ray-Chaudhuri [9] and independently
by Hocquenghem [39]. Reed-Solomon codes (see Problem 1.9), which can be seen
as a special case of BCH codes, were proposed around the same time by Reed and
Solomon [52]. ¿ey are part of many standards and products. Fairly recently, there
have been exciting new developments concerning the decoding of Reed-Solomon
codes beyond the minimum distance. ¿is development was initiated by Sudan
who introduced his list decoding algorithm [60] for Reed-Solomon codes.¿is was
quickly followed by an improved list decoding algorithm due to Guruswami and
Sudan [33]. Further, it was shown by Kötter and Vardy how to turn the list decoding
algorithm into a so -decision decoding algorithm [41].

Convolutional codes (Example 1.31) are due to Elias [17]. ¿e theory of convo-
lutional codes was developed by Forney in the series of papers [22, 23, 24]. Further
excellent references on the theory of convolutional codes are the books by Johan-
nesson and Zigangirov [40], Viterbi and Omura [65], and the survey article by
McEliece, which is contained in the collection [51]. Sequential decoding was invented
byWozencra [68] with important contributions due to Fano [18]. ¿eViterbi algo-
rithm was introduced by Viterbi [64] originally as a proof technique. It was pointed
out by Forney [21] and later independently by Omura [48] that the Viterbi algo-
rithm was optimal, i.e., that it accomplished MAP decoding. Heller, who at that
time worked at the Jet Propulsion Laboratory (JPL), was the �rst to recognize that
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the Viterbi algorithmwas not only of theoretical interest but also immensely practi-
cal [36, 37]. ¿e classical reference is [25]. If you are looking for a historical account
we recommend [27].

Forney developed the theory of concatenated codes (see page 22) in his thesis
[19, 20].

A simple derivation of the random coding exponent was given by Gallager in
[29], extending Shannon’s random coding technique [56]. Further bounds were de-
veloped by Shannon, Gallager, and Berlekamp [57]. ¿e equivalent statements for
convolutional codes were developed by Yudkin [69], Viterbi [64], and Forney [26].
For the state-of-the-art in this area we refer the reader to Barg and McGregor [4] as
well as Burnashev [10].

For a history of the development of iterative decoding see the Notes at the end
of Chapter 4. ¿e representation of Hamming codes via Venn diagrams which we
used in Section 1.9 is due to McEliece [46].

¿e Descartes rule of signs can be found in [14] and [38, Chapter 6]. ¿e idea
of performing bit MAP decoding of a block code via a trellis, as discussed in Prob-
lem 1.19, is due to Bahl, Cocke, Jelinek, and Raviv [1]. ¿e trellis is typically called
theWolf trellis [67], in reference toWolf ’s work on the related block MAP decoding
problem (another name is syndrome trellis). ¿e MacWilliams identities, discussed
in Problem 1.20, which give a fundamental connection between the weight distri-
bution of a code and its dual, were published by her in [43].

¿ere is a large list of excellent books on classical coding theory. To mention
just a few of the most popular ones in alphabetic order: Berlekamp [6], Blahut [8],
Lin and Costello [42], MacWilliams and Sloane [44], McEliece [45], Pless [50], and
van Lint [61]. A list of survey articles was collected by Pless and Hu�man in [51].
For books that focus exclusively on convolutional codes see Johannesson andZigan-
girov [40], Piret [49], and Viterbi and Omura [65]. More recently, some books on
iterative decoding also have become available: Heegard and Wicker [35], Schlegel
and Perez [54], and Vucetic and Yuan [66]. Readers interested in information the-
ory need look no further than to Gallager [30] or Cover and¿omas [12]. A further
recommended source which spans a wide range of topics is the book by MacKay.

Codes also play an important role in many areas of science. To name just a few:
in mathematics they give rise to dense point lattices and allow the construction of
designs for use in statistics. In the area of computer science, public-key crypto sys-
tems may be based on codes, they are the crucial ingredient for some extractors
– generating many weakly random bits from a few truly random ones – and they
make e�cient hashing functions. Codes are helpful in minimizing the communi-
cation complexity and they can be used to turn worst-case hardness into average-
case hardness. In the area of communications, besides helping to combat the noise
introduced by the communication channel, codes can help to represent sources ef-
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�ciently, to avoid large peak-to-average power ratios, or to minimize interference in
multi-user systems. Most of these areas are well outside the scope of this book.

Problems
1.1 (Inner Product). Let F be a �eld and consider the vector space Fn, n > N. For
u,v > Fn de�ne the inner product of u and v by `u,ve = Pni=1 uivi, where all opera-
tions are performed in F. Show that this inner product has the following properties

1. `t + u,ve = `t,ve + `u,ve, t,u,v > Fn

2. `αu,ve = α`u,ve, α > F, u,v > Fn

3. `u,ve = `v,ue, u,v > Fn

Unfortunately, `ċ, ċe is not necessarily an inner product in the mathematical sense:
show that for F = F2, `u,ue = 0 does not imply u = 0 by exhibiting a counter ex-
ample. ¿erefore, Fn2 , equipped with `ċ, ċe, is not an inner-product space. As a con-
sequence, if G is a generator matrix over F2 and H is a corresponding parity-check
matrix, then

� G
H �

does not necessarily span the whole space Fn2 – the row-space spanned by H is not
the orthogonal complement of the row-space spanned byG. Consider, e.g., the gen-
erator matrix

G = � 1 1 0 0
0 0 1 1 �

and the associated code C(G). Determine CÙ. A code C such that C = CÙ is called
self-dual.

1.2 (Hamming Distance). Show that the Hamming distance introduced in De�ni-
tion 1.11 ful�lls the triangle inequality.

1.3 (Extending, Puncturing, and Shortening). In this exercise we are con-
cerned with certain simple procedures which allow us to construct new codes from
given ones. Assume we have a code C(n,M,d) (not necessarily linear) over a �eld
F. If d is odd then we can extend the code by appending to each codeword x =
(x1,� xn) the extra symbol xn+1 = −Pni=1 xi. ¿e inverse operation, namely to
delete a symbol, is called puncturing. Finally, consider any subset of codewords
which have the same last symbol. Keep only this subset and delete this common
symbol. ¿is procedure is called shortening. How do these procedures change the
parameters of the code? Under which of these operations do linear codes stay lin-
ear?
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1.4 (u + v Construction). Assume we are given two binary codes C1(n,M1,d1)
and C2(n,M2,d2). De�ne a new code C by

C = �(u,u + v) Su > C1,v > C2�.

Show that C is binary and has parameters C(2n,M1M2,d = min(2d1,d2)).

1.5 (Proper Codes). Let C be a proper (see De�nition 1.21 on page 14) linear code
of length n over the �eld F. Prove that for every position i, 1 B i B n, and every �eld
element α, α > F, the number of codewords that have an α at position i is equal to
SCS~SF S. What happens if the code is not proper? Is the equivalent statement true if
you jointly consider a set of positions?

1.6 (One C, many G). Show that a binary linear code C of length n and dimension
k has 2�

k
2�Lk

i=1 �2i − 1� distinct k � n generator matrices.

1.7 (ConversionofG into Systematic Form). LetG be a k�ngeneratormatrix of
rank k. Show thatG can be brought into systematic formby elementary row/column
operations (i.e., permutations of rows/columns, multiplication of a row by a non-
zero element of F and addition of one row to another.) Prove that these operations
do not change the minimum distance of the code.

Hint: Show thatGmust contain a k� k rank-k submatrix, call it A, formed by k
columns of G. Multiply G from the le by A−1 and perform column permutations
if necessary to bring the result into systematic form.

1.8 (ConversionG� H). Show that ifG is a generator matrix in systematic form,
G = (Ik P), then H = �−PT In−k� is a corresponding parity-check matrix. ¿e
parity-check matrix of the [7,4,3] binary Hamming code given in (1.25) has the
form �−PT In−k�. Use this fact to write down a corresponding generator matrix G.

1.9 (Reed-Solomon Codes). Reed-Solomon (RS) codes are one of the most widely
used codes today. In addition they possess several fundamental properties (see e.g.,
Problem 1.11). Here is how they are de�ned.

Given a �nite �eld F, choose n and k such that n B SF S and 1 B k B n. To con-
struct a Reed-Solomon (RS) code with parameters n and k over the �eld F choose n
distinct elements from F, call them x0,� ,xn−1. Let F[x] denote the ring of polyno-
mials with coe�cients in F, i.e., the set of polynomials in the indeterminate x with
coe�cients in F and the standard addition andmultiplication of polynomials.¿en
C is de�ned as

C = �(A(x0),� ,A(xn−1)) � A(x) > F[x] s.t. deg(A(x)) < k�.
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In words, we consider the set of polynomials with coe�cients in F and degree at
most k − 1. Each such polynomial we evaluate at the n distinct points xi, 0 B i < n,
and the result of these evaluations form the n components of a codeword.

Show that a RS code as de�ned above with parameters n and k over the �eld F
has dimension k and minimum distance n − k + 1. We summarize the parameters
of such a code in the compact form [n, k,n − k + 1].

Hint: Over any �eld F, a polynomial of degree d has at most d roots in F. ¿is
is called the fundamental theorem of algebra.

1.10 (Singleton Bound). Show that for any code C(n,M,d) over a �eld F, d B
n − logSF S(M) + 1. ¿is is called the Singleton bound. Codes which achieve this
bound are calledmaximum-distance separable (MDS).

Hint: Arrange theM codewords of length n in form of aM�nmatrix and delete
all but the �rst 
logSF S(M)� columns. Argue that theminimumdistance between the
resulting rows is at most one.

1.11 (MaximumDistance SeparableCodes). As discussed in Problem 1.10, a code
C which ful�lls the Singleton bound is called maximum distance separable (MDS).
Examples of such codes are repetition codes with parameters [n,1,n] and Reed-
Solomon codes with parameters [n, k,n − k + 1]. Let C be an MDS code with pa-
rameters [n, k,d = n − k + 1]. Show that C has the following property. Any subset
of [n] of cardinality k is an information set. More precisely, for any such subset and
any choice of elements of F at these k positions there is exactly one codeword which
agrees with this choice.

Next let C be a binary linear code with parameters [n, k] and generator matrix
G. Assume that its dual, CÙ, is a MDS code (this dual has hence parameters [n,n−
k, k + 1]). Show that also in this case C has the property that any subset of [n] of
cardinality k is an information set.

1.12 (Hamming Bound). Consider a code C(n,M,d) over a �eld F. Prove that
MP


d−1
2 �

i=0 �ni�(SF S − 1)i B SF Sn.
Hint: Consider spheres of radius t = �d−12 � centered around each codeword.
Note: A code C which ful�lls the Hamming bound with equality is said to be

perfect. It is easy to check that binary repetition codes of odd length are perfect
codes. Further all Hamming codes are perfect. Without proof we state that the only
other perfect multiple-error correcting codes are the [23,12,7] binary Golay code
and the [11,6,5] ternary Golay code.
1.13 (Gilbert-Varshamov Bound). Show that for any d B n, n > N, and any �eld
F there exist codes C(n,M,d) over F withM C SF Sn

Pd−1
i=0 �ni�(SF S−1)i

.
Hint: Consider spheres of radius d − 1 centered around each codeword.
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1.14 (Greedy Code Search Algorithm). ¿e Gilbert-Varshamov bound which
we discussed in Problem 1.13 gives rise to the following greedy code search algo-
rithm. Start by picking a point in Fn where the choice is made with uniform prob-
ability. ¿e initial code C consists of this chosen codeword. At any following step
delete fromFn all codewords currently inC as well as all points contained in spheres
of radius (d − 1) around these codewords, where d is the design distance. If the re-
sulting set is non-empty pick another point and add it toC, otherwise the algorithm
terminates.

Show that this algorithm results in a code C(n,M,d) over F with minimum
distance at least d and cardinality at least

<@@@@
SF Sn~�

d−1
Q
i=0
�n
i
�(SF S − 1)i�

=AAAA
.

Note: Such a greedy algorithm does in general not result in a linear code. Sur-
prisingly, the bound is still true if we restrict C to be linear, and a slightly modi-
�ed greedy algorithm generates a linear code with the desired properties. De�ne
V(F,n, t) = Pt

i=0 �ni�(SF S−1)i. Let C0 be the trivial [n,0,n] code consisting of the
zero word only. We proceed by induction. Suppoose that we constructed the linear
[n, k,C d] code Ck. Such a code containsM = SF Sk codewords. If SF SkV(F,n,d) C
SF Sn then we stop and output C. Otherwise proceed as follows. Delete from Fn all
codewords of Ck as well as all points contained in the spheres of radius (d − 1)
around these codewords. Since SF SkV(F,n,d − 1) < SF Sn, the resulting set is not
empty. Pick any element from this set and call it gk+1. Let Ck+1 be the linear code
resulting from joining gk+1 to a set of generators �g1,� , gk� for Ck. We claim that
Ck+1 hasminimumdistance at least d. Every element c′ inCk+1 has a representation
of the form c′ = agk+1 + c where a > F and c > Ck. If a = 0 then w(c′) = w(c) C d
by the assumption that Ck is a [n, k,C d] code. If on the other hand a x 0 then
w(c′) = w(agk+1+ c) = w(gk+1+ a−1c) = d(gk+1,−a−1c) C d by our choice of gk+1
and since −a−1c > Ck by linearity.

1.15 (Asymptotic Gilbert-Varshamov Bound). Fix F = F2. Consider codes of
increasing blocklength n with 2
nr� codewords, where r, r > (0,1), is the rate. Let
d(C) denote the minimum distance of a codeC and de�ne the normalized distance
δ = d~n. Starting with the Gilbert-Varshamov bound discussed in Problem 1.13,
show that δ�(r) as de�ned on page 7 ful�lls δ�(r) C h−12 (1 − r).
1.16 (Pairwise Independence for Generator Ensemble). Let F = F2 and con-
sider the following slight generalization of Elias’ generator ensemble G(n, k), call
it G̃(n, k). To sample from G̃(n, k) choose a random element C from G(n, k) and
a random translation vector c from Fn2 . ¿e random sample C̃ is C̃ = C + c, i.e., a
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translated version of the code C. Prove that in G̃(n, k) codewords have a uniform
distribution and that pairs of codewords are independent.More precisely, let�u[i]�i,
where i ranges from 0 to 2k − 1, denote the set of binary k-tuples, ordered in some
�xed but arbitrary way. For G > G(n, k) and c > Fn2 , let x[i](G, c) = c + u[i]G be
the i-th codeword. Prove that for j x i, P�X[j] SX[i] = x� is uniform, i.e., for any
v > Fn2 , P�X[j] = v SX[i] = x� = 1

2n .

1.17 (Mean and SecondMoment for G(n, k)). Consider Elias’ generator ensem-
ble G(n, k), 0 < k B n, as described in De�nition 1.26. Recall that its design rate
is r = k~n. For C > G(n, k), let A(C,w) denote the codewords in C of Hamming
weight w. Show that

EC[A(C,w = 0)] = 1 + 2nr − 1
2n

= Ā(w = 0),

EC[A(C,w)] = �nw�
2nr − 1
2n

= Ā(w),w C 1,

EC[A2(C,w)] = Ā(w) + (2
nr
− 1)(2nr − 2)

22n
�n
w
�
2
,w C 1,

EC[(A(C,w) − Ā(w))2] = Ā(w) − 2nr − 1
22n

�n
w
�
2
,w C 1.

What is the expected number of distinct codewords in an element chosen uniformly
at random from G(n, k)?
1.18 (Mean and SecondMoment forH(n, k)). Consider Gallager’s parity-check
ensembleH(n, k), 0 < k B n, as described in De�nition 1.26. Recall that its design
rate is equal to r = k~n. For C >H(n, k), let A(C,w) denote the codewords in C of
Hamming weight w. Show that

A(C,w = 0)] = 1,
EC[A(C,w)] = �nw�2

−n(1−r)
= Ā(w), w C 1,

EC[A2(C,w)] = Ā(w) + �n
w
���n

w
� − 1� 2−2n(1−r), w C 1.

EC[(A(C,w) − Ā(w))2] = Ā(w) − �nw�2
−2n(1−r), w C 1.

What is the expected number of distinct codewords in an element chosen uniformly
at random fromH(n, k)?
1.19 (Wolf Trellis – Bahl, Cocke, Jelinek, andRaviv [1],Wolf [67]). ¿ere is
an important graphical representation of codes, called a trellis. A trellis T = (V ,E)
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of rank n is a �nite directed graph with vertex set V and edge set E. Each vertex is
assigned a “depth” in the range �0,� ,n�, and each edge connects a vertex at depth
i to one at depth i+ 1, for some i = 0,1,� ,n− 1. ¿eWolf trellis for a binary linear
code C with (n− k)� n parity-check matrixH = (hT1 ,� ,hTn), where hTj is the j-th
column of H, is de�ned as follows. At depth i, i = 0,� ,n, the vertex set consists of
2n−k vertices which we identify with the set of binary (n − k)-tuples. A vertex v at
depth i is connected to a vertex u at depth (i+1)with label λ > �0,1� if there exists
a codeword c = (c1,� , cn) > C with ci+1 = λ such that

v =
i
Q
j=1
cjhj and u =

i+1
Q
j=1
cjhj,

where by convention P0
j=1 cjhj = (0,� ,0). ¿is is the key to this representation:

there is a one-to-one correspondence between the labeled paths in the Wolf trellis
starting and ending in the zero state (the fact that the �nal state is zero follows from
HcT = 0T) and the codewords of C. Note that codewords “share” edges and so the
total number of edges is, in general, much smaller than the number of codewords
times the length of the code. Hence, the Wolf trellis is a compact representation
of a code. Many important algorithms can be performed on the trellis of a code
(e.g., decoding, determination of minimum distance etc.) We revisit this topic in
Section 6.1 when discussing convolutional codes.

Draw the Wolf trellis for the [7,4,3] Hamming code with parity-check matrix
given in (1.25).

1.20 (MacWilliams Identities – MacWilliams [43] – presentation below
due to Barg). For linear codes there is a fundamental relationship between the
weight distribution of a code and the weight distribution of its dual code. Let us ex-
plore this relationship for the binary case. Let C be a binary linear [n, k] code. Let
Ai, i = 0,� ,n, be the number of codewords inC of weight i (to lighten the notation
we write Ai instead of A(C, i)). Note that A0 = 1 and that SCS = Pni=0 Ai. We call
the collection �Ai�0BiBn the weight distribution of the code C. In the same manner,
we call �AÙi �0BiBn the weight distribution of the dual code CÙ. ¿e MacWilliams
identity states that

AÙj =
1
SCS

n
Q
i=0
AiPj(i), 0 B jB n,

where Pj(i) = Pnl=0(−1)l�il��n−ij−l�.

1. Let E be a subset of �1,2,� ,n� and SES denote its size. Let C(E) be the sub-
code ofCwith zeros outside E. More precisely,C(E) is the collection of those
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elements of C which have non-zero elements only within the coordinates in-
dexed by E. Note that the zero codeword is always inC(E) so thatC(E) is not
empty. Prove that Pni=0 Ai� n−in−w� = PSES=w SC(E)S for every 0 B w B n, where
the sum is over all E of size w.

2. LetHE denote the submatrix formed by the columns ofH that are indexed by
E. Assume that SES = w. Prove that C(E) is a binary linear code with dimen-
sion dim(C(E)) = w − rank(HE).

3. Prove that w − rank(HE) = k − rank(GĒ) where Ē is the complement of
E within �1,� ,n�. (¿is property plays a central role in Lemma 3.76 and
¿eorem 3.78.)

4. Justify each of the following steps.
n−u
Q
i=0

AÙi �
n − i
u
� (i)= Q

SES=n−u
SCÙ(E)S

(ii)
= Q
SES=n−u

2n−u−rank(GE)

(iii)
= 2n−k−u Q

SES=n−u
2u−rank(HĒ)

(iv)
= 2n−k−u

u
Q
i=0
Ai�n − in − u

�.

5. Use Pi(−1)j−i�n−jn−i�� n−in−w� = δj,w to prove AÙj = 1
SCS P

n
i=0 AiPj(i), 0 B j B n,

where Pj(i) = Pnl=0(−1)l�il��n−ij−l�.
Hint: Consider the generating functionPni=0 Pj(i)xi = (1+x)n−i(1−x)i and
expand it using the form (1 − x)n(1 + 2x

1−x)n−i.
6. Use your result to calculate the weight distribution of the dual of the [7,4,3]

Hamming code.

1.21 (Upper Bound On Error Probability via Weight Distribution). Con-
sider a linear binary codeC of length n and dimension k. LetAw denote the number
of words of weight w and let

A(D) =
n
Q
w=0

AwDw.

A(D) is called theweight enumerator of the code. Consider the parity-check ensem-
bleH(n, k).
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Let x be a �xed binary word of length n. Argue that for a randomly chosen
element C >H(n, k)

P�x > C� =
¢̈̈
¦̈̈
¤
1, x = 0,
2−(n−k), otherwise.

Hint: What is the probability that x ful�lls one parity-check equation, i.e., that
PjHi,jxj = 0 for some �xed i?

SinceH is random, Aw is a random variable as well and we denote it by Aw(H).
Use the previous result and argue that every code in this ensemble contains the all-
zero word, in particular

Ā0 = E[A0(H)] = 1,
and that the expected number of codewords of weight w, w A 0, is given by

Āw = E[Aw(H)] = �nw�2
−(n−k).

De�ne the average weight enumerator as

Ā(D) =
n
Q
w=0

ĀwDw.

Using the above result on Āw and your mastery of formal power sums, write Ā(D)
in a compact form.

For a �xed code C, we will now derive a simple upper bound on its block error
probability under ML decoding when transmitting over an additive white Gaussian
noise channel with noise variance σ2. More precisely, suppose the input takes val-
ues in ��1� and that we add to each component of the transmitted codeword an
iid. Gaussian random variable with variance σ2. Let Y denote the received word
and let x̂ML(y) denote the ML decoded vector. Finally, let PB denote the resulting
probability of block error. Justify each step in the following sequence:

PB = P�x̂ML(Y) x 0 SX = 0� = P�x̂ML(Y) > C � �0� SX = 0�
= P� max

x>C��0�
p(Y S x) C p(Y S 0) SX = 0�

B Q
x>C��0�

P�p(Y S x) C p(Y S 0) SX = 0�

= Q
x>C��0�

P�Sx − YS2 B SYS2 SX = 0� = Q
x>C��0�

Q
�
�

»
w(x)
σ
�
�

=

n
Q
w=1

AwQ �
º
w
σ
� B 1

2

n
Q
w=1

Awe−
w
2σ2
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=
1
2
�A(e− 1

2σ2 ) − A0� .

Collect all the previous results to conclude that the average block error probability
for our ensemble can be bounded by

E[PB(H)] B
�1 + e− 1

2σ2 �n − 1
2n−k+1

B 2n(log2(1+e
−

1
2σ2
)−(1−r))

.

We conclude that as long as r < 1 − log2(1 + e−
1

2σ2 ), we can drive the expected
expected error probability to 0 by increasing the length. Better bounds can improve
this rate function.

1.22 (Sufficient Statistic). Consider transmission of X chosen with probability
pX(x) from some codeC and letY denote the received observation. Further, let Z =
f(Y), where f(ċ) is a given function. Prove that Z constitutes a su�cient statistic
for X given Y if and only if pY SX(y S x) can be brought into the form a(x, z)b(y)
for some suitable functions a(ċ, ċ) and b(ċ).
1.23 (More on Sufficient Statistic). Consider three random variables X, Y, and
Z. Suppose that X � Y � Z, where Z = f(Y). We discussed on page 29 that if
X� Z � Y then H(X SY) = H(X SZ).

Show that the converse is true as well. More precisely, show that if H(X SY) =
H(X SZ) then X� Z � Y.

Hint: Show that I(X;YSZ) = 0.
1.24 (Bound on Binomials). Let 0 B k B m and k,m > N. Justify the following
steps.

1
�mk�
=

k!
m(m − 1)� (m − k + 1) =

k!
mke

−Pk−1
i=1 ln(1−i~m)

B
k!
mke

k2~m.

Hint: Bound the sum by an integral.

1.25 (Bound on Sum of Binomials). Prove the upper bound stated in (1.59).
Hint: Consider the binomial identityPnk=0 �nk�xk = (1+x)nwith x = m~(n−m).

1.26 (Chain Rule). Give a proof of the chain rule H(X,Y) = H(X) +H(Y SX).
Hint: Write pX,Y(x, y) as pX(x)pY SX(y S x).

1.27 (Non-Negativity of Mutual Information). Prove that I(X;Y) C 0.
Hint: Write −I(X;Y) as Px,y pX,Y(x, y) log pX(x)pY(y)

pX,Y(x,y) and apply Jensens’ in-
equality (1.61).
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1.28 (Fano’s Inequality). Prove Fano’s inequality (1.49).
Hint: De�ne the random variable E, E > �0,1�, which takes on the value 1 if

x̂(Y) x X. ExpandH(E,X SY) both asH(X SY)+H(E SX,Y) as well asH(E SY)+
H(X SE,Y), equate the two terms, and bound H(E SX,Y), H(E SY), as well as
H(X SE,Y).
1.29 (The Capacity of the BSC Rederived). Start with (1.45) and show that the
capacity of the BSC(є) is equal to CBSC(є) = 1 − h2(є) bits per channel use.
1.30 (Descarte’s Rule of Signs). Prove¿eorem 1.52.

Hint: Use induction on r. First prove the claim for r = 0 using the fundamental
theorem of algebra.
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Chapter 2

FA C T O R G R A P H S

¿is chapter is largely about the following question: how can we e�ciently compute
marginals of multivariate functions. A surprisingly large number of computational
problems can be phrased in this way. ¿e decoding problem, which is the focus of
this book, is an important particular case.

§2.1. Distributive Law
Let F be a �eld (think of F = R) and let a,b, c > F. By the distributive law

(2.1) ab + ac = a(b + c).

¿is simple law, properly applied, can signi�cantly reduce computational complex-
ity: consider, e.g., the evaluation of Pi,jaibj as (Pi ai)(Pjbj). Factor graphs pro-
vide an appropriate framework to systematically take advantage of the distributive
law.

Example 2.2 (Simple Example). Let’s start with an example. Consider a function
f with factorization

(2.3) f(x1,x2,x3,x4,x5,x6) = f1(x1,x2,x3)f2(x1,x4,x6)f3(x4)f4(x4,x5).

We are interested in computing the marginal of f with respect to x1. With some
abuse of notation, we denote this marginal by f(x1),

f(x1) = Q
x2,x3,x4,x5,x6

f(x1,x2,x3,x4,x5,x6) =Q
�x1

f(x1,x2,x3,x4,x5,x6).

In the previous line we introduced the notation P�... to denote a summation over
all variables contained in the expression except the ones listed. ¿is convention will
save us from a �ood of notation. Assume that all variables take values in a �nite
alphabet, call it X . Determining f(x1) for all values of x1 by brute force requires
Θ�SX S6� operations, where we assume a naive computational model in which all
operations (addition, multiplication, function evaluations, ...) have the same cost.
But we can do better: taking advantage of the factorization, we can rewrite f(x1) as

f(x1) = �Q
x2,x3

f1(x1,x2,x3)��Q
x4
f3(x4)�Q

x6
f2(x1,x4,x6)��Q

x5
f4(x4,x5)��.

49
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50 factor graphs

Fix x1. ¿e evaluation of the �rst factor can be accomplished with Θ�SX S2� oper-
ations. ¿e second factor depends only on x4, x5, and x6. It can be evaluated ef-
�ciently in the following manner. For each value of x4 (and x1 �xed), determine
Px5 f4(x4,x5) and Px6 f2(x1,x4,x6). Multiply by f3(x4) and sum over x4. ¿ere-
fore, the evaluation of the second factor requires Θ�SX S2� operations as well. Since
there are SX S values for x1, the overall task has complexity Θ�SX S3�. ¿is compares
favorably to the complexity Θ�SX S6� of the brute force approach. n

§2.2. Graphical Representation of Factorizations

Consider a function and its factorization. Associate with this factorization a factor
graph as follows. For each variable draw a variable node (circle) and for each factor
draw a factor node (square). Connect a variable node to a factor node by an edge
if and only if the corresponding variable appears in this factor. ¿e resulting graph
for the function of Example 2.2 is shown on the le of Figure 2.4. ¿e factor graph
is bipartite. ¿is means that the set of vertices is partitioned into two groups (the set
of nodes corresponding to variables and the set of nodes corresponding to factors)
and that an edge always connects a variable node to a factor node. For our particular
example the factor graph is a (bipartite) tree. ¿is means that there are no cycles
in the graph, i.e., there is one and only one path between each pair of nodes. As

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

x1
x2
x3
x4
x5
x6
x7

1�x1+x2+x4=0�

1�x3+x4+x6=0�

1�x4+x5+x7=0�

Figure 2.4: Le : Factor graph of f given in Example 2.2. Right: Factor graph for the
code membership function de�ned in Example 2.5.

we will show in the next section, for factor graphs that are trees there is a simple
message-passing algorithm for computing marginals e�ciently. ¿is remains true
in the slightly more general scenario where the factor graph forms a forest, i.e., the
factor graph is disconnected and it is composed of a collection of trees. In order
to keep things simple we will assume a single tree and ignore this straightforward
generalization.
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Example 2.5 (Special Case: Tanner Graph). Consider the binary linear code
C(H) de�ned1 by the parity-check matrix

H =

x1 x2 x3 x4 x5 x6 x7
�
�
�

1
0
0

1
0
0

0
1
0

1
1
1

0
0
1

0
1
0

0
0
1

�
�
�
.

LetF2 denote the binary �eld with elements �0,1� and let x = (x1,� ,x7). Consider
the function f(x1,� ,x7) from F7

2 to �0,1� ⊂ R that is de�ned by

f(x1,� ,x7) = 1�x>C(H)� =
¢̈̈
¦̈̈
¤
1, if HxT = 0T ,
0, otherwise.

We can factor f as

f(x1, . . . ,x7) = 1�x1+x2+x4=0�1�x3+x4+x6=0�1�x4+x5+x7=0�.

Each term 1�ċ� is an indicator function: it is 1 if the condition inside the braces is ful-
�lled and 0 otherwise.¿e function f is sometimes also called the code membership
function since it tests whether a particular word is a member of the code or not.¿e
factor graph of f is shown on the right in Figure 2.4. It is called the Tanner graph of
H. We will have much more to say about it in Section 3.3. n

It is hopefully clear at this point that any (binary) linear block code has a Tanner
graph representation. But more is true: e.g., if you are familiar with convolutional
codes take a peek at Figure 6.5 on page 329. It represents a convolutional code in
terms of a factor graph. ¿roughout the rest of this book we will encounter factor
graphs for a wide range of codes and a wide range of applications.

§2.3. Recursive Determination of Marginals
Consider the factorization of a generic function g and suppose that the associated
factor graph is a tree (by de�nition it is always bipartite). Suppose that we are in-
terested in marginalizing g with respect to the variable z, i.e., we are interested in
computing g(z) = P�z g(z, . . .). Since the factor graph of g is a bipartite tree, g has
a generic factorization of the form

g(z, . . .) =
K
M
k=1
[gk(z, . . .)]

1Wemean here the code C whose parity-check matrix is H and not the dual code.
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for some integer K with the following crucial property: z appears in each of the
factors gk, but all other variables appear in only one factor. To see this assume that
to the contrary there is another variable that is contained in two of the factors. ¿is
wouldmean that besides the path that connects these two factors via variable z there
is another path. But this would contradict the assumption that the factor graph is A
tree.

For the function f of Example 2.2 this factorization is

f(x1, . . .) = [f1(x1,x2,x3)] [f2(x1,x4,x6)f3(x4)f4(x4,x5)] ,
so that K = 2. ¿e generic factorization and the particular instance for our running
example f are shown in Figure 2.6. Taking into account that the individual factors

z
g

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5

f

[g1] [gk] [gK] [f1]

[f2 f3 f4]
Figure 2.6: Generic factorization and the particular instance.

gk(z, . . .) only share the variable z, an application of the distributive law leads to

Q
�z
g(z, . . .) =Q

�z

K
M
k=1
[gk(z, . . .)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
marginal of product

=

K
M
k=1
�Q
�z
gk(z, . . .)�

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
product of marginals

.(2.7)

In words, the marginal P�z g(z, . . .) is the product of the individual marginals
P�z gk(z, . . .). In terms of our running example we have

f(x1) = �Q
�x1

f1(x1,x2,x3)��Q
�x1

f2(x1,x4,x6)f3(x4)f4(x4,x5)�.

¿is single application of the distributive law leads, in general, to a non-negligible
reduction in complexity. But we can go further and apply the same idea recursively
to each of the terms gk(z, . . .).
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In general, each gk is itself a product of factors. In Figure 2.6 these are the factors
of g that are grouped together in one of the ellipsoids. Since the factor graph is a
bipartite tree, gk must in turn have a generic factorization of the form

gk(z, . . .) = h(z, z1, . . . , zJ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kernel

J
M
j=1
�hj(zj, . . .)�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

factors

,

where z appears only in the “kernel” h(z, z1, . . . , zJ) and each of the zj appears at
most twice, possibly in the kernel and in at most one of the factors hj(zj, . . .). All
other variables are again unique to a single factor. For our running example we have

f2(x1,x4,x6)f3(x4)f4(x4,x5) = f2(x1,x4,x6)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kernel

[f3(x4)f4(x4,x5)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
x4

[1]
°
x6

.

¿e generic factorization and the particular instance for our running example f are
shown in Figure 2.8. Another application of the distributive law gives

z

kernel h

z1 zj zJ

[h1] [hj] [hJ] f3
f4

x5

x1

f2kernel

x4 x6

[f3 f4]

[1]

[f2 f3 f4][gk]
Figure 2.8: Generic factorization of gk and the particular instance.

Q
�z
gk(z, . . .) =Q

�z
h(z, z1, . . . , zJ)

J
M
j=1
�hj(zj, . . .)�

=Q
�z
h(z, z1, . . . , zJ)

J
M
j=1
�Q
�zj
hj(zj, . . .)�

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
product of marginals

.(2.9)
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In words, the desired marginalP�z gk(z, . . .) can be computed by multiplying the
kernel h(z, z1, . . . , zJ) with the individual marginalsP�zj hj(zj, . . .) and summing
out all remaining variables other than z.

We are back to where we started. Each factor hj(zj, . . .) has the same generic
form as the original function g(z, . . .), so that we can continue to break down the
marginalization task into smaller pieces. ¿is recursive process continues until we
have reached the leaves of the tree. ¿e calculation of the marginal then follows
the recursive splitting in reverse. In general, nodes in the graph compute marginals,
which are functions over X and pass these on to the next level. In the next section
we will elaborate on this method of computation, known as message-passing: the
marginal functions are messages.¿emessage combining rules at function nodes is
explicit in (2.9). And at a variable node we simply perform pointwisemultiplication.

Let us consider the initialization of the process. At the leaf nodes the task is sim-
ple. A function leaf node has the generic form gk(z), so thatP�z gk(z) = gk(z): this
means that the initial message sent by a function leaf node is the function itself. To
�nd out the correct initialization at a variable leaf node consider the simple exam-
ple of computing f(x1) = P�x1 f(x1,x2). Here, x2 is the variable leaf node. By the
message-passing rule (2.9) the marginal f(x1) is equal to P�x1 f(x1,x2) ċ µ(x2),
where µ(x2) is the initial message that we send from the leaf variable node x2 to-
wards the kernel f(x1,x2). We see that to get the correct result this initial message
should be the constant function 1.

§2.4. Marginalization via Message Passing
In the previous section we have seen that, in the case where the factor graph is a tree,
the marginalization problem can be broken down into smaller and smaller tasks
according to the structure of the tree.

¿is gives rise to the following e�cient message-passing algorithm. ¿e algo-
rithm proceeds by sending messages along the edges of the tree. Messages are func-
tions on X , or, equivalently, vectors of length SX S. ¿e messages signify marginals
of parts of the function and these parts are combined to form the marginal of the
whole function. Message-passing originates at the leaf nodes. Messages are passed
up the tree and as soon as a node has received messages from all its children, the
incoming messages are processed and the result is passed up to the parent node.

Example 2.10 (Message-Passing Algorithm for f of Example 2.2). Consider
this procedure in detail for the case of our running example as shown in Figure 2.11.
¿e top le -most �gure shows the factor graph. Message-passing starts at the leaf
nodes as shown in the middle �gure on the top. ¿e variable leaf nodes x2, x3, x5
and x6 send the constant function 1 as discussed at the end of the previous sec-
tion. ¿e factor leaf node f3 sends the function f3 up to its parent node. In the next
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time step the factor node f1 has received messages from both its children and can
therefore proceed. According to (2.9), the message it sends up to its parent node
x1 is the product of the incoming messages times the “kernel” f1, a er summing
out all variable nodes except x1, i.e., the message isP�x1 f1(x1,x2,x3). In the same
manner factor node f4 forwards to its parent node x4 the message P�x4 f4(x4,x5).
¿is is shown in the right-most �gure in the top row. Now variable node x4 has re-
ceived messages from all its children. It forwards to its parent node f2 the product
of its incoming messages, in agreement with (2.7), which says that the marginal of a
product is the product of the marginals. ¿is message, which is a function of x4, is
f3(x4)P�x4 f(x4,x5) = P�x4 f3(x4)f4(x4,x5). Next, function node f2 can forward
its message, and, �nally, themarginalization is achieved bymultiplying all incoming
messages at the root node x1. n

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1 1

f3

1

1
x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1 1

f3 P�x4 f4

1

1

P�x1 f1

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1 1

f3 P�x4 f4

1

1

P�x1 f1

P�x4 f3 f4

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1 1

f3 P�x4 f4

1

1

P�x1 f1

P�x4 f3 f4

P�x1 f2 f3 f4

x2 x3 x4 x6

f3 f4

x5

f1 f2

x1

1 1

f3 P�x4 f4

1

1

P�x1 f1

P�x4 f3 f4

P�x1 f2 f3 f4

P�x1 f1 f2 f3 f4

Figure 2.11: Marginalization of function f from Example 2.2 via message passing.
Message passing starts at the leaf nodes. A node which has received messages from
all its children processes the messages and forwards the result to its parent node.
Bold edges indicate edges along which messages have already been sent.

Before stating the message-passing rules formally, there is one important gen-
eralization which we must make. Whereas so far we have considered the marginal-
ization of a function f with respect to a single variable x1 we are actually interested
in marginalizing for all variables. We have seen that a single marginalization can
be performed e�ciently if the factor graph of f is a tree, and that the complexity of
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the computation essentially depends on the largest degree of the factor graph and
the size of the underlying alphabet. Consider now the problem of computing all
marginals. We can draw for each variable a tree rooted in this variable and execute
the single marginal message-passing algorithm on each rooted tree. It is easy to see,
however, that the algorithm does not depend on which node is the root of the tree
and that in fact all the computations can be performed simultaneously on a single
tree. Simply start at all leaf nodes and for every edge compute the outgoing message
along this edge as soon as you have received the incoming messages along all other
edges that connect to the given node. Continue in this fashion until a message has
been sent in both directions along every edge. ¿is computes all marginals so it is
more complex than computing a single marginal but only by a factor roughly equal
to the average degree of the nodes. We now summarize the set of message-passing
rules.

Messages, which we denote by µ, are functions on X . Message passing starts at
leaf nodes. Consider a node and one of its adjacent edges, call it e. As soon as the in-
comingmessages to the node along all other adjacent edges have been received these
messages are processed and the result is sent out along e. ¿is process continues
until messages along all edges in the tree have been processed. In the �nal step the
marginals are computed by combining all messages which enter a particular vari-
able node.¿e initial conditions and processing rules are summarized in Figure 2.12.
Since the messages represent probabilities or beliefs, the algorithm is also known as
the belief propagation (BP) algorithm. From now on we will mostly refer to it under
this name.

§2.5. Decoding via Message Passing

§2.5.1. Bitwise MAP Decoding

Assume we transmit over a binary-input (Xi > ��1�) memoryless (pY SX(y S x) =
Ln
i=1 pYi SXi(yi S xi)) channel using a linear code C(H) de�ned by its parity-check

matrixH and assume that codewords are chosen uniformly at random.¿e rule for
the bitwiseMAP decoder reads:

x̂MAP
i (y) = argmaxxi>��1�pXi SY(xi S y)

= argmaxxi>��1�Q
�xi

pX SY(x S y)(law of total probability)

= argmaxxi>��1�Q
�xi

pY SX(y S x)pX(x)(Bayes)

= argmaxxi>��1�Q
�xi
�M

j
pYj SXj(yj S xj)�1�x>C�,(2.13)
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f

x
µ(x) = f(x) initialization at

leaf nodes x

f
µ(x) = 1

f

x

variable/function
node processing

µ(x) =LK
k=1 µk(x)

µ1 µk µK
f1

fk
fK

x

f

µ(x) = P�x f(x,x1,� ,xJ)LJ
j=1 µj(xj)

µ1 µj µJ
x1

xj
xJ

xmarginalization LK+1
k=1 µk(x)

µ1 µk µK
f1

fk
fK

fK+1

µK+1

Figure 2.12: Message-passing rules. ¿e top row shows the initialization of the mes-
sages at the leaf nodes. ¿e middle row corresponds to the processing rules at
the variable and function nodes, respectively. ¿e bottom row explains the �nal
marginalization step.

where in the last step we have used the fact that the channel is memoryless and
that codewords have uniform prior. ¿is is important: in the above formulation we
consider y as a constant (since it is given to the decoding algorithm as an input).
¿erefore, we writeP�xi to indicate a summation over all components of x (except
xi) and not the components of y.

Assume that the code membership function 1�x>C� has a factorized form. From
(2.13) it is then clear that the bitwise decoding problem is equivalent to calculating
the marginal of a factorized function and choosing the value which maximizes this
marginal.

Example 2.14 (BitwiseMAPDecoding). Consider the parity-check matrix given
in Example 2.5. In this case argmaxxi>��1�pXi SY(xi S y) can be factorized as

argmaxxi>��1�Q
�xi
�

7
M
j=1
pYi SXj(yj S xj)�1�x1+x2+x4=0�1�x3+x4+x6=0�1�x4+x5+x7=0�.

¿e corresponding factor graph is shown in Figure 2.15. ¿is graph includes the
Tanner graph of H, but in addition also contains the factor nodes which represent
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p(y1 S x1)
p(y2 S x2)
p(y3 S x3)
p(y4 S x4)
p(y5 S x5)
p(y6 S x6)
p(y7 S x7)

1�x1+x2+x4=0�

1�x3+x4+x6=0�

1�x4+x5+x7=0�

Figure 2.15: Factor graph for the MAP decoding of our running example.

the e�ect of the channel. For this particular case the resulting graph is a tree.We can
therefore apply the message-passing algorithm to this example to perform bitwise
MAP decoding. n

§2.5.2. Simplification of Message-Passing Rules for Bitwise MAP
Decoding

In the binary case amessage µ(x) can be thought of as a real-valued vector of length
two, (µ(1), µ(−1)) (here we think of the bit values as ��1�). ¿e initial such mes-
sage sent from the factor leaf node representing the channel to the variable node i
is (pYi SXi(yi S 1), pYi SXi(yi S − 1)) (see Figure 2.15). Recall that at a variable node of
degree (K + 1) the message-passing rule calls for a pointwise multiplication,

µ(1) =
K
M
k=1

µk(1), µ(−1) =
K
M
k=1

µk(−1).

Introduce the ratio rk = µk(1)~µk(−1). ¿e initial such ratios are the likelihood
ratios associated with the channel observations. We have

r =
µ(1)
µ(−1) =

LK
k=1 µk(1)

LK
k=1 µk(−1)

=

K
M
k=1

rk,

i.e., the ratio of the outgoing message at a variable node is the product of the incom-
ing ratios. If we de�ne the log-likelihood ratios lk = ln(rk), then the processing rule
reads l = PKk=1 lk.

Consider now the ratio of an outgoingmessage at a check nodewhich has degree
(J + 1). For a check node the associated “kernel” is

f(x,x1, . . . ,xJ) = 1�LJ
j=1 xj=x�.

Since in the current context we assume that the xi take values in ��1� (and not F2)
we wroteLJ

j=1 xj = x (instead ofP
J
j=1 xj = x). We therefore have

r =
µ(1)
µ(−1) =

P�x f(1,x1, . . . ,xJ)LJ
j=1 µj(xj)

P�x f(−1,x1, . . . ,xJ)LJ
j=1 µj(xj)
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=

Px1,...,xJ�LJ
j=1 xj=1

LJ
j=1 µj(xj)

Px1,...xJ�LJ
j=1 xj=−1

LJ
j=1 µj(xj)

=

Px1,...,xJ�LJ
j=1 xj=1

LJ
j=1

µj(xj)
µj(−1)

Px1,...,xJ�LJ
j=1 xj=−1

LJ
j=1

µj(xj)
µj(−1)

=

Px1,...,xJ�LJ
j=1 xj=1

LJ
j=1 r

(1+xj)~2
j

Px1,...,xJ�LJ
j=1 xj=−1

LJ
j=1 r

(1+xj)~2
j

=

LJ
j=1(rj+ 1) +LJ

j=1(rj− 1)
LJ

j=1(rj+ 1) −LJ
j=1(rj− 1)

.(2.16)

¿e last step warrants some remarks. If we expand out LJ
j=1(rj + 1), then we get

the sum of all products of the individual terms rj, j = 1,� , J. E.g.,L3
j=1(rj+ 1) =

1 + r1 + r2 + r3 + r1r2 + r1r3 + r2r3 + r1r2r3. Similarly,LJ
j=1(rj− 1) is the sum of all

products of the individual terms rj, where all products consisting of d terms such
that J−d is odd have a negative sign. E.g., we haveL3

j=1(rj−1) = −1+ r1 + r2 + r3 −
r1r2 − r1r3 − r2r3 + r1r2r3. From this follows that

J
M
j=1
(rj+ 1) +

J
M
j=1
(rj− 1) = 2 Q

x1,...,xJ�LJ
j=1 xj=1

J
M
j=1
r(1+xj)~2j .

Applying the analogous reasoning to the denominator, the equality follows. If we di-
vide both numerator and denominator byLJ

j=1(rj+ 1), we see that (2.16) is equiv-

alent to the statement r =
1+Lj

rj−1
rj+1

1−Lj
rj−1
rj+1

, which in turn implies r−1
r+1 = Lj

rj−1
rj+1

. From

r = el we see that r−1
r+1 = tanh(l~2). Combining theses two statements we have

tanh(l~2) = r−1
r+1 =L

J
j=1

rj−1
rj+1
=LJ

j=1 tanh(lj~2), so that

(2.17) l = 2 tanh−1�
J
M
j=1

tanh(lj~2)�.

We summarize: in the case of transmission over a binary channel the messages can
be compressed to a single real quantity. In particular, if we choose this quantity to be
the log-likelihood ratio (log of the ratio of the two likelihoods) then the processing
rules take on a particularly simple form: at variables nodes messages add, and at
check nodes the processing rule is stated in (2.17).

§2.5.3. Forney-Style Factor Graphs

Factor graphs (FG) represent one particular language to formulate the relationship
between a function and its local components. One popular alternative is the repre-
sentation in terms of Forney-style factor graphs (FSFG).¿ese graphs are sometimes
also called normal graphs.
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x4
x3
x2
x1

x4
x3
x2 x1

Figure 2.18: Le : Standard FG in which each variable node has degree at most two.
Right: Equivalent FSFG. ¿e variables in the FSFG are associated with the edges in
the FG.

Consider the FG shown in the le hand side of Figure 2.18. Note that each vari-
able node has degree one or two. We can therefore convert the bipartite graph into
a regular (in the sense of not bipartite) graph by representing variable nodes as
(half)edges. ¿e result is shown on the right hand side of Figure 2.18. ¿is is the
FSFG representation. In general, a variable node might have degree larger than two.
In this case we can replicate such a variable node a su�cient number of times by an
equality factor as shown in Figure 2.19. ¿e le side shows a variable node of degree
K+1.¿e right side shows the representation as an FSFG.¿eK additional variables
x1,� ,xK are enforced to be equal to the original variable x by an “equality factor”,
i.e., x = x1 = � = xK. Figure 2.20 compares the standard FG for the MAP decoding

xK
x1 xk xK−1

=

x

Figure 2.19: Representation of a variable node of degree K as a FG (le ) and the
equivalent representation as an FSFG (right).

problem of our running example with the corresponding FSFG.

p(y1 S x1)
p(y2 S x2)
p(y3 S x3)
p(y4 S x4)
p(y5 S x5)
p(y6 S x6)
p(y7 S x7)

1�x1+x2+x4=0�

1�x3+x4+x6=0�

1�x4+x5+x7=0�

p(y1 S x1)
p(y2 S x2)
p(y3 S x3)
p(y4 S x4)
p(y5 S x5)
p(y6 S x6)
p(y7 S x7)

1�x1+x2+x4=0�

1�x3+x4+x6=0�

1�x4+x5+x7=0�

=

Figure 2.20: Standard FG and the corresponding FSFG for theMAP decoding prob-
lem of our running example.

¿e relationship between the standard FG and the FSFG is straightforward and
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little e�ort is required to move from one representation to the other. ¿e message-
passing rules carry over verbatim. In fact, in the setting of FSFGs we only need the
factor node processing rule: for a generic node of degree (J+ 1), the outgoing mes-
sage along edge x is

µ(x) =Q
�x
f(x,x1,� ,xJ)

J
M
j=1
µj(xj).(2.21)

Recall that variables in the FSFG are represented by edges. Some thought shows that
to compute the �nal marginalization with respect to a certain variable, we need to
multiply the two messages that �ow along the corresponding edge.

FSFGs have fewer nodes and are therefore typically simpler. Note that “internal”
edges represent internal or “state” variables, whereas “half-edges” (like the bottom
edge on the right of Figure 2.18) represent external variables which can be connected
to other systems on graphs.

§2.5.4. Generalization to Commutative Semirings

We started with a discussion of the distributive law assuming that the underlying
algebraic structure was a �eld F and used it to derive e�cient marginalization al-
gorithms. A closer look at our derivation shows that actually all that was needed
was that we were working in a commutative semiring. In a commutative semiringK
the two operations, which we call “+” and “ċ” satisfy the following axioms: (i) the
operations “+” and “ċ” are commutative (x + y = y+ x; x ċ y = y ċ x) and associative
(x + (y+ z) = (x + y)+ z; x ċ (y ċ z) = (x ċ y) ċ z) with identity elements denoted by
“0” and “1”, respectively; (ii) the distributive law (x + y) ċ z = (x ċ z) + (y ċ z) holds
for any triple x, y, z > K. In comparison to a �eld F we do not require the existence
of an inverse with respect to either operation.

Table 2.22 lists several commutative semirings which are useful in the context
of coding.¿e task of verifying that each of these examples indeed ful�lls the stated
axioms is relegated to Problem 2.1. ¿e most important example in the context of
iterative coding is the so-called sum-product semiring, in which the two operations
are standard addition and multiplication. ¿is is the example which we have used
so far. As we have seen, is the relevant semiring if we want to minimize the bit error
probability.

¿e secondmost important example is themax-sum semiring. Againwe operate
over the reals but now addition is replaced bymaximization andmultiplication is re-
placed by addition. All previous statements and algorithms stay valid if we perform
this simple substitution of operations. We will soon see that the max-sum semir-
ing is the proper setting for performing block decoding. To be concrete, consider
the distributive law for the max-sum semiring. If in (2.1) we replace addition with
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K “(+,0)” “(ċ,1)” description
F (+,0) (ċ,1)
F[x, y,�] (+,0) (ċ,1)
RC0 (+,0) (ċ,1) sum-product
RA0 8�ª� (min,ª) (ċ,1) min-product
RC0 (max,0) (ċ,1) max-product
R8�ª� (min,ª) (+,0) min-sum
R8�−ª� (max,−ª) (+,0) max-sum
�0,1� (OR,0) (AND,1) Boolean

Table 2.22: List of commutative semirings which are relevant for iterative decoding.
¿e entry F[x, y,�] denotes the set of polynomials in the variables x, y, . . ., with
coe�cients in the �eld F, and the usual polynomial arithmetic.

maximization and multiplication with addition then we get

max�x + y,x + z� = x +max�y, z�,
and, more generally,

max
i,j
�xi + yj� = max

i
�xi� +max

j
�yj�.

What is the marginalization of a function f(x1,� ,xn) of n real variables in the
context of the max-sum semiring? By replacing the operations we see that it ismax-
imization, i.e.,

(2.23) f(x1) = max
x2,�,xn

f(x1,� ,xn) = max
�x1

f(x1,� ,xn).

As before, if the factor graph of the function f(x1,� ,xn) is a tree, this maximiza-
tion can be accomplished e�ciently by a message-passing algorithm operating over
the max-sum semiring.¿emessage-passing rules are formally identical. More pre-
cisely: the original variable node processing rule µ(z) =LK

k=1 µk(z) is transformed
into the rule µ(z) = PKk=1 µk(z), and the function node processing rule, which pre-
viously was µ(z) = P�z f(z, z1,� , zJ)LJ

j=1 µj(zj), now reads

µ(z) = max
�z
�f(z, z1,� , zJ) +

J
Q
j=1
µj(zj)�.

¿e �nal marginalization step, which used to consist of computing the product
LK+1
k=1 µk(z), now requires to evaluate the sumPK+1k=1 µk(z).

Preliminary version – October 18, 2007



limitations of cycle-free codes 63

§2.5.5. Blockwise MAP Decoding

Assume we are transmitting over a binary memoryless channel using a linear code
C(H) de�ned by its parity-check matrix H and assume that codewords are cho-
sen uniformly at random from C(H). ¿e processing rule for the optimum block
decoder is

x̂MAP(y) = argmaxxpX SY(x S y) = argmaxxpY SX(y S x)pX(x)(Bayes)
= argmaxx�M

j
pYj SXj(yj S xj)�1�x>C�.(memoryless)

To emphasize the similarity to the optimum bit decoder, consider the i-th bit of
x̂MAP(y), write it as (x̂MAP(y))i. We have

�x̂MAP(y)�i = argmaxxi>��1�max�xi�M
j
pYj SXj(yj S xj)�1�x>C�

= argmaxxi>��1�max�xiQ
j
log pYj SXj(yj S xj) + log�1�x>C��.

If we compare this with (2.13) we see that the two criteria only di�er by a substitution
of the two basic operations – addition goes into maximization and multiplication
goes into addition (the initial messages are of course also di�erent – we use likeli-
hoods for bitwise decoding and log-likelihoods for blockwise decoding).¿erefore,
blockwise decoding can be accomplished if we employ themax-sum algebra instead
of the sum-product algebra.

It is common to write the blockwise decoder in the equivalent form

�x̂MAP(y)�i = argminxi>��1�min�xi
n
Q
j=1
− log pYj SXj(yj S xj) − log�1�x>C��.

If the channel output is discrete, so that we deal with probability mass functions,
then this form is more convenient since the involved metric − log pYj SXj(yj S xj) is
positive. Formally this means that we use the min-sum algebra instead of the max-
sum algebra. In the sequel we adhere to this custom and use the min-sum algebra
for optimum block decoding.

§2.6. Limitations of Cycle-Free Codes
¿e previous sections have shown a way of performing MAP decoding e�ciently,
assuming that the corresponding Tanner graph is a tree. Unfortunately, the class
of codes which admit a tree-like (binary) Tanner graph is not powerful enough to
perform well.
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Lemma 2.24 (BadNews about Cycle-Free Codes). LetC be a binary linear code
of rate rwhich admits a binary Tanner graph that is a forest.¿enC contains at least
2r−1
2 n codewords of weight 2.

Proof. Without loss of generality we can assume that the Tanner graph is connected.
Otherwise the code C = C[n, k] is of the form C = C1 �C2, where C1 = C1[n1, k1],
C2 = C2[n2, k2], n = n1 + n2, n1,n2 C 1, and k = k1 + k2, i.e., each codeword is
the concatenation of a codeword from C1 with a codeword from C2. Applying the
bound to each component (to keep things simple we assume there are only two such
components),

2r1 − 1
2

n1 +
2r2 − 1

2
n2 =

2 k1n1 − 1
2

n1 +
2 k2n2 − 1

2
n2

=
2k1 − n1

2
+

2k2 − n2
2

n2 =
2k − n

2
=
2r − 1
2

n.

Let us therefore assume that the Tanner graph of the code consists of a single tree.
¿e graph has n variable nodes and (1− r)n check nodes since by the tree property
all check nodes (i.e., the respective equations) are linearly independent. ¿e total
number of nodes in the tree is therefore (2−r)n. Again by the tree property, there are
(2− r)n−1 < (2− r)n edges in this graph. Since each such edge connects to exactly
one variable node, the average variable node degree is upper bounded by 2 − r. It
follows that there must be at least nr variable nodes which are leaf nodes, since each
internal variable node has degree at least 2. Since there are in total (1 − r)n check
nodes and since every leaf variable node is connected to exactly one check node, it
follows that at least rn − (1 − r)n = (2r − 1)n leaf variable nodes are connected to
check nodes which are adjacent to multiple leaf variable nodes. Each such variable
node can be paired-up with one of the other such leaf nodes to give rise to a weight-
two codeword.

We see that cycle-free codes (of rate above one-half) necessarily contain many
low-weight codewords and, hence, have a large probability of error.¿is is bad news
indeed. As discussed in more detail in Problems 4.52 and 4.53, codes of rate below
one-half also contain low-weight codewords, and the problem persists even if we
allow a small number of cycles.

§2.7. Message Passing on Codes with Cycles
We started with an e�cient algorithm to compute the marginals of functions whose
factor graph is a tree. Next we saw that the decoding task can be phrased as such
a marginalization problem, both for minimizing bit or block error probability. But
we now know that codes with a cycle-free (binary) Tanner graph are not powerful
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enough for transmission at low error rates. Tanner graphs of good codes necessarily
have many cycles. So how shall we proceed?

First, one can resort tomore powerful graphicalmodels.Wediscuss inChapter 6
(terminated) convolutional codes. Although terminated convolutional codes are
linear block codes (with a particular structure) and therefore they have a standard
binary Tanner graph representation, we will see that convolutional codes possess a
cycle-free representation (and therefore the BP algorithm can be used to perform
MAP decoding) if we allow state nodes. By increasing the size of the allowed state
space one can approach capacity. However, these state nodes come at the price of in-
creased decoding complexity and as discussed in the introduction, the complexity-
gap trade-o� is not very favorable. Another possibility is to consider non-binary
codes (see Section 7.4). Unfortunately, complexity is again increased considerably
by allowing non-binary alphabets. Finally, one can de�ne the message-passing al-
gorithm also in the case where cycles are present. Except for some degenerate cases,
message passing in the presence of cycles is strictly suboptimal, see Problem 3.11. But
as we will see in Chapters 3 and 4, excellent performance can be achieved. For codes
with cycles message-passing no longer performs MAP decoding. We will therefore
spend a considerable e�ort on learning tools that allow us to determine the perfor-
mance of such a combination.

Notes

Tanner proposed in [35] to represent codes as bipartite graphs and to visualize it-
erative decoding as a message-passing algorithm on such a graph. ¿e framework
of factor graphs discussed in this chapter is the result of a collaborative e�ort by
Wiberg [37], Wiberg, Loeliger, and Kötter [38, 37], as well as Kschischang, Frey, and
Loeliger [23]. It is not the only graphical model suitable for iterative decoding. In-
deed, we have discussed the notion of Forney-style factor graphs in Section 2.5.3.
¿ese were introduced by Forney [14], who called them normal graphs. As shown
in [14], normal graphs allow for an elegant local dualization of the graph. Exten-
sions of this idea were discussed byMao and Kschischang [29]. A further equivalent
graphical language was put forth around the same time by Aji andMcEliece [1] (see
also the article by Shafer and Shenoy [34].) ¿e message-passing algorithm which
we derived via the factor-graph approach is known under many di�erent names (it-
erative decoding, belief-propagation, message-passing, probabilistic decoding, ...).
It was gradually realized that, what might appear as di�erent algorithms (invented
inmany di�erent communities), are in fact special cases of the same basic principle.
Let us trace here just a few of those instances. Probably the �rst such instance is the
transfer-matrixmethod of statistical mechanics. It is explored in detail in [9] in con-
junctionwith the so-calledBethe Ansatz [10, 11] and it goes back at least to the 1930s.
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In the setting of communications, it was Gallager [16] who introduced LDPC codes
and the related message-passing algorithm in 1960. Viterbi introduced his so-called
Viterbi algorithm for the decoding of convolutional codes [36]. For a historical per-
spective see the Notes at the end of Chapter 1. ¿e connection between the Viterbi
algorithm and message-passing decoding is discussed in detail in Section 6.1 and
Problem 6.2.

In the mid-sixties, Baum and Welch developed an algorithm to estimate the
parameters of hidden Markov models. ¿is algorithm is known as the Baum-Welch
algorithm. For a list of publications we refer the reader to the papers by Baum and
Petrie [6], Baumand Sell [8], andBaum, Petrie, Soules, andWeiss [7]. Closely related
is the BCJR algorithmwhich was used by Bahl, Cocke, Jelinek, and Raviv to perform
bit MAP decoding for a convolutional code, see [2]. In 1977, Dempster, Laird, and
Rubin investigated the expectation-maximization (EM) algorithm [12]which in turn
includes the Baum-Welch algorithm as a special case, see [31].

In 1983 Kim and Pearl introduced the belief propagation algorithm [21, 33] to
solve statistical inference problems. ¿at the turbo decoding algorithm is in fact an
instance of belief propagation was realized by MacKay, McEliece, and Cheng [30]
as well as Frey and Kschischang [15]. An in-depth discussion of all these connec-
tions can be found in the article of McEliece, MacKay, and Cheng [30], the article
of Kschischang and Frey [22], as well as the book of Heegard and Wicker [20].

Our exposition of the factor graph approach follows closely the one in [23]. It was
Wiberg who realized that the sum-product and themin-sum algorithm are formally
equivalent [37]. ¿e formalization and further generalization of this equivalence in
terms of semi-rings is due to Aji and McEliece [1]. As we have seen, this generaliza-
tion makes it possible to view a large class of algorithms simply as special instances
of the same principle.

A set of applications for the factor graph framework is discussed in the paper
by Worthen and Stark [39]. If you are looking for tutorial articles concerning factor
graphs we recommend the paper by Loeliger [25].

It was shown by Etzion, Trachtenberg, and Vardy [13] that binary codes which
possess a cycle-free Tanner graph (without state nodes) necessarily have small min-
imum distance.We discussed in Lemma 2.24 only the simple case of codes with rate
r at least one half. In this case we saw that the minimum distance is at most 2. If
r < 1

2 , then the above authors showed that the minimum distance is at most 2~r.
Battail, Decouvelaere, and Godlewski were early pioneers in the area of com-

bining “so information” stemming from various partial descriptions of a code into
one �nal estimate [4]. However, they did not discuss the notion of feedback, i.e., iter-
ative decoding. Battail, Decouvelaere, and Godlewski termed their coding method
replica coding, see also [5, 3]. Hagenauer, O�er, and Papke [18] introduced the “log-
likelihood algebra”, which contains the message-passing rule at variable and check
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nodes.
¿e factor-graph approach has also inspired an implementation of message-

passing decoding by analog computation. ¿is has been pioneered by two research
groups, Hagenauer, Winklhofer, O�er, Méasson, Mörz, Gabara, and Yan [19, 17, 32],
as well as Loeliger, Lustenberger, Helfenstein, and Tarköy [26, 27, 28].

Problems
2.1 (Factor Graphs for Semirings). Consider the examples listed in Table 2.22.
Show in each case that it forms indeed a commutative semirings.

2.2 (Message-Passing Algorithm for BEC). Starting from the message-passing
rules summarized in Figure 2.12, derive the decoding algorithm for the binary era-
sure channel (BEC) (see Section 3.1 for a discussion of this channel model). What is
the message alphabet and what are the computation rules? Simplify the rules as far
as possible.

2.3 (Min-Sum Algorithm for BEC). Apply the min-sum algebra to the decoding
of LDPC ensembles over the BEC. What are the initial messages and what are the
processing rules? Show that the messages which are a priori two-tuples can be com-
pressed into a single number. Finally, show that the resulting message-passing rules
are identical to the ones using the sum-product semiring. In words, over the BEC
(locally optimal) iterative bit and blockwise decoding are identical.

2.4 (Hansel and Gretel Take a Field Trip in the Dark Forest). Hansel and
Gretel, together with all their classmates, take a �eld trip. ¿e forest in which they
are walking is so dark that each kid can only see its immediate neighbors. Assume
that communications is limited to these nearest neighbors as well and that the whole
group of schoolchildren forms a tree (in the graph sense) with respect to this neigh-
borhood structure.

Construct a message-passing algorithm which allows them to count to ensure
that none of the children was eaten by the wolf. What is the initialization and what
are the message-passing rules? Can you modify the algorithm to only count a pre-
scribed subset, e.g., the set of girls?

2.5 (Message Passing forMappers – Loeliger [24]). Assume that the two binary
symbols x and y are mapped by a function m into one 4-AM symbol, call it z, as
shown on the le of Figure 2.25. In more detail, m � X � Y � Z . Such a mapper
is, e.g., useful as part of a multilevel transmission scheme. Draw the corresponding
FSFG. Starting from the general message-passing rule stated in (2.21) and assuming
that the incoming messages are µx,m(x), µy,m(y), and µz,m(z), respectively, what
are the outgoing messages µm,x(x), µm,y(y), and µm,z(z)?
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xy
00 10 01 11
0 1 2 3z = m(x, y) Y

y = q(x)
X

Figure 2.25: Le : Mapping z = m(x, y). Right: Quantizer y = q(x).

2.6 (Message Passing for Quantizers – Loeliger [24]). Consider a quantizer
as shown on the right in Figure 2.25. More precisely, let X be a �nite input alphabet
and Y be a �nite output alphabet at let q be the quantization function, q � X �
Y . Draw the corresponding FSFG. Starting from the general message-passing rule
stated in (2.21) and assuming that the incoming messages are µx,q(x) and µy,q(y),
respectively, what are the outgoing messages µq,x(x) and µq,y(y)?
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Chapter 3

B I N A R Y E R A S U R E C H A N N E L

¿e binary erasure channel (BEC) is perhaps the simplest non-trivial channel model
imaginable. It was introduced by Elias as a toy example in 1954. ¿e emergence of
the internet promoted the erasure channel into the class of “real world” channels.
Indeed, erasure channels can be used to model data networks, where packets either
arrive correctly or are lost due to bu�er over�ows or excessive delays. (It is unreal-
istic, however, to assume that packet losses are independent.)

A priori, one might well doubt that studying the BEC will signi�cantly advance
our understanding of the general case. Quite surprisingly, however, most properties
and statements that we encounter in our investigation of the BEC hold in much
greater generality.¿us, the e�ort invested in fully understanding the BEC case will
reap substantial dividends later on.

You do not need to read the whole chapter to know what iterative decoding for
the BEC is about. ¿e core of the material is contained in Sections 3.1-3.14 as well
as 3.24. ¿e remaining sections concern either more specialized or less accessible
topics. ¿ey can be read in almost any order.

§3.1. Channel Model

Erasure channels model situations where information may be lost but is never cor-
rupted. ¿e BEC captures erasure in the simplest form: single bits are transmitted
and either received correctly or known to be lost. ¿e decoding problem is to �nd
the values of the bits given the locations of the erasures and the non-erased part of
the codeword. Figure 3.1 depicts the BEC(є). Time, indexed by t, is discrete and the

Xt
Yt

1 − є

1 − є

є
є

0

1

0

1

?

Figure 3.1: Binary erasure channel.

transmitter and receiver are synchronized (they both know t). ¿e channel input at
time t, denoted by Xt, is binary: Xt > �0,1�.¿e corresponding output Yt takes on
values in the alphabet �0,1, ?�, where ? indicates an erasure. Each transmitted bit is
either erased with probability є, or received correctly:Yt > �Xt, ?� and P�Yt =?� = є.

71
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72 binary erasure channel

Erasure occurs for each t independently. For this reason we say that the channel is
memoryless. ¿e capacity of the BEC(є) is CBEC(є) = 1− є bits per channel use. It is
easy to see that CBEC(є) B 1 − є � if n bits are transmitted then, on average, (1 − є)n
bits are received (and they are received correctly). By the law of large numbers, for
large n the actual number of (correctly) received bits is, with high probability, close
to this average.¿us, even if the transmitter and the receiver knew in advance which
bits will be erased, information can be transmitted reliably at a rate of at most 1 − є
bits per channel use. Perhaps surprisingly, reliable transmission at a rate arbitrarily
close to 1 − є is possible. ¿is is con�rmed in Example 3.6.

Xt
Yt

1 − є

1 − є

є
є

0

1

0

1

?

0

1

?

1 − δ−є
1−є

1 − δ−є
1−є

δ−є
1−є

δ−є
1−є

Figure 3.2: For є B δ, the BEC(δ) is degraded with respect to the BEC(є).

Consider the channel family �BEC(є)�1є=0.¿is family is ordered in the following
sense: given two BECs, lets say with parameter є and δ, є < δ, we can represent the
BEC(δ) as the concatenation of the BEC(є)with a memoryless ternary-input chan-
nel as shown in Figure 3.2. Hence, the output of the BEC(δ) can be interpreted as a
degraded version, i.e., a further perturbed version, of the output of the BEC(є).We
say, because this interpretation is possible, that the family �BEC(є)�1є=0 is ordered
by degradation. ¿is notion of degradation plays an important role in the analysis
of message-passing coding systems.

§3.2. Transmission via Linear Codes

Consider a binary linear code C[n, k] de�ned in terms of a parity-check matrix H.
Assume that the transmitter chooses the codeword X uniformly at random from
C and that transmission takes place over the BEC(є). Let Y be the received word
with elements in the extended alphabet �0,1, ?�, where ? indicates an erasure. Let
E , E b [n] = �1,� ,n�, denote the index set of erasures and let Ē = [n] � E . More
precisely, i > E if and only if Yi =?, i.e., if the channel erased the i-th bit. Recall from
page 31 that HE denotes the submatrix of H indexed by the elements of E and that
XE denotes the corresponding subvector.
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transmission via linear codes 73

§3.2.1. Maximum A Posteriori Block Decoding

Consider a MAP block decoder, i.e., the decoding rule is

(3.3) x̂MAP(y) = argmaxx>CpX SY(x S y).
Write the de�ning equationHxT = 0T in the formHExTE +HĒx

T
Ē = 0

T ,which, since
we are working over F2, is equivalent to

(3.4) HExTE = HĒx
T
Ē .

Note that sT = HĒxTĒ , the right hand side of (3.4), is known to the receiver since
xĒ = yĒ . Consider the equation HExTE = s

T . Since, by assumption, the transmitted
word is a valid codeword, we know that this equation has at least one solution. In
particular, rank(HE) B SE S. If rank(HE) = SE S, then MAP block decoding can be
accomplished by solvingHExTE = s

T . On the other hand, there aremultiple solutions
(i.e., the MAP decoder is not able to recover the codeword uniquely) if and only if
rank(HE) < SE S. More formally, let

XMAP(y) = �x > C � HExTE = HĒ yTĒ ; xĒ = yĒ�,
i.e., XMAP(y) is the set of all codewords compatible with the received word y. Since
the prior is uniform, (3.3) becomes

x̂MAP(y) = argmaxx>CpY SX(y S x).
Now, for any codeword x, if xĒ x yĒ , then pY SX(y S x) = 0 and if xĒ = yĒ , then
pY SX(y S x) = (1 − є)n−SE SєSE S.¿us, all elements of XMAP(y) are equally likely and
the transmitted vector x is either uniquely determined by y or there are multiple
solutions. ¿erefore we say,

x̂MAP(y) =
¢̈̈
¦̈̈
¤
x > XMAP(y), if SXMAP(y)S = 1,
?, otherwise.

We remark that a ? (erasure) is not the same as an error. ¿e correct solution x is an
element of XMAP(y).

§3.2.2. Maximum A Posteriori Bit Decoding

Consider now the MAP bit decoder that uses the decoding rule

(3.5) x̂MAP
i (y) = argmaxα>�0,1�pXi SY(α S y).

If i > E ,when can xi be recovered? Intuitively, we expect that xi can be recovered if
and only if all elements ofXMAP(y)have the same value for the i-th bit.¿is is in fact
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correct. More speci�cally, we claim that xi can not be recovered if and only if H�i�
is an element of the space spanned by the columns of HE��i�. ¿is is equivalent to
the statement thatHwT = 0T has a solution withwi = 1 andwĒ = 0.Now, if there is
such a solution then for every element x ofXMAP(y)we also have x+w > XMAP(y).
It follows that exactly half the elements x > XMAP(y) have xi = 0 and half have
xi = 1. Conversely, if we can �nd two elements x and x′ of XMAP(y) with xi x x′i ,
then w = x + x′ solves HwT = 0T and has wi = 1 and wĒ = 0. Proceeding formally,
we get

x̂MAP
i (y) = argmaxα>�0,1�pXi SY(α S y) = argmaxα>�0,1� Q

x>�0,1�n�xi=α
pX SY(x S y)

= argmaxα>�0,1� Q
x>C�xi=α

pX SY(x S y) =
¢̈̈
¦̈̈
¤
α, if ∀x > XMAP(y), xi = α,
?, otherwise.

We conclude that optimal (block or bit) decoding for the BEC can be accomplished
in complexity at most O(n3) by solving a linear system of equations (e.g., by Gaus-
sian elimination). Further, we have a characterization of decoding failures of aMAP
decoder for both the block and the bit erasure case in terms of rank conditions.

Example 3.6 (Performance ofH(n, k)). In Problem 3.21 you are asked to show
that the average block erasure probability of Gallager’s parity-check ensemble (see
De�nition 1.26) satis�es

EH(n,k)[PB(H,є)] B
n−k
Q
e=0
�n
e
�єe(є̄)n−e2e−n+k +

n
Q

e=n−k+1
�n
e
�єe(є̄)n−e

= 2k−n(є̄)n
n−k
Q
e=0
�n
e
��2є

є̄
�
e
+ (є̄)n

n
Q

e=n−k+1
�n
e
��є

є̄
�
e
,

where the bound is loose by a factor of at most two. Let the blocklength n tend to
in�nity. Suppose that r = k~n = (1 − δ)CBEC(є) = δ̄є̄, where 1

1+є < 1 − δ < 1.
¿e elements of both sums are unimodal sequences, see Section D.5, i.e., they are
�rst increasing up to their maximum value, a er which they decrease. Consider the
terms ��ne� � 2єє̄ �

e�n−ke=0 of the �rst sum. Because of our assumption
1

1+є < 1 − δ, the
upper summation index n−k is to the le of themaximum,which occurs at e � 2є

1+єn.
¿e �rst sum can therefore be upper bounded by the last term times the number of
summands. Similarly, the maximum term of ��ne� �єє̄�

e�ne=n−k+1 occurs at e � єn,
which, since 1 − δ < 1, is to the le of the lower summation index e = n − k + 1. In
fact, it is to the le of the index e = n − k. ¿is second sum can therefore be upper
bounded by the term corresponding to e = n − k times the number of summands.
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Finally, note that for e = n− k the term on the le side equals the term on the right
side. ¿is leads to the bound

EH(n,rn)[PMAP
B (H,є)] B (n + 1)� n

n − k
�(є̄)n �є

є̄
�
n−k

(1.59)
B (n + 1)2nh2(δ̄є̄)2n log2(є̄)2n(1−δ̄є̄) log2 є

є̄

B (n + 1)2−nD2(1−δ̄є̄ SS є),(3.7)

where we de�nedD2(α SS β) = −α log2 β
α−ᾱ log2

β̄
ᾱ .¿e quantityD2(ċ, ċ) is known as

the Kullback-Leibler distance (between two Bernoulli distributions with parameters
α and β, respectively). Let α,β > (0,1). Using Jensens’ inequality (1.61), we see that

D2(α SS β) = −α log2
β
α
− ᾱ log2

β̄
ᾱ
C − log2 �α

β
α
+ ᾱ

β̄
ᾱ
� = 0,

with strict inequality if α x β. In our case 1−δ̄є̄ C єwith strict inequality unless δ = 0
or є = 1. ¿erefore, for δ > (0,1] and є > [0,1) the right hand side of (3.7) tends to
zero exponentially fast in the blocklength n.We conclude that reliable transmission
at any rate r = δ̄є̄ = (1−δ)CBEC(є), δ A 0, is possible. In words, reliable transmission
up to CBEC(є) is possible, as promised. n

§3.3. Tanner Graphs

Let C be binary linear code and letH be a parity-check matrix of C, i.e., C = C(H).
Recall that, by our convention, we do not require the rows of H to be linearly in-
dependent. Assume that H has dimensions m � n. In Example 2.5 on page 50 we
introduced the Tanner graph associated with a code C. ¿is is the graph which vi-
sualizes the factorization of the code membership function. Since this graph plays a
central role let us repeat its de�nition.

¿e Tanner graph associated withH is a bipartite graph. It has n variable nodes,
corresponding to the components of the codeword, andm check nodes, correspond-
ing to the set of parity-check constraints (rows of H). Check node j is connected
to variable node i if Hji = 1, i.e., if variable i participates in the j-th parity-check
constraint. Since there are many parity-check matrices representing the same code,
there are many Tanner graphs corresponding to a given C. Although all of these
Tanner graphs describe the same code, they are not equivalent from the point of
view of the message-passing decoder (see Problem 3.15.)
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Example 3.8 ((3,6)-Regular Code). Consider the parity-check matrix

(3.9)
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= H.

¿ebipartite graph representingC(H) is shownon the le of Figure 3.10. Each check
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Figure 3.10: Le : Tanner graph of H given in (3.9). Right: Tanner graph of [7,4,3]
Hamming code corresponding to the parity-check matrix on page 15. ¿is graph is
discussed in Example 3.11.

node represents one linear constraint (one row ofH). For the particular example we
start with twenty degrees of freedom (twenty variable nodes). ¿e ten constraints
reduce the number of degrees of freedom by at most ten (and exactly by ten if all
these constraints are linearly independent as in this speci�c example). ¿erefore at
least ten degrees of freedom remain. It follows that the shown code has rate (at least)
one-half. n
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§3.4. Low-Density Parity-Check Codes
In a nutshell, low-density parity-check (LDPC) codes are linear codes which have
at least one sparse Tanner graph. ¿e primary reason for focusing on such codes is
that, as we will see shortly, they exhibit good performance under message-passing
decoding.

Consider again the Tanner graph on the le of Figure 3.10. Each variable node
has degree 3 and every check node has degree 6. We call such a code a (3,6)-regular
LDPC code. More generally, an (l,r)-regular LDPC code is a binary linear code
such that every variable node has degree l and every check node has degree r. Why
low-density? ¿e number of edges in the Tanner graph of a (l,r)-regular LDPC
code is ln, where n is the length of the code. As n increases, the number edges in
the Tanner graph grows linearly in n.¿is is in contrast to codes in the parity-check
ensembleH(n,nr)where the number of edges in their Tanner graph grows like the
square of the code length n.

¿e behavior of LDPC codes can be signi�cantly improved by allowing nodes
of di�erent degrees as well as other structural improvements. We de�ne an irregular
LDPC code as an LDPC code for which the degrees of nodes are chosen according
to some distribution.

Example 3.11 (TannerGraphof [7,4,3]HammingCode). ¿e right hand side of
Figure 3.10 shows the Tanner graph of the [7,4,3]Hamming code corresponding to
the parity-check matrix on page 15. ¿e three check nodes have degree 4. ¿ere are
three variable nodes of degree 1, three variable nodes of degree 2, and one variable
node of degree 3. n

Assume that the LDPC code has length n and that the number of variable nodes
of degree i isΛi, so thatPi Λi = n. In the same fashion, denote the number of check
nodes of degree i by Pi, so thatPi Pi = nr̄, where r is the design rate (ratio of length
minus number of constraints and the length) of the code and r̄ is a shorthand for
1−r. Further, since the edge counts must match up,Pi iΛi = Pi iPi. It is convenient
to introduce the following compact notation,

Λ(x) =
lmax

Q
i=1

Λixi, P(x) =
rmax

Q
i=1

Pixi,(3.12)

i.e., Λ(x) and P(x) are polynomials with non-negative expansions around zero
whose integral coe�cients are equal to the number of nodes of various degrees.
From these de�nitions we see immediately the following relationships

Λ(1) = n, P(1) = nr̄, r(Λ,P) = 1 − P(1)
Λ(1) , Λ′(1) = P′(1).(3.13)
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We callΛ and P the variable and check degree distributions from a node perspective.
Sometimes it is more convenient to use the normalized degree distributions

L(x) = Λ(x)
Λ(1) , R(x) = P(x)

P(1) .

instead.

Example 3.14 (Degree Distribution of [7,4,3]Hamming Code). We have

Λ(x) = 3x + 3x2 + x3, P(x) = 3x4,
L(x) = 3

7
x +

3
7
x2 +

1
7
x3, R(x) = x4. n

Definition 3.15 (The Standard Ensemble LDPC (Λ,P)). Given a degree distri-
bution pair (Λ,P), de�ne an ensemble of bipartite graphs LDPC (Λ,P) in the fol-
lowing way. Each graph in LDPC (Λ,P) has Λ(1) variable nodes and P(1) check
nodes: Λi variable nodes and Pi check nodes have degree i. A node of degree i has i
sockets fromwhich the i edges emanate, so that in total there areΛ′(1) = P′(1) sock-
ets on each side. Label the sockets on each side with the set [Λ′(1)] = �1,� ,Λ′(1)�
in some arbitrary but �xed way. Let σ be a permutation on [Λ′(1)]. Associate to σ
a bipartite graph by connecting the i-th socket on the variable side to the σ(i)-th
socket on the check side. Letting σ run over the set of permutations on [Λ′(1)] gen-
erates a set of bipartite graphs. Finally, we de�ne a probability distribution over the
set of graphs by placing the uniform probability distribution on the set of permuta-
tions.¿is is the ensemble of bipartite graphs LDPC (Λ,P). It remains to associate a
codewith every element of LDPC (Λ,P).Wewill do so by associating a parity-check
matrix to each graph. Because of possible multiple edges and since the encoding is
done over the �eld F2, we de�ne the parity-check matrix H as that �0,1�-matrix
which has a non-zero entry at row i and column jif and only if the i-th check node
is connected to the j-th variable node an odd number of times.

Since for every graph there is an associated code we use these two terms inter-
changeably and we refer, e.g., to codes as elements of LDPC (Λ,P).

¿is is a subtle point: graphs are labeled (more precise, they have labeled sockets)
and have a uniform probability distribution; the induced codes are unlabeled and
the probability distribution on the set of codes is not necessarily the uniform one.
¿erefore, if in the sequel we say that we pick a code uniformly at random we really
mean that we pick a graph at random from the ensemble of graphs and consider the
induced code. ¿is convention should not cause any confusion and simpli�es our
notation considerably. S
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As discussed in Problem 3.6, ensembles with a positive fraction of degree-one
variable nodes have non-zero bit error probability for all non-zero channel param-
eters even in the limit of in�nite blocklengths. ¿e reason for this error �oor is that
by our de�nition of the ensemble (where variable nodes are matched randomly to
check nodes) there is a positive probability that two degree-one variable nodes con-
nect to the same check node and such a code contains codewords of weight two.
¿erefore, we only consider ensembles without degree-one nodes. But, as we will
discuss in Chapter 7, it is possible to introduce degree-one variable nodes if their
edges are placed with care.

For the asymptotic analysis it is more convenient to take on an edge perspective.
De�ne

λ(x) =Q
i
λixi−1 =

Λ′(x)
Λ′(1) =

L′(x)
L′(1) , ρ(x) =Q

i
ρixi−1 =

P′(x)
P′(1) =

R′(x)
R′(1) .(3.16)

Note that λ and ρ are polynomials with non-negative expansions around zero. Some
thought shows that λi (ρi) is equal to the fraction of edges that connect to variable
(check) nodes of degree i, see Problem 3.2. In other words, λi (ρi) is the probability
that an edge chosen uniformly at random from the graph is connected to a variable
(check) node of degree i. We call λ and ρ the variable and check degree distributions
from an edge perspective. ¿e inverse relationships read

Λ(x)
n
= L(x) = R

x
0 λ(z)dz
R 1
0 λ(z)dz

,
P(x)
nr̄
= R(x) = R

x
0 ρ(z)dz
R 1
0 ρ(z)dz

.(3.17)

As discussed in Problems 3.3 and 3.4, the average variable and check node degrees,
call them lavg and ravg, can be expressed as

lavg = L′(1) = 1

R 1
0 λ(x)dx

, ravg = R′(1) = 1

R 1
0 ρ(x)dx

,(3.18)

respectively, and the design rate is given by

(3.19) r(λ, ρ) = 1 − lavg

ravg
= 1 −

L′(1)
R′(1) = 1 −

R 1
0 ρ(x)dx
R 1
0 λ(x)dx

.

¿e design rate is the rate of the code assuming that all constraints are linearly in-
dependent.

Example 3.20 (Conversion of Degree Distributions: Hamming Code). For
the [7,4,3]Hamming code we have

λ(x) = 1
4
+

1
2
x +

1
4
x2, ρ(x) = x3. n
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Example 3.21 (ConversionofDegreeDistributions: SecondExample). Con-
sider the pair (Λ,P)

Λ(x) = 613x2 + 202x3 + 57x4 + 84x7 + 44x8, P(x) = 500x6,
with

Λ(1) = 1000, P(1) = 500, Λ′(1) = P′(1) = 3000.
¿is pair represents an ensemble of codes of length 1000 and of (design) rate one-
half. Converting into edge perspective we get

λ(x) = 1226
3000

x +
606
3000

x2 +
228
3000

x3 +
588
3000

x6 +
352
3000

x7, ρ(x) = x5. n

Since (Λ,P), (n,L,R) and (n, λ, ρ) contain equivalent information, we fre-
quently and freely switch between these various perspectives. We write (Λ,P) ;
(n,L,R) ; (n, λ, ρ) if we want to express the fact that degree distributions in dif-
ferent formats are equivalent. We therefore o en refer to the standard ensemble as
LDPC (n, λ, ρ). For the asymptotic analysis it is convenient to �x (λ, ρ) and to in-
vestigate the performance of the ensemble LDPC (n, λ, ρ) as the blocklength n tends
to in�nity. For some n the corresponding (Λ,P) is not integral. We assume in such
a scenario that the individual node distributions are rounded to the closest integer
(while observing the edge equality constraint). In any case, sublinear (in n) devia-
tions of degree distributions have no e�ect on the asymptotic performance or rate
of the ensemble. In the sequel we therefore ignore this issue.

¿e design rate as de�ned in (3.19) is in general only a lower bound on the ac-
tual rate because the parity-check matrix can have linearly dependent rows. ¿e
following lemma asserts that, under some technical conditions, the actual rate of a
random element of an ensemble is close to the design rate with high probability as
the blocklength increases.

Lemma 3.22 (RateversusDesignRate). Consider the ensemble LDPC (n, λ, ρ) ;
LDPC (n,L,R). Let r(λ, ρ) denote the design rate of the ensemble and let r(G) de-
note the actual rate of a code G, G > LDPC (n, λ, ρ). Consider the function Ψ(y),

Ψ(y) = − L′(1) log2 �
(1 + yz)
(1 + z) 	 +Qi

Li log2 �
1 + yi

2
	

+

L′(1)
R′(1)Qj

Rj log2 �1 + �
1 − z
1 + z

�
j
	 ,(3.23)

z =�Q
i

λiyi−1

1 + yi
� ~�Q

i

λi
1 + yi

� .(3.24)
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Assume that for y C 0, Ψ(y) B 0 with equality only at y = 1. ¿en for ξ A 0 and
n C n(ξ), su�ciently large,

P�r(G) − r(λ, ρ) A ξ� B e−nξ ln(2)~2.

0 0.5 1.0 1.5

0.00

−0.25

−0.50

Figure 3.26: Function Ψ(y).

Example 3.25 (DegreeDistribution (λ(x) = 3x+3x2+4x13
10 , ρ(x) = x6)). ¿e func-

tion Ψ(y) is shown in Figure 3.26. According to this plot, Ψ(y) B 0 with equality
only at y = 1. Lemma 3.22 therefore applies: the rate of most codes in this ensemble
is not much larger than the design rate r(λ, ρ) = 19

39 . n

An example where the technical condition is not ful�lled is discussed in Prob-
lem 3.37.

Discussion:¿eproof of Lemma 3.22 is technical and sowe relegate it to page 523.
As we discuss there inmore detail, the functionΨ(y) represents the log of the num-
ber of codewords of a given weight divided by the length of the code minus the de-
sign rate.¿eparameterization is chosen so that y = 1 corresponds to the codewords
of relative weight one-half. If the maximum of Ψ(y) is taken on at 1 then it means
that most codewords have relative weight one-half (as one would expect). In this
case one can show that the maximum is 0which implies that the log of the expected
number of codewords is equal to the design rate. ¿e above bound is crude and in
fact a much stronger statement is valid. We demonstrate this by means of regular
ensembles. ¿e proof of the following lemma can be found on page 525.

Lemma 3.27 (Design Rate Equals Rate for Regular Ensembles). Consider the
regular ensemble LDPC �nxl,nl

r
xr� with 2 B l < r. Let r(l,r) = 1 − l

r
denote the

design rate of the ensemble and let r(G) denote the actual rate of a code G, G >
LDPC �nxl,nl

r
xr�. ¿en

P�r(G)n = r(l,r)n + ν� = 1 − on(1),
where ν = 1 if l is even, and ν = 0 otherwise.
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Discussion: ¿e extra constant ν is easily explained. If the variable nodes have
even degree then each variable appears in an even number of constraints and so the
sum of all constraints is zero. ¿is means that there is at least one linearly depen-
dent equation in this case. ¿e lemma asserts that all other equations are linearly
independent with high probability.

§3.5. Message-Passing Decoder
In Chapter 2 we introduced a message-passing algorithm to accomplish the decod-
ing task. Let us specialize this algorithm to the BEC.

¿e Tanner graph of an LDPC code (and so also the factor graph corresponding
to bit-wiseMAP decoding) is in general not a tree.We nevertheless use the standard
message-passing rules summarized in Figure 2.12. If the factor graph is a tree there is
a natural schedule given by starting at the leaf nodes and sending a message once all
incoming messages required for the computation have arrived. But to completely
de�ne the algorithm for a code with cycles we need to specify a schedule. In gen-
eral, di�erent schedules can lead to di�erent performance. ¿is is our convention:
we proceed in rounds or iterations; a round starts by processing incoming messages
at check nodes and then sending the resulting outgoing messages to variable nodes
along all edges. ¿ese messages are subsequently processed at the variable nodes
and the outgoing messages are sent back along all edges to the check nodes. ¿is
constitutes one round of message-passing. In general, decoding consists of several
such rounds. In iteration zero, there is no problem-speci�c information that we can
send from the check nodes to the variable nodes.¿erefore, in this initial round, the
variable nodes simply send the messages received from the channel to their neigh-
boring check nodes.

By the standard message-passing rules the initial messages are (µj(0), µj(1)) =
(pYj SXj(yj S 0), pYj SXj(yj S 1)). Specializing this to our case, we see that the initial
messages are either (1 − є,0), (є,є), or (0,1 − є). ¿is corresponds to the three
possibilities, namely that the received value is 0, ? (erasure), or 1, respectively.1 Recall
that the normalization of the messages plays no role. We saw in Section 2.5.2 that we
only need to know the ratio and this conclusion stays valid if the graph contains
cycles. ¿erefore, equivalently we can work with the set of messages (1,0), (1,1),
and (0,1). In the sequel we will call these also the ”0” (zero), the “?” (erasure), and
the “1” (one), message. ¿erefore, e.g., 0, (1,0), and “zero”, all refer to the same
message.

We now get to the processing rules. We claim that for the BEC the general
message-passing rules summarized in Figure 2.12 simplify to the following: at a vari-
able node the outgoing message is an erasure if all incoming messages are erasures.

1We assume in this chapter that the bits take on the values 0 and 1.
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Otherwise, since the channelnever introduces errors, all non-erasuremessagesmust
agree and either be 0 or 1. In this case the outgoingmessage is equal to this common
value. At a check node the outgoing message is an erasure if any of the incoming
messages is an erasure. Otherwise, if all of the incoming messages are either 0 or 1
then the outgoing message is the mod-2 sum of the incoming messages.

Consider the �rst claim: if all messages entering a variable node are from the
set �(1,0),(1,1)�, then the outgoing message (which is equal to the component-
wise product of the incoming messages according to the general message-passing
rules) is also from this set. Further, it is equal to (1,1) (i.e., an erasure) only if all
incoming messages are of the form (1,1) (i.e., erasures). ¿e equivalent statement
is true if all incoming messages are from the set �(0,1),(1,1)�. (Since the channel
never introduces errors we only need to consider these two cases.)

Next consider the claim concerning the message-passing rule at a check node: it
su�ces to consider a check node of degree three with two incoming messages since
check nodes of higher degree can be modeled as the cascade of several check nodes,
each of which has two inputs and one output (e.g., x1+ x2+ x3 = (x1+ x2)+ x3). Let
(µ1(0), µ1(1)) and (µ2(0), µ2(1)) denote the incoming messages. By the standard
message-passing rules the outgoing message is

(µ(0), µ(1)) = (Q
x1,x2

1�x1+x2=0�µ1(x1)µ2(x2), Q
x1,x2

1�x1+x2=1�µ1(x1)µ2(x2))

= (µ1(0)µ2(0) + µ1(1)µ2(1), µ1(0)µ2(1) + µ1(1)µ2(0)).
If, e.g., (µ2(0), µ2(1)) = (1,1) then, up to normalization, (µ(0), µ(1)) = (1,1).
¿is shows that if any of the inputs is an erasure then the output is an erasure. Fur-
ther, if both messages are known then an explicit check shows that the message-
passing rules correspond to the mod-2 sum.

Figure 3.28 shows the application of themessage-passing decoder to the [7,4,3]
Hamming code assuming that the received word is (0, ?, ?,1,0, ?,0). In iteration
0 the variable-to-check messages correspond to the received values. Consider the
check-to-variable message sent in iteration 1 from check node 1 to variable node 2
(this is shown on the le of Figure 3.28 in the second from the top �gure).¿is mes-
sage is 1 (the mod-2 sum of incoming messages) according to the message-passing
rule. ¿is is intuitive: this message re�ects the fact that through the parity-check
constraint x1 + x2 + x4 + x5 = 0 we can �nd x2 given x1, x4, and x5. Although this
might not be completely obvious at this point, this message-passing algorithm is
entirely equivalent to the greedy algorithm based on the Venn diagram description
which we discussed in Section 1.9. In other words: for the BEC message-passing is
equivalent to greedily checking whether any of the parity-check constraints allows
us to �nd an yet unknown value from already known ones. A er three iterations the
transmitted word is found to be (0,1,0,1,0,1,0).
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Figure 3.28: Message-passing decoding of the [7,4,3] Hamming code with the re-
ceived word y = (0, ?, ?,1,0, ?,0). ¿e vector x̂ denotes the current estimate of the
transmitted word x. A 0 message is indicated as thin line, a 1 message is indicated
as thick line, and a ?message is drawn as dashed line. ¿e four rows correspond to
iterations 0 to 3. A er the �rst iteration we recover x2 = 1, a er the second x3 = 0,
and a er the third we know that x6 = 1. ¿is means that for this case we can recover
the codeword and it is x = (0,1,0,1,0,1,0).
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§3.6. Two Basic Simplifications
In the previous sections we have introduced code ensembles and a low-complexity
message-passing decoder. We start our investigation of how well this combination
performs.

§3.6.1. Restriction to the All-Zero Codeword

¿e �rst big simpli�cation stems from the realization that the performance is inde-
pendent of the transmitted codeword and is only a function of the erasure pattern: at
any iteration the set of known variable nodes is only a function of the set of known
messages but independent of their values. ¿e equivalent statement is true for the
set of known check nodes.

Fact 3.29 (Conditional Independence of Erasure Probability). Let G be the
Tanner graph representing a binary linear code C. Assume that C is used to trans-
mit over the BEC(є) and assume that the decoder performs message-passing de-
coding on G. Let PBP(G,є, ℓ,x) denote the conditional (bit or block) probability of
erasure a er the ℓ-th decoding iteration, assuming that x was sent, x > C. ¿en
PBP(G,є, ℓ,x) = 1

SCS Px′>C P
BP(G,є, ℓ,x′) = PBP(G,є, ℓ), i.e., PBP(G,є, ℓ,x) is inde-

pendent of the transmitted codeword.

As a consequence, we are free to choose a particular codeword and to analyze
the performance of the system assuming that this codeword was sent. It is natural
to assume that the all-zero word, which is contained in every linear code, was sent.
We refer to this assumption as the “all-zero codeword” assumption.

A word about notation: iterative decoding is a generic term referring to decod-
ing algorithms which proceed in iterations. A sub-class of iterative algorithms are
message-passing algorithms (like the algorithm which we introduced in the previ-
ous section). Message-passing algorithms are iterative algorithms which obey the
message-passing paradigm: this means that an outgoing message along an edge only
depends on the incoming messages along all edges other than this edge itself. ¿e
message-passing algorithmwhichwe introduced inChapter 2 andwhichwe adopted
in this chapter is a special case in which the messages represent probabilities or “be-
liefs.” ¿e algorithm is therefore also known as belief propagation (BP) algorithm.
For the BEC essentially any meaningful message-passing algorithm is equivalent to
the BP algorithm. But for the general case message-passing algorithms other than
the BP algorithm play an important role. For the remainder of this chapter we use
the shorthand BP to refer to the decoder.

§3.6.2. Concentration

Rather than analyzing individual codes it su�ces to assess the ensemble average per-
formance. ¿is is true, since, as the next theorem asserts, the individual elements of
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an ensemble behave with high probability close to the ensemble average.

Theorem 3.30 (Concentration Around Ensemble Average). Let G, chosen
uniformly at random fromLDPC (n, λ, ρ), be used for transmission over theBEC(є).
Assume that the decoder performs ℓ rounds of message-passing decoding and let
PBP
b (G,є, ℓ) denote the resulting bit erasure probability.¿en, for ℓ �xed and for any
given δ A 0, there exists an α A 0, α = α(λ, ρ,є,δ, ℓ), such that

P�SPBP
b (G,є, ℓ) −EG′>LDPC(n,λ,ρ) �PBP

b (G′,є, ℓ)� S A δ� B e−αn.

In words, the theorem asserts that all except an exponentially (in the block-
length) small fraction of codes behave within an arbitrarily small δ from the en-
semble average. Assuming su�ciently large blocklengths, the ensemble average is
a good indicator for the individual behavior. We therefore focus our e�ort on the
design and construction of ensembles whose average performance approaches the
Shannon theoretic limit. In the above theorem we assume a �xed number of itera-
tions and the theorem leaves open the possibility that the constant α approaches zero
when the number of iterations increases. Fortunately, as we discuss in Section 3.19,
this does not happen.

Example 3.31 (Concentration for LDPC �Λ(x) = 512x3,P(x) = 256x6�). Fig-
ure 3.32 shows the erasure probability curves under BP decoding for ten randomly
chosen elements. We see that for this example the plotted curves are within a ver-

0.3 0.35 0.4 0.45

10-4

10-3

10-2

10-1

є

PBPb

Figure 3.32: Bit erasure probability of ten random samples from
LDPC �512x3,256x6� ; LDPC �512,x2,x5�.

tical distance of δ � 10−3: all samples follow the “main” curve up to some point. At
this point, which depends on the sample, the curve of the individual sample �attens
out. We will see in Section 3.23 that the main curve is due to large-sized decoding
failures (i.e., errors whose support size is a linear fraction of the blocklength) and
we will give an analytic characterization of this curve. On the other hand, as we will
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discuss in Section 3.24, the error �oor is due to certain “weaknesses” in the graph
which typically can be expurgated. We derive the limiting distribution of the error
�oor in Lemma 3.167. n

We do not prove¿eorem 3.30 here. Rather this is done in a much broader con-
text inAppendix C, where a variety of probabilistic tools and theorems are discussed
which are useful in the context of message-passing coding. ¿e main idea behind
¿eorem 3.30 is easy to explain: a message-passing decoder is a local algorithm.¿is
means that local changes in the graph only a�ect local decisions. Consider a code
G and some small modi�cation, e.g., switch the endpoints of two randomly chosen
edges. Because of the local nature of the message-passing algorithm this switch has
(in the limit of large blocklengths) only a negligible e�ect on the resulting perfor-
mance. Since, �nally, LDPC codes have only a linear number of edges, any two codes
can be converted into each other by a linear number of such elementary steps, each
of which has only a small e�ect on its performance.

In the above theorem we have not given any explicit constants. Such constants
can be furnished, and indeed they are given in Appendix C. Unfortunately though,
even the best constants which have been proved to date cannot explain the actual
empirically observed tight concentration.¿eorem 3.30 should therefore be thought
more as a moral support for the approach taken, rather than a relevant engineering
tool by which to judge the performance.

§3.7. Computation Graph and Tree Ensemble
In the previous section we have reduced the analysis already in two essential ways.
First, we can assume that the all-zero word was transmitted, and second, we only
need to �nd the ensemble-average performance. Assuming these simpli�cations,
how can we determine the performance of LDPC codes under BP decoding?

§3.7.1. Computation Graph

Message passing takes place on the local neighborhood of a node/edge. As a �rst
step we characterize this neighborhood.

Example 3.33 (Computation Graph – Node and Edge Perspective). Consider
again the parity-check matrix H given in (3.9). Its Tanner graph is shown in Fig-
ure 3.10. Let us focus on the decoding process for bit x1 assuming that two rounds
ofmessage passing are performed. By convention, since no real processing is done in
iteration zero, we do not count it. Recall from the description of the decoder that the
decision for bit x1 is based on the messages received from its adjoined check nodes
c5, c8, and c9.¿ese in turn process the information received from their other neigh-
bors to form their opinion. As an example, the outgoing message of c5 is a function
of the messages arriving from x2, x5, x13, x17, and x19. If we unroll this dependency
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structure for bit x1 we arrive at the computation graph depicted in Figure 3.34. ¿e

x1
e

c5

c8c9

x2 x5 x13 x17 x19

x3

x9

x13

x14

x15x2

x3

x4

x10

x17

Figure 3.34: Computation graph of height 2 (two iterations) for bit x1 and the code
C(H) for H given in (3.9). ¿e computation graph of height 2 (two iterations) for
edge e is the subtree consisting of edge e, variable node x1 and the two subtrees
rooted in check nodes c5 and c9.

�gure depicts the computation graph for two iterations. With some abuse of nota-
tion we say that the computation graph has height 2. It is rooted in the variable node
x1, it is bipartite, i.e., each edge connects a variable node to a check node, and all
leafs are variable nodes. ¿is computation graph is depicted as a tree, but in fact it
is not: several of the variable and check nodes appear repeatedly. E.g., x3 appears as
a child of both c8 and c9. ¿erefore, more properly, this computation graph should
be drawn as a rooted graph in which each distinct node appears only once.

¿e above graph is a computation graph from a node perspective since we start
from a variable node. We can also start from an edge and unravel the dependencies
of the message sent along this edge. We call the result the computation graph from
an edge perspective. In Figure 3.34 the resulting computation graph of height 2 for
edge e is shown as well. It is the subtree consisting of variable node x1 and the two
subtrees rooted in check nodes c5 and c9. n

Definition 3.35 (Computation Graph Ensemble – Node and Edge Perspec-
tive). Consider the ensemble LDPC (n, λ, ρ). ¿e associated ensemble of compu-
tation graphs of height ℓ from a node perspective, denote it by C̊ℓ(n, λ, ρ), is de�ned
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as follows. To sample from this ensemble, pick a graph G from LDPC (n, λ, ρ) uni-
formly at random and draw the computation graph of height ℓ of a randomly cho-
sen variable node of G. Each such computation graph, call it T, is an unlabeled rooted
graph in which each distinct node is drawn exactly once. ¿e ensemble C̊ℓ(n, λ, ρ)
consist of the set of such computation graphs together with the probabilities P�T >
C̊ℓ(n, λ, ρ)� which are induced by the above sampling procedure.

In the same way, to sample from the ensemble of computation graphs from an
edge perspective, denote it by ÑCℓ(n, λ, ρ), pick randomly an edge e and draw the
computation graph of e of height ℓ in G. Since C̊ℓ(n, λ, ρ) and ÑCℓ(n, λ, ρ) sharemany
properties it is convenient to be able to refer to both of them together. In this case
we write Cℓ(n, λ, ρ). S

Example 3.36 (C̊1(n, λ(x) = x, ρ(x) = x2)). In this simple example every vari-
able node has two outgoing edges and every check node has three attached edges.
Figure 3.37 shows the six elements of this ensemble together with their associated
probabilities P�T > C̊1(n,x,x2)�. All these probabilities behave likeO(1~n), except
for the tree in the top row which asymptotically has probability one. Also shown is
the conditional probability of error PBP

b (T,є). ¿is is the probability of error which
we incur if we decode the root node of the graph T assuming that transmission takes
place over the BEC(є) and assuming that we perform BP decoding for one iteration.

n

(2n−6)(2n−8)
(2n−1)(2n−5)

2(2n−6)
(2n−1)(2n−5)

1
(2n−1)(2n−5)

4(2n−6)
(2n−1)(2n−5)

2
(2n−1)(2n−5)

2
2n−1

є(1 − (1 − є)2)2

є2(1 − (1 − є)2)

є3

є2 + є3(1 − є)

є(1 − (1 − є)2)
є2

T P�T > C̊1(n,x,x2)� PBP
b (T,є)

Figure 3.37: Elements of C̊1(n, λ(x) = x, ρ(x) = x2) together with their probabilities
P�T > C̊1(n,x,x2)� and the conditional probability of error PBP

b (T,є). ¿ick lines
indicate double edges.
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¿e operational meaning of the ensembles C̊ℓ(n, λ, ρ) and ÑCℓ(n, λ, ρ) is clear:
C̊ℓ(n, λ, ρ) represents the ensemble of computation graphs which the BP decoder
encounters when making a decision on a randomly chosen bit from a random sam-
ple of LDPC (n, λ, ρ), assuming the decoder performs ℓ iterations and ÑCℓ(n, λ, ρ)
represents the ensemble of computation graphs which the BP decoder encounters
when determining the variable-to-checkmessage sent out along a randomly chosen
edge in the ℓ-th iteration.

For T > C̊ℓ(n, λ, ρ), let PBP
b (T,є) denote the conditional probability of error in-

curred by the BP decoder, assuming that the computation graph is T. With this no-
tation we have

(3.38) ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ)] =Q

T

P�T > C̊ℓ(n, λ, ρ)�PBP
b (T,є).

In principle the right hand side of (3.38) can be computed exactly as shown in Fig-
ure 3.37. For a �xed ℓ, there are only a �nite number of elements T in C̊ℓ(n, λ, ρ).
¿e probability P�T > C̊ℓ(n, λ, ρ)� is a combinatorial quantity, independent of the
channel, and it can be determined by counting. To determine PBP

b (T,є) proceed as
follows: recall that we can assume that the all-zero word was transmitted.¿erefore,
assume that all variable nodes of T are initially labeled with zero. Each such label is
now erased with probability є, where the choice is independent for each node. For
each resulting constellation of erasures the root node can either be determined (by
the BP decoder) or not. We get PBP

b (T,є) if we sum over all possible erasure con-
stellations with their respective probabilities. If we perform this calculation for the
example shown in Figure 3.37, the exact expression is not too revealing but if we
expand the result in powers of 1~n we get

ELDPC(n,x,x2)[PBP
b (G,є, ℓ = 1)] =є(1 − (1 − є)2)2+

є2(3 − 12є+ 13є2 − 4є3)~n +O(1~n2).(3.39)

We see that for increasing blocklengths the expected bit erasure probability a er
one iteration converges to the constant value є(1 − (1 − є)2)2. ¿is is equal to the
conditional erasure probability PBP

b (T,є) of the tree-like computation graph shown
in the top of Figure 3.37. ¿is result is not surprising: from Figure 3.37 we see that
this computation graph has essentially (up to factors of order O(1~n)) probability
one and that the convergence speed to this asymptotic value is therefore of order
1~n.

Although this approach poses no conceptual problems, it quickly becomes com-
putationally infeasible since the number of computation graphs grows exponentially
in the number of iterations. Faced with these di�culties, we start with a simpler task
– the determination of the limiting (in the blocklength) performance –wewill come
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back to the �nite-length analysis in Section 3.22.Wewill see that in this limit the rep-
etitions in the computation graphs vanish and that the limiting performance can be
characterized in terms of a recursion. In order to give a clean setting for this recur-
sion, and also to introduce concepts which are important for the general case, we
start by giving a formal de�nition of the limiting objects.

§3.7.2. Tree Ensemble

For a �xed number of iterations and increasing blocklengths, it is intuitive that fewer
and fewer cycles occur in the corresponding computation graphs. In fact, in the limit
of in�nitely long blocklengths the computation graph becomes a tree with proba-
bility one and each subtree of a computation graph tends to an independent sample
whose distribution is determined only by the degree distribution pair (λ, ρ).
Definition 3.40 (Tree Ensembles – Node and Edge Perspective). ¿e tree en-
sembles T̊ℓ(λ, ρ) and ÑTℓ(λ, ρ) are the asymptotic versions of the computation graph
ensembles C̊ℓ(n, λ, ρ) and ÑCℓ(n, λ, ρ). We start by describing ÑTℓ(λ, ρ). Each ele-
ment of ÑTℓ(λ, ρ) is a bipartite tree rooted in a variable node.¿e ensemble ÑT0(λ, ρ)
contains a single element – the trivial tree consisting only of the root variable node,
and it will serve as our anchor. Let L(i) denote a bipartite tree rooted in a vari-
able node which has i (check node) children and, in the same manner, let R(i) de-
note a bipartite tree rooted in a check node which has i (variable node) children as
shown in Figure 3.41. To sample from ÑTℓ(λ, ρ), ℓ C 1, �rst sample an element fromÑTℓ−1(λ, ρ). Next substitute each of its leaf variable nodes with a random element
from �L(i)�iC1, where L(i) is chosen with probability λi+1. Finally, substitute each
of its leaf check nodes with a random element from �R(i)�iC1, where R(i) is chosen
with probability ρi+1. ¿e above de�nition implies the following recursive decom-
position. In order to sample from ÑTℓ(λ, ρ), sample from ÑTi(λ, ρ), 0 B i B ℓ, and
replace each of its (variable) leaf nodes by independent samples from ÑTℓ−i(λ, ρ).
¿is recursive structure is the key to the analysis of BP decoding. ¿e description

L(5) R(7)

Figure 3.41: Examples of basic trees, le L(5) and right R(7).

of T̊ℓ(λ, ρ) di�ers from the one of ÑTℓ(λ, ρ) only in the probabilistic choice of the
root node. Again, T̊0(λ, ρ) contains a single element – the trivial tree consisting
only of the root variable node. To sample from T̊1(λ, ρ), �rst choose an element of
�L(i)�iC1, where element L(i) has probability Li (this is the di�erence to the previ-
ous de�nition). Next, substitute each of its leaf check nodes with a random element
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from �R(i)�iC1, where R(i) is chosen with probability ρi+1. For all further steps we
proceed as in the case of the ensemble ÑT . It follows that we have again the following
recursive decomposition. In order to sample from T̊ℓ(λ, ρ), sample from T̊i(λ, ρ),
1 B i B ℓ, and replace each of its (variable) leaf nodes by independent samples from
ÑTℓ−i(λ, ρ). As for the computation graph ensembles, we apply the same convention
and write Tℓ(λ, ρ) if the statement refers equally to the node or the edge tree en-
semble. S

Example 3.42 (Tℓ(λ(x) = xl−1, ρ(x) = xr−1) Ensemble). ¿e tree ensembles is
particularly simple for the regular case. ¿en each ÑTℓ(λ(x) = xl−1, ρ(x) = xr−1)
consists of a single element, a bipartite graph of height ℓ, rooted in a variable node,
where each variable node has l − 1 check-node children and each check-node has
r − 1 variable node children. ¿e same is true for T̊ℓ(λ(x) = xl−1, ρ(x) = xr−1),
except that the root variable node has l check-node children. n

Example 3.43 (T̊ℓ(λ(x) = 1
2x +

1
2x

2, ρ(x) = 1
5x

3
+

4
5x

4) Ensemble). As discussed
before, T̊0(λ, ρ) consists of a single element – a root variable node. ¿e twelve ele-
ments of T̊1(λ, ρ) are shown in Figure 3.44, together with their probabilities. (Note
that λ(x) = 1~2x + 1~2x2 implies that L(x) = 3~5x2 + 2~5x3.) n

12
125

48
125

8
625

32
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32
625
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32
625

Figure 3.44: Twelve elements of T̊1(λ, ρ) together with their probabilities.

As in the case of the computation graph ensembles, we can associate with each
element of T̊ℓ(λ, ρ) a conditional probability of error: we imagine that each variable
node is initially labeled with zero, that each label is then erased with probability є
by the channel, where erasures are independent, and that the BP decoder tries to
determine the root node. In terms of these conditional probabilities of error we can
write the probability of error of the tree ensemble as

PBP
T̊ℓ(λ,ρ)(є) =Q

T

P�T > T̊ℓ(λ, ρ)�PBP
b (T,є).

Definition 3.45 (Tree Code). Let T > Tℓ(λ, ρ). De�ne C(T) to be the set of valid
codewords on T. More precisely, C(T) is the set of 0~1 assignments on the variables
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contained in T which ful�ll the constraints on the tree. Further, let C0~1(T) denote
the valid codewords on T such that the root variable node is 0~1. Clearly, C0(T) and
C1(T) are disjoint and their union equalsC(T). Finally, we need the subset ofC1(T)
consisting only of the minimal codewords, denote this set by C1

min(T): a codeword
in C1

min(T) has a 1 at the root node and then for each of its connected check nodes
exactly one of its child variable nodes is also 1. ¿is continues until we have reached
the boundary. Figure 3.46 shows a tree with a non-minimal (le ) and a minimal
(right) assignment. S

Figure 3.46: Le : Element of C1(T) for a given tree T > T2. Right: Minimal such el-
ement, i.e., an element of C1

min(T). Every check node has either no connected vari-
ables of value 1 or exactly two such neighbors. Black and gray circles indicate vari-
ables with associated value 1, respectively, 0.

Discussion: Consider a code C and the computation graph T for a �xed number
of iterations. ¿is computation graph may or may not be a tree. Project the global
codewords ofC onto the set of variables contained in T. It can happen that this set of
projections is a strict subset ofC(T). Here is a simple example: a position indexed by
Tmay not be proper and so it is permanently �xed to 0 by global constraints which
do not appear in the set of local constraints that de�ne T (e.g., consider a variable
node in the boundary of T which is of degree 3 and assume that it is three times
connected to the same check node outside T and that this check node is of degree
3 as well). As the next lemma shows, for large blocklengths this rarely happens. We
will not need this fact for our analysis for the BEC but it will come in handy when
we talk about GEXIT functions for more general channels.

Consider a position i of the code and let ℓ > N. Consider the node-perspective
computation graph of bit i of depth ℓ, call it T. Let C(T) denote the tree code. Let
P(C,T) denote the projection of the set of global codewords onto T. We say that
T is proper if T is a tree and P(C,T) = C(T), i.e., if the set of projections of global
codewords onto T is equal to the set of all local codewords. Note that for ℓ = 0 this
notion coincides with the notion that the code G is proper at position i.
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Lemma 3.47 (Most Finite Projections are Proper). Let ℓ > N. Let G be chosen
uniformly at random from LDPC (n,l,r), 3 B l < r. Let i > [n] and let T be the
node-perspective computation graph of depth ℓ rooted in position i. ¿en

P�T is proper� = 1 + o(1).

Proof. We only give the proof for the case ℓ = 0. ¿e general proof proceeds in a
similar fashion and is relegated to Problem 3.8.

Consider the ensemble LDPC (n,l,r). Let Aαi (G) denote the number of code-
words of the code G which have an α at position i, i > [n], and α > �0,1�. Note that
position i of the code is proper if and only if A1

i(G) A 0. We know from Problem 1.5
that in this case A1

i(G) = A0
i(G).

Without loss of generality we can assume that i = 1 since the de�nition of the
ensemble is invariant under permutations of the components. De�ne r implicitly by
2nr = 2n

l
r
−1(1 + 1�l is even�). We know from Lemma D.25 that

E[A(G)] = 2nr(1 + o(1)).

Note that A(G) can only take on the values 2j, jC nr. Let aj = P�A(G) = 2j�, jC nr.
¿en we have 1 + o(1) = PjC0 anr+j2j = 1 +PjC1 anr+j(2j− 1). ¿is implies

Q
jAnr

aj2j = o(1).(3.48)

Consider A0
1(G). ¿is means that we set bit 1 to zero. With probability 1 −

O(1~n) the l edges emanating from this variable connect to distinct check nodes.
We can therefore restrict ourselves to this case. To simplify notation we omit the
conditioning in the following. Setting bit 1 to zero is therefore equivalent to remov-
ing this bit from the graph together with its outgoing edges. Computing E[A0

1(G)]
is hence equivalent to computing the average rate of a code which has length n− 1,
where all variable nodes have degree l, nl

r
− l check nodes have degree r, and l

check nodes have degree r − 1. Using Lemma D.25 with a = b = c = 1, we see that
E[A0

1(G)] = 2nr(l,r)−1. ¿is is not surprising. We expect such a code which has one
less degree of freedom to have in expectation half the codewords.

Now note that A0
1(G) C A1

1(G) so that

2nr(1 + o(1)) = E[A(G)] = E[A0
1(G)] +E[A1

1(G)] B 2E[A0
1(G)] = 2nr(1 + o(1)).

Since by (3.48) the dominant contribution to the expectation of A(G) stems from
the case where A(G) = 2nr, we conclude from the last sequence of equalities that
P�A1

1(G) x A0
1(G)� = o(1), as claimed.
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§3.8. Tree Channel and Convergence to Tree Channel
§3.8.1. Tree Channel

Definition 3.49 ((Tℓ,є)-Tree Channel). Given the BEC characterized by its era-
sure probability є and a tree ensembleTℓ = Tℓ(λ, ρ), we de�ne the associated (Tℓ,є)-
tree channel. ¿e channel takes binary input X > �0,1� with uniform probability.
¿e output of the channel is constructed as follows. Given X, �rst pick T from Tℓ
uniformly at random. Next, pick a codeword from C0(T) uniformly at random if
X = 0 and otherwise pick a codeword from C1(T) uniformly at random. As a short-
hand, let us say that we pick a codeword fromCX(T) uniformly at random. Transmit
this codeword over the BEC(є). Call the output Y.¿e receiver sees (T,Y) and esti-
mates X. Let PBP

Tℓ(є) denote the resulting bit error probability, assuming that (T,Y)
is processed by a BP decoder. S

Discussion: We know already that the error probability depends on the tree but
not on the codeword that is sent. ¿e distribution of the codeword is therefore ir-
relevant for the subsequent discussion. For sake of de�niteness we have chosen this
distribution to be the uniform one.¿is is also consistent with our previous discus-
sion. We know that most projections onto computation graphs are proper. And for
a proper projection the induced probability distribution is the uniform one.

§3.8.2. Convergence to Tree Channel

Theorem 3.50 (Convergence to Tree Channel). For a given degree distribu-
tion pair (λ, ρ) consider the sequence of associated ensembles LDPC (n, λ, ρ) for
increasing blocklength n under ℓ rounds of BP decoding. ¿en

lim
n�ª

ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ)] = PBP

T̊ℓ(λ,ρ)(є).

Proof. From characterization (3.38) we have

lim
n�ª

ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ)] = lim

n�ª
Q
T

P�T > C̊ℓ(n, λ, ρ)�PBP
b (T,є).

Consider

Q
T

P�T > C̊ℓ(n, λ, ρ)�PBP
b (T,є) −Q

T

P�T > T̊ℓ(λ, ρ)�PBP
b (T,є).

Since the conditional probability of error is identical, the above di�erence can be
written as

Q
T

�P�T > C̊ℓ(n, λ, ρ)� − P�T > T̊ℓ(λ, ρ)��PBP
b (T,є).
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¿e proof now follows by observing that for each T,

lim
n�ª

P�T > C̊ℓ(n, λ, ρ)� = P�T > T̊ℓ(λ, ρ)�.

If you go back to Figure 3.37 you see that in the limit of in�nite blocklengths the
only computation graph which we encounter is the tree shown in the top row. In
the general case, any computation graphwhich contains at least one repetition (edge
or node) has a probability that tends to zero at a speed of at least 1~n. Finally, this
convergence is uniform since there are only a �nite number of possible graphs of a
�xed height.

§3.9. Density Evolution
¿eorem 3.50 asserts that in the limit of large blocklengths the average performance
of an ensemble LDPC (n, λ, ρ) converges to the performance of the corresponding
tree channel.

Theorem 3.51 (Performance of Tree Channel). Consider a degree distribution
pair (λ, ρ)with associated normalized variable degree distribution from a node per-
spective L(x). Let є be the channel parameter, є > [0,1]. De�ne x−1 = 1 and for ℓ C 0
let

(3.52) xℓ = єλ(1 − ρ (1 − xℓ−1)) .
¿en for ℓ C 0

PBP
ÑTℓ(є) = xℓ, PBP

T̊ℓ
(є) = єL(1 − ρ(1 − xℓ−1)).

Proof. Consider �rst PBP
ÑTℓ(є). By de�nition, the initial variable-to-check message is

equal to the received message which is an erasure message with probability є. It fol-
lows that PBP

ÑT0(є) = є, as claimed. We use induction. Assume that PBP
ÑTℓ(є) = xℓ. Con-

sider PBP
ÑTℓ+1(є). We start with the check-to-variable messages in the (ℓ+ 1)-th itera-

tion. Recall that by de�nition of the algorithm a check-to-variable message emitted
by a check node of degree i along a particular edge is the erasure message if any of
the (i−1) incomingmessages is an erasure. By assumption, each suchmessage is an
erasure with probability xℓ and all messages are independent, so that the probability
that the outgoing message is an erasure is equal to 1−(1−xℓ)i−1. Since the edge has
probability ρi to be connected to a check node of degree i it follows that the expected
erasure probability of a check-to-variable message in the (ℓ+1)-th iteration is equal
toPi ρi(1−(1−xℓ)i−1) = 1−ρ(1−xℓ). Now consider the erasure probability of the
variable-to-check messages in the (ℓ+ 1)-th iteration. Consider an edge e which is
connected to a variable node of degree i. ¿e outgoing variable-to-check message
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along this edge in the (ℓ + 1)-th iteration is an erasure if the received value of the
associated variable node is an erasure and all (i−1) incomingmessages are erasure.
¿is happens with probability є(1 − ρ(1 − xℓ))i−1. Averaging again over the edge
degree distribution λ, we get that PBP

ÑTℓ+1(є) = єλ(1 − ρ(1 − xℓ)) = xℓ+1, as claimed.
¿e proof for PBP

T̊ℓ
(є) is very similar. Recall that ÑTℓ and T̊ℓ are identical except

for the choice of the root node which is chosen according to the normalized node
degree distribution L(x) instead of the edge degree distribution λ(x).
Example 3.53 (Density Evolution for (λ(x) = x2, ρ(x) = x5)). For the degree
distribution pair (λ(x) = x2, ρ(x) = x5) we have x0 = є and for ℓ C 1, xℓ = є(1 −
(1−xℓ−1)5)2. For, e.g., є = 0.4 the sequence of values of xℓ is 0.4, 0.34, 0.306, 0.2818,
0.2617, 0.2438, . . .. n

¿eorem 3.51 gives a precise characterization of the asymptotic performance in
terms of the recursions stated in (3.52). ¿ose recursions are termed density evolu-
tion equations since they describe how the erasure probability evolves as a function
of the iteration number.2

§3.10. Monotonicity
Monotonicity either with respect to the channel parameter or with respect to the
number of iterations ℓ plays a fundamental role in the analysis of density evolution.
¿e �rst lemma is a direct consequence of the non-negativity of the coe�cients of
the polynomials λ(x) and ρ(x) and the fact that ρ(1) = 1. We skip the proof.

Lemma 3.54 (Monotonicity of f(ċ, ċ)). For a given degree distribution pair (λ, ρ)
de�ne f(є,x) = єλ(1 − ρ(1 − x)). ¿en f(є,x) is increasing in both its arguments
for x,є > [0,1].
Lemma 3.55 (Monotonicity with Respect to Channel). Let (λ, ρ) be a degree
distribution pair and є > [0,1]. If PBP

Tℓ(є)
ℓ�ª
Ð� 0 then PBP

Tℓ(є′)
ℓ�ª
Ð� 0 for all є′ B є.

Proof. We prove the claim for PBP
ÑTℓ(є). ¿e corresponding claim for PBP

T̊ℓ
(є) can be

treated in a nearly identical manner and we skip the details. Recall from ¿eo-
rem 3.51 that PBP

ÑTℓ(є) = xℓ(є), where x0(є) = є, xℓ(є) = f(є,xℓ−1(є)), and f(є,x) =
єλ(1 − ρ(1 − x)). Assume that for some ℓ C 0, xℓ(є′) B xℓ(є).¿en

xℓ+1(є′) = f(є′,xℓ(є′))
Lem. 3.54
B f(є′,xℓ(є))

Lem. 3.54
B f(є,xℓ(є)) = xℓ+1(є).

But if є′ B є, then x0(є′) = є′ B є = x0(є) and we conclude by induction that
xℓ(є′) B xℓ(є). So if xℓ(є) ℓ�ªÐ� 0, then xℓ(є′) ℓ�ªÐ� 0.

2For the BEC this “density” simpli�es to a probability (of erasure) but for the general case dis-
cussed in Chapter 4, density evolution really describes an evolution of densities.
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Lemma 3.56 (Monotonicity with Respect to Iteration). Let є,x0 > [0,1]. For
ℓ = 1,2, . . . , de�ne xℓ(x0) = f(є,xℓ−1(x0)). ¿en xℓ(x0) is a monotone sequence
converging to the nearest (in the direction ofmonotonicity) solution of the equation
x = f(є,x).
Proof. If x0 = 0 or є = 0 then xℓ = 0 for ℓ C 1 and the �xed point is x = 0. If for some

ℓ C 1, xℓ C xℓ−1 then xℓ+1 = f(є,xℓ)
Lem. 3.54
C f(є,xℓ−1) = xℓ, and the corresponding

conclusion holds if xℓ B xℓ−1.¿is proves themonotonicity of the sequence �xℓ�ℓC0.
Since for є C 0 we have 0 B f(є,x) B є for all x > [0,1], it follows that xℓ

converges to an element of [0,є], call it xª. By the continuity of f we have xª =
f(є,xª). It remains to show that xª is the nearest (in the sense of monotonicity)
�xed point. Consider a �xed point z such that xℓ(x0) B z for some ℓ C 0. ¿en

xℓ+1(x0) = f(є,xℓ(x0))
Lem. 3.54
B f(є, z) = z, which shows that xª B z. Similarly, if

xℓ(x0) C z for some ℓ C 0 then xª C z. ¿is shows that xℓ cannot “jump” over any
�xed point and must therefore converge to the nearest one.

§3.11. Threshold
From the density evolution equations (3.52) we see that for every non-negative in-
teger ℓ

PBP
ÑTℓ(є = 0) = 0, but PBP

ÑTℓ(є = 1) = 1,

and in particular these equalities are satis�ed if ℓ � ª. Combined with the above
monotonicity property this shows that there is a well-de�ned supremum of є for
which PBP

ÑTℓ(є)
ℓ�ª
Ð� 0.¿is supremum is called the threshold. Further, in Problem 3.16

you will show that PBP
ÑTℓ(є)

ℓ�ª
Ð� 0 implies PBP

T̊ℓ
(є) ℓ�ª
Ð� 0, and vice versa. We can

therefore generically consider PBP
Tℓ(є).

Definition 3.57 (Threshold of Degree Distribution Pair). ¿e threshold as-
sociated with the degree distribution pair (λ, ρ), call it єBP(λ, ρ), is de�ned as

SєBP(λ, ρ) = sup�є > [0,1] � PBP
Tℓ(λ,ρ)(є)

ℓ�ª
Ð� 0�.

Example 3.58 (Threshold of (λ(x) = x2, ρ = x5)). Numerical experiments show
that єBP(3,6) � 0.42944. n

What is the operationalmeaning of єBP(λ, ρ)?Using an ensemble LDPC (n, λ, ρ)
of su�cient length we can transmit reliably over the channel BEC(є) if є < єBP(λ, ρ)
but we cannot hope of doing so for channel parameters exceeding this threshold.
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l r r(l,r) єSha(l,r) єBP(l,r)
3 6 1

2
1
2 = 0.5 � 0.4294

4 8 1
2

1
2 = 0.5 � 0.3834

3 5 2
5

3
5 = 0.6 � 0.5176

4 6 1
3

2
3 � 0.667 � 0.5061

3 4 1
4

3
4 = 0.75 � 0.6474

Table 3.59:¿resholds єBP(l,r) under BP decoding and the corresponding Shannon
thresholds єSha(l,r) for some regular degree distribution pairs.

More precisely, given є < єBP(λ, ρ) there exists an iteration number ℓ so that PBP
T̊ℓ
(є)

is below the desired bit erasure probability. ¿erefore, by ¿eorems 3.30 and 3.50,
elements of the ensemble LDPC (n, λ, ρ), if decoded with ℓ rounds of BP, will show
a performance approaching PBP

T̊ℓ
(є) as the blocklength increases. Table 3.59 lists

thresholds for some regular degree distribution pairs.

§3.12. Fixed Point Characterization of Threshold
¿e above de�nition of the threshold is not very convenient for the purpose of anal-
ysis. We therefore state a second equivalent de�nition based on the �xed points of
density evolution.

Theorem3.60 (FixedPointCharacterizationoftheThreshold). For a given
degree distribution pair (λ, ρ) and є > [0,1] let f(є,x) = єλ(1 − ρ(1 − x)).

[Fixed Point Characterizations of the ¿reshold]

(i) єBP(λ, ρ) = sup�є > [0,1] � x = f(є,x) has no solution x in (0,1]�
(ii) єBP(λ, ρ) = inf�є > [0,1] � x = f(є,x) has a solution x in (0,1]�

Proof. Let x(є) be the largest solution in [0,1] to x = f(є,x). Note that for any
x > [0,1] we have 0 B f(є,x) B є. We conclude that x(є) > [0,є].

By Lemma 3.56 we have xℓ(є) ℓ�ªÐ� x(є) .We conclude that if x(є) A 0 then є is
above the threshold, whereas if x(є) = 0 then є is below the threshold.

Definition 3.61 (Critical Point). Given a degree distribution pair (λ, ρ) which
has threshold єBP we say that xBP is a critical point if

f(єBP,xBP) = xBP and
∂f(єBP,x)

∂x
S x=xBP = 1.

In words, xBP is (one of) the point(s) at which f(єBP,x)−x tangentially touches the
horizontal axis. S
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¿e �xed point characterization gives rise to the following convenient graphical
method for determining the threshold.Draw f(є,x)−x as a function of x, x > (0,1].
¿e threshold єBP is the largest є such that the graph of f(є,x) − x is negative.

0.0 0.1 0.2 0.3 0.4

-0.06
-0.04
-0.02
0.00
0.02

x

є = 0.4

є = єBP
є = 0.45

0.0 0.1 0.2 0.3 0.4

-0.03
-0.02
-0.01
0.00

x

є = єBP � 0.4741

Figure 3.63: Le : Graphical determination of the threshold for (λ, ρ) = (x2,x5).
¿ere is one critical point, xBP � 0.2606 (black dot). Right: Graphical determination
of threshold for optimized degree distribution described in Example 3.64.¿ere are
two critical points, xBP1,2 � 0.1493,0.3571 (two black dots).

Example 3.62 (GraphicalDetermination of Threshold). ¿egraphical deter-
mination of the threshold of (λ, ρ) = (x2,x5) is shown in Figure 3.63. ¿e graphs
of f(є,x) − x = є(1 − (1 − x)5)2 − x for the values є = 0.4, 0.42944, and 0.45 are
depicted. We see that the supremum of all є such that this plot is strictly negative
for x > (0,1] is achieved at єBP � 0.42944. For this єBP there is one critical value
of x, xBP � 0.2606. At this point the expected decrease in the erasure fraction per
iteration reaches zero so that the decoder is expected to slow down critically and
come to a halt. n

Example 3.64 (Optimized Ensemble). In the general case there can be more than
one critical point. ¿is happens in particular with optimized degree distributions.
¿e more degrees we allow and the more highly optimized ensembles we consider
the more simultaneous critical points we are likely to �nd. Consider the degree dis-
tribution pair

λ(x) = 0.106257x + 0.486659x2 + 0.010390x10 + 0.396694x19,
ρ(x) = 0.5x7 + 0.5x8.

It has a design rate of one-half, a threshold of єBP � 0.4741, and two critical points
xBP � 0.35713565 and xBP � 0.14932401. Why do we get multiple critical points
if we optimize degree distributions? In Section 3.14.4 we will see that to achieve
capacity we need f(єBP,x) = x for the whole range x > [0,єBP], i.e., we need equal-
ity everywhere so that all points in this range are critical points. ¿is is called the
matching condition. ¿erefore, the closer we get to capacity the more critical points
we expect to see. n
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§3.13. Stability
Expanding the right hand side of (3.52) into a Taylor series around zero we get

(3.65) xℓ = єλ′(0)ρ′(1)xℓ−1 +O(x2ℓ−1).
For su�ciently small xℓ the convergence behavior is determined by the term linear
in xℓ. More precisely, the convergence depends on whether єλ′(0)ρ′(1) is smaller
or larger than one.

Theorem 3.66 (Stability Condition). Assume that we are given a degree distri-
bution pair (λ, ρ) and є,x0 > [0,1]. Let xℓ(x0) be de�ned as in Lemma 3.56.

[Necessity] If єλ′(0)ρ′(1) A 1 then there exists a strictly positive constant
ξ = ξ(λ, ρ,є), such that limℓ�ª xℓ(x0) C ξ for all x0 > (0,1).
[Su�ciency] If єλ′(0)ρ′(1) < 1 then there exists a strictly positive constant
ξ = ξ(λ, ρ,є), such that limℓ�ª xℓ(x0) = 0 for all x0 > (0, ξ).

Note that єλ(1 − ρ(1 − 0)) = 0 for any initial erasure fraction є, so that zero is
a �xed point of the recursion given in (3.52). ¿erefore, the above condition is the
stability condition of the �xed point at zero.¿emost important consequence of the
stability condition is the implied upper bound on the threshold

(3.67) єBP(λ, ρ) B 1
λ′(0)ρ′(1) .

In fact, this bound also applies to MAP decoding.

Lemma 3.68 (Stability Condition and MAP Threshold). Assume that we are
given a degree distribution pair (λ, ρ) and a real number є, є > [0,1].

[Necessity] If єλ′(0)ρ′(1) A 1 then there exists a strictly positive constant
ξ = ξ(λ, ρ,є), such that limn�ª PMAP

b (n, λ, ρ,є) C ξ.
Proof. To each element G > LDPC (n, λ, ρ) and each channel realization associate
a “normal” graph (not bipartite), call it Γ. ¿e nodes of Γ are the check nodes of
G. ¿e edges of Γ correspond to the degree-two variable nodes in G whose values
were erased by the channel: each such variable node of degree two has exactly two
outgoing edges in G and so naturally forms an edge in Γ. ¿is connection between
the bipartite graph G and the graph Γ is discussed in more detail in Section C.5.

Let µ = єλ′(0)ρ′(1). From Lemma C.37 and Lemma C.38 we know that if µ A 1
then a positive fraction of nodes in Γ lie on cycles.

A cycle in Γ corresponds to a cycle in G so that all involved nodes are of degree
two and have been erased by the channel. Such a cycle constitutes a codeword, all
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of whose components have been erased. No decoder (not even aMAP decoder) can
recover the value associated with these bits. Since the fraction of concerned bits is
positive, we conclude that there is a positive bit erasure probability. In other words,
we are transmitting above the MAP bit threshold.

§3.14. EXIT Charts

An EXIT chart is a helpful visualization of the asymptotic performance under BP
decoding. For the BEC it is equivalent to density evolution.

§3.14.1. Graphical Representation of Density Evolution

Consider a degree distribution pair (λ, ρ). Recall from Section 3.12 that the asymp-
totic behavior of such a degree distribution pair is characterized by f(є,x) = єλ(1−
ρ(1 − x)), which represents the evolution of the fraction of erased messages emit-
ted by variable nodes, assuming that the system is in state (has a current such frac-
tion of) x and that the channel parameter is є. It is helpful to represent f(є,x) as
the composition of two functions, one which represents the “action” of the variable
nodes (which we can think of as a repetition code) and the second which describes
the “action” of check nodes (a simple parity-check code). We de�ne vє(x) = єλ(x)
and c(x) = 1 − ρ(1 − x), so that f(є,x) = vє(c(x)). Recall that the condition for
convergence reads f(є,x) < x, ∀x > (0,1). Observe that vє(x) has an inverse for
x C 0 since λ(x) is a polynomial with non-negative coe�cients. ¿e condition for
convergence can hence be written as

c(x) < v−1є (x), x > (0,1).

¿is has a pleasing graphical interpretation: c(x) has to lie strictly below v−1є (x)
over the whole range x > (0,1). ¿e threshold єBP is the supremum of all numbers
є for which this condition is ful�lled. ¿e local such condition around x = 0, i.e.,
the condition for small positive values x, reads ρ′(1) = c′(0) B dv−1є (x)

dx Sx=0 = 1
єλ′(0) .

¿is is the stability condition.

Example 3.69 (Graphical Representation for (λ(x) = x2, ρ(x) = x5)). We
have v−1є (x) = (x~є)1~2 and c(x) = 1 − (1 − x)5. ¿e curves corresponding to
v−1є (x) for є = 0.35, 0.42944, and 0.50 as well as the curve corresponding to c(x)
are plotted in the le picture of Figure 3.70. For є � 0.42944, v−1є (x) just touches
c(x) for some x > (0,1), i.e., єBP � 0.42944. ¿e picture on the right of Figure 3.70
shows the evolution of the decoding process for є = 0.35. n
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Figure 3.70: Le : Graphical determination of the threshold for (λ(x) = x2, ρ(x) =
x5). ¿e function v−1є (x) = (x~є)1~2 is shown as a dashed line for є = 0.35, є = єBP �
0.42944, and є = 0.5. ¿e function c(x) = 1 − (1 − x)5 is shown as a solid line.
Right: Evolution of the decoding process for є = 0.35. ¿e initial fraction of erasure
messages emitted by the variable nodes is x = 0.35. A er half an iteration (at the
output of the check nodes) this fraction has evolved to c(x = 0.35) � 0.88397. A er
one full iteration, i.e., at the output of the variable nodes we see an erasure fraction
of x = vє(0.88397), i.e., x is the solution to the equation 0.883971 = v−1є (x). ¿is
process continues in the same fashion for each subsequent iteration, corresponding
graphically to a staircase function which is bounded below by c(x) and bounded
above by v−1є (x).

§3.14.2. EXIT Function

We will now see that both c(x) as well as vє(x) have an interpretation in terms of
entropy.

Definition 3.71 (EXIT Function). Let C be a binary code. Let X be chosen with
probability pX(x) from C and let Y denote the result of letting X be transmitted
over a BEC(є). ¿e extrinsic information transfer (EXIT) function associated with
the i-th bit of C, call it hi(є), is de�ned as

hi(є) = H(Xi SY�i).

¿e average EXIT function is

Sh(є) = 1
n

n
Q
i=1
hi(є).

Discussion: ¿e input parameter є represents an entropy: if we assume that Xi
is chosen uniformly at random from �0,1� and that Yi is the result of sending Xi
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over a BEC then H(Xi SYi) = єH(Xi SYi =?) = є. ¿e EXIT function therefore
characterizes how entropy is transferred from input to output. ¿e word “extrin-
sic” in EXIT refers to the fact that we consider H(Xi SY�i) instead of H(Xi SY),
i.e., we do not include the observation Yi itself. You are warned that in the litera-
ture mutual information is o en considered instead of entropy. Assuming that we
impose a uniform prior on Xi, this di�ers from our de�nition only in a trivial way
(H(Xi SY�i) = 1 − I(Xi;Y�i)).
Example 3.72 (Parity-Check Code). Consider the binary parity-check code with
parametersC[n,n−1,2] and a uniformprior on the set of codewords. By symmetry,
hi(є) = h(є) for all i > [n] and

h(є) = 1 − (1 − є)n−1.
A check node of degree i in the Tanner graph represents a parity-check codeC[i, i−
1,2]. Let the channel parameter of the BEC be x. From above the associated EXIT
function is 1 − (1 − x)i−1. ¿e function c(x) depicted in Figure 3.70 is the average
over the set of EXIT functions corresponding to check nodes of degree i, where the
average is with respect to the edge degree distribution: indeed,Pi ρi(1−(1−x)i−1) =
1 − ρ(1 − x) = c(x). n

Example 3.73 (Repetition Code). Consider the binary repetition code C[n,1,n]
with a uniform prior on the set of codewords. By symmetry, hi(є) = h(є) for all
i > [n] and

h(є) = єn−1. n

Example 3.74 ([7,4,3]HammingCode). ¿eparity-checkmatrixH of the [7,4,3]
binaryHamming code is stated explicitly in Example 1.24.Assuming a uniformprior
on the set of codewords, a tedious calculation reveals (see Problem 3.29) that

hHam(є) = 3є2 + 4є3 − 15є4 + 12є5 − 3є6. n

Figure 3.75 depicts the EXIT functions of Examples 3.72, 3.73, and 3.74.
¿ere are many alternative characterizations of EXIT functions, each with its

own merit. Let us list the most useful ones.

Lemma 3.76 (Various Characterizations of EXIT Functions). Let C[n, k] be
a binary linear code and let X be chosen with uniform probability from C[n, k].
Further, let H and G be a parity, respectively, generator matrix representing C. Let
Y denote the result of letting X pass over a BEC(є). Let x̂MAP

i (y�i) denote the MAP
estimator function of the i-th bit given the observation y�i. ¿en the following are
equivalent:
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Figure 3.75: EXIT function of the [3,1,3] repetition code, the [6,5,2] parity-check
code, and the [7,4,3]Hamming code.

(i) hi(є) = H(Xi SY�i)
(ii) hi(є) = P�x̂MAP

i (Y�i) =?�

(iii) h(є) = dH(X SY)
ndє

(iv) hi(є) = PEb[n]��i� єSE S(1 − є)n−1−SE S(1 + rank(HE) − rank(HE8�i�))

(v) hi(є) = PEb[n]��i� єn−1−SE S(1 − є)SE S(rank(GE8�i�) − rank(GE))
Discussion: ¿e second characterization states that the EXIT value equals the

erasure probability of an extrinsic MAP decoder. ¿is is useful when doing actual
computations.¿emost fundamental characterization is the third one: it states that
the (average) EXIT function equals the derivative of the conditional entropy with
respect to the channel parameter divided by the blocklength n.

Proof. ¿e proof of the equivalence of characterizations (i), (ii), (iv), and (v) is le 
as Problem 3.27.

In what follows we concentrate on the third characterization, which is the most
fundamental one (if you would like to de�ne an EXIT function for a non-uniform
prior or a non-linear code, this is the proper starting point). Although all bits are
sent through the same channel BEC(є), it is convenient to imagine that bit i is sent
through a BEC with parameter єi, where (by chance) єi = є for all i > [n]. We claim
that

dH(X SY(є1,� ,єn))
dє

=

n
Q
i=1

∂H(X SY(є1,� ,єn))
∂єi

U
єj=є,∀j>[n]

=

n
Q
i=1

∂H(Xi SY(є1,� ,єn))
∂єi

U
єj=є,∀j>[n]

.
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To see the second transition, use the chain rule to write H(X SY) = H(Xi SY) +
H(X�i SXi,Y). Due to the memoryless property of the channel, we further have
H(X�i SXi,Y) = H(X�i SXi,Y�i). But the right hand side is no longer a function
of єi. ¿erefore its contribution vanishes when we take the (partial) derivative with
respect to єi. Finally, note that

H(Xi SY) = P�Yi =?�P�x̂MAP
i (Y�i) =?� = єihi(є),

so that ∂H(Xi SY)
∂єi

= hi(є) and dH
ndє = h(є).

As we have seen in the proof above, it is useful to generalize to a situation where
the i-th bit is sent through the channel BEC(єi). Let us assume that the individual
channel parameters єi are parameterized in a di�erentiable way by a common pa-
rameter є, i.e., єi = єi(є). Now є is no longer the channel parameter itself but if we
change є in a smooth manner then we can imagine that the set of individual chan-
nels �BEC(єi)�ni=1 describes some smooth curve in “channel space”. Depending on
the parameterization this description includes, e.g., the case where all channels stay
�xed except for one, or the case where all channels are the same and are changed in
lock-step. Characterization (iii) of Lemma 3.76 is still meaningful, i.e., we can de�ne
the (average) EXIT function as h(є) = dH(X SY)

ndє and the individual EXIT functions
as hi(є) = ∂H(Xi SY)

∂єi
dєi
dє .

Example 3.77 (EXIT Function ofVariableNodes). Consider the EXIT function
of a [i + 1,1, i] repetition code, where the last bit is passed through a BEC with
parameter є and bit 1 to bit i are passed through a BEC with parameter x. ¿is
is the case for a variable node of degree i in the Tanner graph of an LDPC code.
Consider the EXIT function corresponding to one of the �rst i positions. We have
H(X SY) = єLi

k=1 xk, where all the xk have value equal to x. Taking the derivative
with respect to, e.g., x1 and setting xk = x we get єxi−1. If we average this over the
edge degree distribution λ we get Pi λiєxi−1 = єλ(x) = vє(x). We conclude that
vє(x) is the average of a collection of EXIT functions. n

As we have seen in Examples 3.72 and 3.77, vє(x) and c(x) are (averaged) EXIT
functions. For this reason we call Figure 3.70 an EXIT chart.

§3.14.3. Basic Properties of EXIT Functions

Theorem 3.78 (Duality Theorem). Let C be a binary linear code, let CÙ be its
dual and, assuming uniform priors on the codewords, let hi(є) and hÙi (є) denote
the corresponding EXIT functions. ¿en

hi(є) + hÙi (1 − є) = 1.
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Proof. Recall that ifH is a parity-checkmatrix ofC then it is also a generator matrix
ofCÙ.¿e claimnow follows from characterizations (iv) and (v) of Lemma 3.76.

Example 3.79 (Repetition Code and Single Parity-Check Code). ¿e codes
[n,1,n] and [n,n−1,2] are duals and fromExamples 3.73 and 3.72 we know that for
all i > [n] their EXIT functions are єn−1 and 1 − (1 − є)n−1, respectively. ¿erefore,
in agreement with¿eorem 3.78,

єn−1 + 1 − (1 − (1 − є))n−1 = 1. n

Theorem 3.80 (Minimum Distance Theorem). Let C be a binary linear code of
length n with minimum distance d and with EXIT functions hi(є), i > [n]. ¿en
hi(є), i > [n], is a polynomial of minimum degree at least d − 1 and the average
EXIT function has minimum degree exactly d − 1.

Proof. Consider characterization (iv) of Lemma 3.76. Let E be a subset of cardinality
strictly less than d−1. Since any d−1 or less columns ofH are linearly independent, it
follows that (1+rank(HE)−rank(HE8�i�)) is zero for any such subset E .¿erefore,
hi(є) does not contain monomials of degree less than d − 1. On the other hand, if
E 8 �i� is chosen to correspond to the support of a minimum distance codeword
then (1+ rank(HE)− rank(HE8�i�)) is one and this will contribute a monomial of
degree d − 1. Since these minimum degree terms cannot be canceled by any other
terms it follows that h(є) has minimum degree exactly d − 1.

Example 3.81 (Repetition Code, Parity-Check Code, Hamming Code). We
see from our previous examples that the average EXIT functions of the [n,1,n]
repetition code, the [n,n−1,2] single parity-check code and the [7,4,3]Hamming
code haveminimumdegree n−1, 1, and 2 respectively, as predicted by¿eorem3.80.
n

¿emost fundamental property of EXIT functions is a direct consequence of the
third characterization in Lemma 3.76. For historical reasons we label it as a theorem,
even though there is really nothing to be proved.

Theorem 3.82 (Area Theorem). Let C be a binary code. Let X be chosen with
uniform probability from C and let Y denote the received word a er transmission
over a BEC(є). To emphasize thatY depends on the channel parameter єwriteY(є).
If h(є) denotes the corresponding EXIT function then

H(X SY(δ)) = nS
δ

0
h(є)dє.(3.83)
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Proof. Using the characterization h(є) = dH(X SY(є))
ndє of Lemma 3.76, we have

S
δ

0

dH(X SY(є))
dє

dє = H(X SY(δ)) −H(X SY(0)) = H(X SY(δ)).

Problem 3.30 discusses a combinatorial proof of this theorem which starts with
the characterization of h(є) given in De�nition 3.71.
Example 3.84 (Area Theorem Applied to [7,4,3]Hamming Code).

S
1

0
hHam(є)dє = S

1

0
�3є2 + 4є3 − 15є4 + 12є5 − 3є6�dє = 4

7
. n

§3.14.4. Matching Condition

Let us go back to the EXIT chart method as depicted on the right of Figure 3.70.¿e
area under the curve c(x) equals 1−Rρ and the area to the le of the curve v−1є (x) is
equal to єRλ.¿is is easily veri�ed by a direct calculation, integrating the respective
functions, but it also follows from (theArea)¿eorem3.82. Assume thatwe integrate
from 0 to 1. ¿e normalized integral is then equal to H(X SY(1))~n = H(X)~n. If
we assume a uniform prior on the set of codewords this equals r, the rate of the code.

Consider the check-node side.¿e rate of a parity-check code of length i is i−1i =
1 − 1

i , so that the area under an individual EXIT function of such a code is 1 −
1
i . If

we average over the edge degree distribution we get 1 −Pi ρi 1i = 1 − Rρ.
¿e argument at the variable node side is more interesting. First note that the

area “to the le ” of the curve v−1є (x) is equal to the area “under” vє(x). By de�nition,
if we integrate the average EXIT function then we get the di�erence of entropies at
the two endpoints of the “path.” For the EXIT function corresponding to a variable
node one position is �xed to the channel BEC(є) and the other ones go from “no
information” to “perfect channel.” If all the other positions have “no information”
then the uncertainty is є, if all the other positions see a “perfect channel” then the
uncertainty is 0. ¿e di�erence is therefore є. ¿e EXIT function is the average of
the individual EXIT functions: the EXIT function associated with the �xed position
is zero (since the input does not change) and the remaining i individual EXIT func-
tions are equal by symmetry.We conclude that the integral under one of these EXIT
functions is єi . If we average with respect to the edge degree distribution λ this gives
us єRλ.

We know that a necessary condition for successful BP decoding is that these
two areas do not overlap (the two curves v−1є (x) and c(x) must not cross). Since
the total area equals 1, we get the necessary condition (for successful BP decoding)
(єRλ) + (1 − Rρ) B 1. Rearranging terms, this is equivalent to the condition

1 − CSha = є B R
ρ
Rλ
= 1 − r(λ, ρ).
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Inwords, the design rate r(λ, ρ) of any LDPC ensemble which, for increasing block-
lengths, allows successful decoding over the BEC(є) cannot surpass the Shannon
limit 1 − є.

¿e �nal result (namely that transmission above capacity is not possible) is triv-
ial, but the method of proof shows how capacity enters in the calculation of the
performance under BP decoding and it shows that for the design rate to achieve ca-
pacity the component curves have to be perfectly matched. In the next section we
construct capacity-achieving degree distributions. We use the matching condition
єλ(1 − ρ(1 − x)) = x as our starting point. ¿is matching condition also explains
why optimized ensembles tend to have many critical points as we discussed in Ex-
ample 3.64.

§3.15. Capacity-Achieving Degree Distributions
Consider a pair of degree distributions (λ, ρ) of design rate r = r(λ, ρ) and with
threshold єBP = єBP(λ, ρ). By Shannon, we must have r B 1− єBP, and it is natural to
use the following de�nition of the (multiplicative) gap as ameasure of performance.

Definition 3.85 (Multiplicative Gap). Let (λ, ρ) be a degree distribution pair
with rate r = r(λ, ρ) and threshold єBP = єBP(λ, ρ). Further, let δ = δ(λ, ρ) be the
unique non-negative number such that r = (1 − δ)(1 − єBP), i.e., δ = 1−єBP−r

1−єBP . We
then say that (λ, ρ) achieves a fraction (1 − δ) of capacity. Equivalently, we say that
(λ, ρ) has amultiplicative gap δ. S

Unfortunately, as the next theorem shows, no �xed pair (λ, ρ) can have zero
gap. ¿e proof of this theorem is the topic of Problem 3.18.

Theorem 3.86 (Lower Bound on Gap). Let (λ, ρ) be a degree distribution pair of
design rate r, r > (0,1), and with average check-node degree ravg. ¿en

δ(λ, ρ) C rravg−1(1 − r)
1 + rravg−1(1 − r) .

¿e best we can therefore hope for is to construct a sequence of degree distribu-
tion pairs that achieve capacity.

Definition 3.87 (Capacity-Achieving Sequence of Degree Distributions).
We say that a sequence �(λ(N), ρ(N))�NC1 achieves capacity on the BEC(є) if

lim
N�ª

r(λ(N), ρ(N)) = 1 − є, and
lim
N�ª

δ(λ(N), ρ(N)) = 0.(3.88)

Note that (3.88) implies that єBP(λ(N), ρ(N)) converges to є. S
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If you are mainly interested in how in practice we can �nd degree distributions
that allow reliable transmission close to capacity you can fast forward to Section 3.18.
In this section we want to prove that capacity-achieving degree distributions exist.
¿is is best done by explicitly exhibiting an example.

Example 3.89 (Check-Concentrated Degree Distribution). For α > (0,1) so
that 1~α > N, choose

λ̂α(x) = 1 − (1 − x)α =
ª

Q
i=1
�α
i
�(−1)i−1xi, and

ρα(x) = x
1
α .

Recall that for α > R and i > N, �αi�(−1)i−1 is de�ned as

�α
i
�(−1)i−1 = α(α − 1) . . .(α − i + 1)

i!
(−1)i−1 = α

i
(1 − α

i − 1
)� (1 − α).

Since α > (0,1), all coe�cients of the expansion of λ̂α(x) are non-negative.
Note that λ̂α(x) and ρα(x) are perfectly matched, i.e.,

(3.90) λ̂α(1 − ρα(1 − x)) = x, ∀x > [0,1).
Unfortunately we cannot use (λ̂α(x), ρα(x)) directly since this pair has an associ-
ated rate of 0. We will therefore have to modify it. Let λ̂(N)α (x) denote the function
consisting of the �rst N terms of the Taylor series expansion of λ̂α(x) (up to and
including the term xN−1). De�ne the normalized function λ(N)α (x) = λ̂(N)α (x)

λ̂(N)α (1) .
As function of N and α, the rate can be expressed as (see (3.19))

r(α,N) = 1 − R
1
0 ρα(x)dx
R 1
0 λ
(N)
α (x)dx

= 1 − λ̂(N)α (1) R
1
0 ρα(x)dx
R 1
0 λ̂
(N)
α (x)dx

.

From the non-negativeness of the coe�cients of the expansion of λ̂α(x) it follows
that for x > [0,1],

λ̂α(x) C λ̂(N)α (x),
so that from (3.90)

x = λ̂α(1 − ρα(1 − x)) C λ̂(N)α (1)λ(N)α (1 − ρα(1 − x)).
It follows that єBP(α,N) C λ̂(N)α (1). ¿erefore,

δ(α,N) = 1 − єBP(α,N) − r(α,N)
1 − єBP(α,N) B

λ̂(N)α (1)
1 − λ̂(N)α (1)

<@@@@>
R 1
0 ρα(x)dx
R 1
0 λ̂
(N)
α (x)dx

− 1
=AAAA?
.
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Our strategy is now clear.We choose α = α(N) in such away that r(α,N) converges
to the design rate and that the gap δ(α,N) converges to zero. To �nd the proper
choice for α(n) we need some preliminary estimates.

We have

S
1

0
λ̂(N)α (x)dx =

N−1
Q
i=1
�α
i
�(−1)

i−1

i + 1
=

α − �αN�(−1)N−1
α + 1

,

λ̂(N)α (1) =
N−1
Q
i=1
�α
i
�(−1)i−1 = 1 − N

α
�α
N
�(−1)N−1,

and

S
1

0
ρα(x)dx = α

1 + α
.

To verify the two above summations �rst check the correctness for N = 2 and then
apply induction. It follows that

r(α,N) =
N
α �αN�(−1)N−1(1 − 1~N)
1 − 1

N
N
α �αN�(−1)N−1

, δ(α,N) B 1 − N
α �αN�(−1)N−1

N − N
α �αN�(−1)N−1

.

In order to proceed we require an estimate of Nα �αN�(−1)N−1. For α > (0,1)we have

ln�N
α
�α
N
�(−1)N−1� = ln(1 − α) +

N−1
Q
i=2

ln
i − α
i
= ln(1 − α) +G(α) −G(0),

where we de�ne G(x) = PN−1
i=2 ln(i − x) .Now, assuming x > (0,1), we have

G′(0) = −
N−1
Q
i=2

1
i
= −H(N − 1) + 1, and − π

2

6
B −

N−1
Q
i=2

1
(i − x)2 B G

′′(x) B 0,

where we have made use of the fact thatPªi=1 i−2 = π2
6 . Using the Taylor series with

remainder to bound G(α) −G(0) we therefore get for α > (0,1)

−α(H(N − 1) − 1) − π
2

12
α2 B G(α) −G(0) B −α(H(N − 1) − 1).

Since ln(1 − α) = −α − 1
2α

2
− . . . , we write

ln�N
α
�α
N
�(−1)N−1� = −αH(N − 1) − c(N,α)α2,

where, for α < 1
2 , we have 0 B c(N,α) B 5.
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With all these estimates out of our way we are ready for our choice of α(n): pick
α = α(N) so that Nα �αN�(−1)N−1 = 1 − є.¿e previous calculation shows that this

is possible and that α � ln 1
1−є

H(N−1) �
ln 1

1−є
lnN (from the last expression we see that α is

indeed in [0, 12) for N su�ciently large as required in the previous derivation). It
follows that

r(N) = 1 − є+O (1~N) , δ(N) B 1 − (1 − є)
N − (1 − є) = O (1~N) . n

Example 3.91 (Heavy-Tail Poisson Distribution). ¿ere are in�nitely many
other capacity-achieving degree distributions. We get a second example if we start
with

λ̂α(x) = − 1α ln(1 − x) = 1
α

ª

Q
i=1

xi

i
, and

ρα(x) = eα(x−1) = e−α
ª

Q
i=0

αixi

i!
,

and proceed along the same lines.¿e details of the calculations for this case are le 
to Problem 3.19. n

§3.16. Gallager’s Lower Bound on Density
We have seen in the previous section two sequences of capacity-achieving degree
distribution pairs, and in fact there is no lack of other examples. Faced with such
ample choice, which one is “best”? ¿ere are many possible and reasonable crite-
ria upon which we could decide. As example, we could investigate how quickly the
�nite-length behavior approaches the asymptotic limit for the various choices. ¿is
is done in Sections 3.22 and 3.23. Another important point of view is to introduce
the notion of complexity. As we discussed in Section 3.5, on the BEC the decod-
ing complexity is in one-to-one correspondence with the number of edges in the
graph, since we use each edge at most once. How sparse can a graph be to achieve a
fraction (1 − δ) of capacity? In the setting of LDPC ensembles under BP decoding
¿eorem 3.86 gives the answer. We will now see a more general information theo-
retic boundwhich applies to any (sequence of) code(s) and any decoding algorithm.

Definition 3.92 (Density of Parity-CheckMatrices). Let C be a binary linear
code of length n and rate r and let H be a parity-check matrix of C. ¿e density of
H, denote it by ∆(H), is de�ned as

S∆(H) = 1
nr
S�(i, j) � Hi,j x 0�S.
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Example 3.93 (Density of Standard LDPC Ensemble). ¿e density of a degree
distribution pair (Λ,P) ; (n,L,R) ; (n, λ, ρ) is equal to

Λ′(1) 1
nr
= P′(1) 1

nr
= L′(1)1

r
= R′(1)1 − r

r
=

1
R λ

1
r
=

1
R ρ

1 − r
r

.

¿is density is equal to the decoding complexity of the BP decoder, when measured
per information bit. n

Theorem 3.94 (LowerBoundonDensity). Let �CN� be a sequence of binary lin-
ear codes in which codewords are used with uniform probability and which achieve
a fraction (1−δ) of the capacity of the BEC(є) with vanishing bit erasure probability.
Let �∆N� be the corresponding sequence of densities of their parity-checkmatrices.
¿en,

(3.95) lim inf
N�ª

∆N A
K1 + K2 ln 1

δ
1 − δ

,

where

K1 =
є ln � є

1−є�
(1 − є) ln � 1

1−є�
, K2 =

є
(1 − є) ln � 1

1−є�
.

Proof. Consider a binary linear code C[n,nr]. Let X be chosen uniformly at ran-
dom fromC[n,nr] and letY be the receivedword a er transmission over a BEC(є).
Let E denote the random index set of erasure positions. ¿ere is a one-to-one cor-
respondence between Y and (YĒ ,E) as well as between (X,E) and (XE ,XĒ ,E).
Further, XĒ = YĒ . We have

H(XSY) = H(X SYĒ ,E) = H(X,E SYĒ ,E)
= H(XE ,XĒ ,E SYĒ ,E) = H(XE ,XĒ SYĒ ,E) = H(XE SYĒ ,E)
= Q
yĒ ,E

H(XE SYĒ = yĒ ,E = E)p(YĒ = yĒ ,E = E)

= Q
yĒ ,E
(SES − rank(HE))p(YĒ = yĒ ,E = E)

=Q
E
(SES − rank(HE))p(E = E) = nє−Q

E
rank(HE)p(E = E).

¿e rank ofHE is upper bounded by the number of non-zero rows ofHE.¿is num-
ber in turn is equal to the number of parity-check nodes which involve erased bits.
¿erefore, PE rank(HE)p(E = E) is upper bounded by the average (where the av-
erage is over the channel realization) number of parity-checks which involve erased
bits. Let P(x) denote the check node degree distribution from a node perspective
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(such a degree distribution is de�ned regardless whether the code is low-density or
not) and let R(x) denote the normalized such quantity, R(x)n(1 − r) = P(x). If
a parity-check node is of degree i then the probability that it involves at least one
erased bit is equal to 1− (1− є)i, and therefore the average number of parity-check
nodes which involve at least one erased bit is equal to

Q
i
Pi(1 − (1 − є)i) = n(1 − r) − P(1 − є) B n(1 − r)�1 − (1 − є)R′(1)�.

In the last step we have used Jensens’ inequality (1.61). We therefore have

H(XSY)
n

C є− (1 − r)�1 − (1 − є)R′(1)�.(3.96)

Assume now that we have a sequence of codes �CN�, where CN has length nN , and
that this sequence has asymptotic gap δ. ¿is means that δN

N�ª
Ð� δ, and therefore

rN
N�ª
Ð� (1 − δ)(1 − є). Apply the lim inf to both sides of (3.96). From Fano’s in-

equality (1.49) we know that 1
nN
H(X SY) must converge to zero for the bit erasure

probability to tend to zero. We therefore have

lim inf
N�ª

(1 − (1 − δN)(1 − є))(1 − (1 − є)R′N(1)) C є.

Solving this equation for R′N(1) we get

lim inf
N�ª

R′N(1) C
ln �1 + є

δN(1−є)�
ln � 1

1−є�
A

ln � є
δN(1−є)�

ln � 1
1−є�

.

To �nish the proof observe that

lim inf
N�ª

∆N = lim inf
N�ª

R′N(1)
1 − rN
rN

= lim inf
N�ª

R′N(1)
1 − (1 − δN)(1 − є)
(1 − δN)(1 − є)

C lim inf
N�ª

R′N(1)
є

(1 − δN)(1 − є) A
ln � є

δ(1−є)�
ln � 1

1−є�
є

(1 − δ)(1 − є)

=

K1 + K2 ln 1
δ

1 − δ
.

§3.17. Optimally Sparse Degree Distribution Pairs
Surprisingly, check-concentrated degree distribution pairs are essentially optimal
with respect to a complexity versus performance trade-o�. More precisely, the next
theorem states that if we pickN and α for the check-concentrated ensemble carefully
then the trade-o� between gap δ and complexity ∆ is up to a small additive constant
the best possible. We skip the tedious proof.
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Theorem3.97 (OptimalityofCheck-ConcentratedDistribution). Consider
the check-concentrated ensembles introduced in Example 3.89 and transmission
over the BEC(є). Choose

N = max��1 − c(є)(1 − є)(1 − δ)
δ

� , �(1 − є)− 1
є �� , α =

ln 1
1−є

lnN
,

where c(є) = (1 − є) π
2
6 e(

π2
6 −γ)є and where γ is the Euler-Mascheroni constant,

γ � 0.5772. ¿is degree distribution pair achieves at least a fraction 1 − δ of the
channel capacity with vanishing bit erasure probability under BP decoding. Further,
the density ∆ is upper bounded by

∆ B
K1 + K2 log 1

δ + K(є,δ)
1 − δ

�1 + 1 − є
є

δ� B K1 + K2 log 1
δ

1 − δ
+ κ +O(δ),(3.98)

where K1 and K2 are the constants of ¿eorem 3.94,

K(є,δ) = є ln �1 +
1−є
є (δc(є) + (1 − c(є)))�
(1 − є) ln 1

1−є
,

and where κ = maxє>[0,1] K(є,0) � 0.5407. Comparing (3.98) with (3.95), we see
that, up to a small constant κ, right-concentrated degree distribution pairs are opti-
mally sparse.

From the above discussion one might get the impression that essentially no fur-
ther improvement is possible in terms of the performance-complexity trade-o�.¿is
is true within the current framework. But we will see in Chapter 7 that, by allow-
ingmore complicated graphical models (in particular by introducing so-called state
nodes), better trade-o�s can be achieved.

§3.18. Degree Distributions with Given Maximum Degree
In practice we are not only concerned with complexity (average degree) but also
with the maximum degree since large degrees imply slow convergence of the �nite-
length performance to the asymptotic threshold (see Section 3.22). A glance at¿e-
orem 3.97 shows that, although the average degree only grows like ln 1

δ , the max-
imum grows exponentially faster, namely like 1

δ . Assume therefore that we have a
given bound on themaximum variable node degree, call it lmax. Recall that a degree
distribution pair (λ, ρ) has a threshold of at least є if

єλ(1 − ρ(1 − x)) − x B 0, x > [0,1].
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Assume that we �x the check-node degree distribution ρ and de�ne the function

f(x, λ2,� , λlmax) = єλ(1 − ρ(1 − x)) − x = єQ
iC2
λi(1 − ρ(1 − x))i−1 − x.

¿e function f is linear in the variables λi, i = 2,� ,lmax (note that λ1 = 0), and
from r(λ, ρ) = 1 − R ρ~ R λ, we see that the rate is an increasing function in P λi~i
(for �xed ρ). ¿erefore, we can use the continuous linear program

(3.99) max
λ
�Q
iC2
λi~i S λi C 0;Q

iC2
λi = 1; f B 0; x > [0,1]�

to �nd the degree distribution λ which maximizes the rate for a given right-hand
side ρ and a given threshold є. In practice, we use a �nite program. We can avoid
numerical problems for x around zero caused by this discretization by incorporating
the stability condition λ2 B 1~(єρ′(1)) explicitly into the linear program.

If we exchange the roles of the variable and check nodes and let y denote the
fraction of the erased messages emitted at the check nodes, then an equivalent con-
dition is

1 − y− ρ(1 − єλ(y)) B 0, y > [0,1].
Proceeding in the same fashion as before, we see that we can optimize the check
degree distribution for a �xed variable degree distribution. In order to �nd a good
degree distribution pair (λ, ρ) we can proceed as follows. Start with a given degree
distribution pair and iterate between these two optimization problems. In practice
an even simpler procedure su�ces. It is conjectured that check-concentrated degree
distributions achieve optimal performance. In this case ρ(x) is completely speci�ed
by �xing the average check node degree ravg:

ρ(x) = r(r + 1 − ravg)
ravg

xr−1 +
ravg − r(r + 1 − ravg)

ravg
xr,

where r = 
ravg�. Now run the linear program (3.99) for various values of ravg until
the optimum solution has been found.

Example 3.100 (Comparison: Optimum versus Check-Concentrated). As-
sume that we choose lmax = 8 and r = 6, and that we want to obtain a design
rate of one-half. Following the above procedure we �nd the pair

λ(x) = 0.409x + 0.202x2 + 0.0768x3 + 0.1971x6 + 0.1151x7, ρ(x) = x5,

which yields a rate of r(λ, ρ) � 0.5004. ¿is degree distribution pair has a threshold
of єBP(λ, ρ) � 0.4810, which corresponds to a gap of δ � 0.0359.
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In comparison, a quick check shows that the check-concentrated degree distri-
bution pair with equal complexity and comparable rate has parameters α = 1

5 and
N = 13. We get

λ(x) = 0.416x + 0.166x2 + 0.1x3 + 0.07x4 + 0.053x5 + 0.042x6+
0.035x7 + 0.03x8 + 0.026x9 + 0.023x10 + 0.02x11 + 0.0183x12,

ρ(x) = x5.

¿e design rate is r(λ, ρ) � 0.499103 and the threshold is єBP(λ, ρ) � 0.480896 (it
is determined by the stability condition), so that δ � 0.0385306. ¿e second degree
distribution pair is slightly worse in all respects (higher maximum degree, smaller
rate, smaller threshold, higher fraction of degree-two edges). n

§3.19. Peeling Decoder and Order of Limits
Density evolution computes the limit

lim
ℓ�ª

lim
n�ª

ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ)],(3.101)

i.e., we determined the limiting performance of an ensemble under a �xed number
of iterations as the blocklength tends to in�nity and then let the number of iterations
tend to in�nity. What happens if the order of limits is exchanged, i.e., how does the
limit

lim
n�ª

lim
ℓ�ª

ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ)](3.102)

behave? ¿is limit corresponds to the more typical operation in practice: for each
�xed length the BP decoder continues until no further progress is achieved. We are
interested in the performance as the blocklength tends to in�nity. In Section 3.22 we
discuss the �nite-length analysis of LDPC ensembles under BP decoding. We will
see how we can compute the performance for a particular length (and an in�nite
number of iterations). ¿e following example shows the typical behavior.

Example 3.103 (Convergence to Threshold for LDPC �n,x2,x5�). Consider
the ensemble LDPC �n,x2,x5�. Figure 3.104 showsELDPC(n,x2,x5) [PBP

b (G,є, ℓ =ª)]
as a function of є for n = 2i, i = 6,� ,20. More precisely, we consider an expurgated
ensemble as discussed in Section 3.24. In the limit of large blocklengths, the bit era-
sure probability converges to zero for є < єBP � 0.4294 and to a non-zero constant
for values above the threshold. In particular, the threshold for the limit (3.102) is the
same as the threshold for the limit (3.101). n
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Figure 3.104: ELDPC(n,x2,x5) [PBP
b (G,є, ℓ =ª)] as a function of є for n = 2i, i =

6,� ,20. Also shown is the limit ELDPC(ª,x2,x5) [PBP
b (G,є, ℓ�ª)] which is dis-

cussed in Problem 3.17 (thick curve).

Motivated by this example, we will show that the thresholds corresponding to
the two limits are always the same. Assume this for the moment and consider its
consequence: it follows that the threshold is the same regardless of how the limit is
taken (sequentially or jointly) as long as both n and ℓ tend to in�nity. To see this, let
ℓ̃(n) be any increasing function in n so that limn�ª ℓ̃(n) =ª. ¿en, for any �xed
ℓ

lim
n�ª

ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ̃(n))] B lim

n�ª
ELDPC(n,λ,ρ)[PBP

b (G,є, ℓ)],

because the error probability is a decreasing function in ℓ. Since this is true for any
ℓ we can take the limit on the right to get

lim
n�ª

ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ̃(n))] B lim

ℓ�ª
lim
n�ª

ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ)].

On the other hand, using again the monotonicity with respect to ℓ, we have for a
�xed n

lim
ℓ�ª

ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ)] B ELDPC(n,λ,ρ)[PBP

b (G,є, ℓ̃(n))].

Taking the limit with respect to n we get

lim
n�ª

lim
ℓ�ª

ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ)] B lim

n�ª
ELDPC(n,λ,ρ)[PBP

b (G,є, ℓ̃(n))].

If we assume that

lim
n�ª

lim
ℓ�ª

ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ)] = lim

ℓ�ª
lim
n�ª

ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ)],
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then it follows from the above two inequalities that

lim
n�ª

ELDPC(n,λ,ρ)[PBP
b (G,є, ℓ̃(n))]

also has the same limit.
¿e key to the analysis is the so-called peeling decoder. ¿is decoder has iden-

tical performance to the message-passing decoder: if you take a sneak preview of
Section 3.22 you will see that the message-passing decoder gets stuck in the largest
“stopping set” which is contained in the set of erased bits. Such a stopping set is a
subset of the variable nodes together with its outgoing edges so that no check node
has induced degree one. From the description of the peeling decoder below you will
see that the peeling decoder gets stuck in exactly the same structure. ¿e perfor-
mance of the two decoders is therefore identical (assuming an in�nite number of
iterations).

Although the two decoders have identical performance, the computation rules
of the peeling decoder di�er from those of the message-passing one in two aspects:
(i) at the variable nodes we do not obey the message-passing principle but we re-
place the received value with the current estimate of the bit based on all incoming
messages and the receivedmessage; (ii) rather than updating all messages in parallel
we pick in each step one check node and update its outgoing messages as well as the
messages of its neighboring variable nodes.

In addition we can apply the following simpli�cations without changing the be-
havior of the algorithm: once a non-erasuremessage has been sent out along a check
node this check node has served its purpose and it no longer plays a role in the fu-
ture of the decoding.¿is is true since a check node sends out a non-erasedmessage
only if all but possibly one of its neighbors are known. ¿erefore, a er processing
this check node all its neighbors are known. It follows from this observation that
we can safely delete from the graph any such check node and all its attached edges.
In the same manner, each known variable node can send to its neighboring check
node its value and these values are accumulated at the check node. A er that we can
remove the known variable node and its outgoing edges from the graph. ¿is pro-
cedure gives rise to a sequence of residual graphs. Successful decoding is equivalent
to the condition that the sequence of residual graphs reaches the empty graph.

Example 3.105 (Peeling Decoder Applied to [7,4,3]Hamming Code). Rather
than giving a formal de�nition of the decoder, let us apply the peeling decoder to the
[7,4,3] Hamming code with received word (0, ?, ?,1,0, ?,0). ¿is is shown in Fig-
ure 3.106. ¿e top le -most picture shows the initial graph and the received word.
¿e following two pictures are part of the initialization: (i) known variable nodes
send their values along all outgoing edges; (ii) these values are accumulated at the
check nodes (black indicates an accumulated value of 1 and white an accumulated
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initial graph and received word initialization (i): forward

initialization (ii): accumulate and delete step 1.(i)

step 1.(ii) step 1.(iii)

a er step 2 a er step 3

x̂
0
?
0
1
?
?
0

x̂
0
?
0
1
?
?
0

0
?
0
1
?
?
0

0
?
0
1
?
1
0

0
?
0
1
?
1
0

0
?
0
1
?
1
0

0
?
0
1
0
1
0

0
1
0
1
0
1
0

Figure 3.106: Peeling decoder applied to the [7,4,3] Hamming code with the re-
ceived word y = (0, ?, ?,1,0, ?,0). ¿e vector x̂ indicates the current estimate of
the decoder of the transmitted codeword x. A er three decoding steps the peeling
decoder has successfully recovered the codeword.
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value of 0) and all known variable nodes and their connected edges are removed.
A er the initialization each decoding step consists of the following: (i) choose a
check node of residual-degree one uniformly at random and forward the accumu-
lated value to the connected variable nodewhose value is nowdetermined; (ii) delete
the chosen check node and its connected edge and forward the value of the newly
determined variable node to all its remaining neighbors (check nodes); (iii) accu-
mulate the forwarded values at the check nodes and delete the variable node and its
connected edges.

In our example there is at each step only a single check node of residual-degree
one. A er three decoding steps the residual graph is the empty graph – the decoder
has succeeded in determining the codeword. n

Wewill now see that if we apply the peeling decoder to elements of an ensemble
and if we increase the blocklength, then the sequence of residual graphs closely fol-
lows a “typical path.” We will describe this path, characterize the typical deviation
from it, and relate this path to standard density evolution. As we discussed above,
running the peeling decoder until it is stuck is equivalent to running the message-
passing decoder for an in�nite number of iterations. ¿erefore, if we can show that
the peeling decoder has a threshold equal to the threshold єBP computed via density
evolution, then we have in e�ect shown that the two limits (3.101) and (3.102) agree.

¿e proof of the following theorem is relegated to Section C.4.

Theorem 3.107 (Evolution of Residual Graph for Peeling Decoder). Con-
sider the performance of the ensemble LDPC (n,L,R) under the peeling decoder.
Assume that the normalized degree distributions L and R have degrees bounded by
lmax andrmax, respectively. Let tdenote time, t > N. Time starts at zero and increases
by one for every variable node which we peel o�. For a code G > LDPC (n,L,R) and
a channel realization E (set of erasures), let (L(G,E , t),R(G,E , t)) denote the resid-
ual degree distribution pair at time t, where the normalization of L(G,E , t) is with
respect to n and the normalization of R(G,E , t) is with respect to n(1 − r). Note
that (L(G,E , t),R(G,E , t)) is a point in Rlmax−1+rmax – there are lmax − 1 degrees
of freedom for L and there are rmax degrees of freedom for rmax. More precisely,
nLi(G,E , t) (n(1 − r)Ri(G,E , t)) denotes the number of variable (check) nodes of
degree i in the residual graph at time t. By connecting the points corresponding to
the residual degree distributions from the start of the decoding process until its end
we get the decoding path. ¿is path is a curve in Rlmax−1+rmax . ¿is decoding path is
a random variable depending on the graph and channel realization.

Consider L̃i(y) and R̃i(y) given by
L̃i (y) = єLiyi, i C 2,(3.108)
R̃0 (y) = 1 −Q

jC1
R̃j(y) ,
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R̃1 (y) = R′(1)єλ(y) [y− 1 + ρ (1 − єλ(y))] ,(3.109)

R̃i (y) = Q
jC2
Rj�ji� (єλ(y))

i (1 − єλ(y))j−i , i C 2.(3.110)

If we plot the curve corresponding to (L̃(y), R̃(y)) for y > [0,1] as a curve in
Rlmax−1+rmax we get the expected decoding path.

If є < єBP then with probability at least 1 − O(n1~6e−
»

nL′(1)
(lmaxrmax)3 ) the decoding

path of a speci�c instance has maximum L1-distance from the expected decoding
path atmostO(n−1~6) uniformly from the start of the process until the total number
of nodes in the residual graph has reached size ηn, where η is an arbitrary strictly
positive constant.

If є A єBP then with probability at least 1 − O(n1~6e−
»

nL′(1)
(lmaxrmax)3 ) the decoding

path of a speci�c instance has maximum L1-distance from the expected decoding
path at mostO(n−1~6) uniformly from the start of the process until the decoder gets
stuck.

Discussion: ¿e actual decoding path is parametrized by t and the expected
decoding path is parametrized by y. But the plots are parametric (neither t nor y
appear) and both paths are curves inRlmax−1+rmax . It is sometimes convenient to plot
the curves in a non-parametric form, as this is done in Figure 3.112. In this case it is
good to know the relationship between t and y: a er t steps the expected number
of remaining variable nodes is nє− t, since there are nє variable nodes remaining at
the start of the decoding process and we remove one at each step. From (3.108) we
know that the expected number of remaining variables is also equal to nPi L̃i (y) =
nєL(y). It follows that nє − t = nєL(y), which is equivalent to t = nє(1 − L(y)) or
y = L−1(1 − t

nє).

Example 3.111 (Evolution for (3,6)-Regular Ensemble). Assume that we ap-
ply the peeling decoder to the (3,6)-regular ensemble. What is the evolution of the
degree distribution of the residual graph? From the description of the algorithm, a
variable is either removed or it retains all of its edges. ¿erefore, all remaining vari-
able nodes are of degree 3 for our example. According to¿eorem 3.107, the fraction
of remaining variables (with respect to n) as a function of the parameter y is єy3.
Here, y = 1 corresponds to the beginning of the process just a er the initialization
step.

¿e degree distribution on the check-node side is more interesting. Consider
this degree distribution just a er the initial step. Each edge of a check node is con-
tained in the initial residual graph with probability є.¿ismeans that, e.g., the num-
ber of degree-one check nodes should bePjRj� j1�є1(1 − є)j−1. We can rewrite this
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as R′(1)єρ(1 − є), which agrees with the stated formula if we specialize it to y = 1.
Figure 3.112 shows the evolution of the residual degrees Rj(y), j= 0, . . . ,6. n

0.2 0.4 0.6 0.8

0.1
0.2
0.3

j= 1

j= 2
j= 3
j= 4

j= 5
j= 6

y0.0

Figure 3.112: Evolution of the residual degrees Rj(y), j = 0, . . . ,6, as a function of
the parameter y for the (3,6)-regular degree distribution.¿e channel parameter is
є = єBP � 0.4294. ¿e curve corresponding to degree-one nodes is shown as a thick
line.

From the stated expressions we can verify that the threshold under the peeling
decoder is identical to the threshold under BP decoding. Consider the term y −
1 + ρ (1 − єλ(y)) which appears within the square brackets in the expression for
R̃1 (y). We recognize this as the density evolution equation in disguise: if we choose
є < єBP, then this expression is strictly positive over the whole range, implying that
the fraction of degree-one nodes along the expected path stays strictly positive over
the whole decoding range. But if we choose є A єBP, then this fraction hits zero at
some critical point. At this point the algorithm stops.

§3.20. EXIT Function and MAP Performance
In Section 3.14, EXIT functions appear as a handy tool to visualize the decoding
process: from EXIT curves, such as the ones depicted in Figure 3.70, one can imme-
diately read o� the “bottlenecks” in the decoding process. Once these critical regions
have been identi�ed, the component codes can be changed appropriately to improve
the “matching” of the curves and, hence, the performance of the system.

¿ere is another, perhaps more surprising, application of EXIT functions: they
can be used to connect the performance of a code under BP decoding to that under
MAP decoding. To keep things simple we concentrate in the sequel on the regular
case but we write down the general expressions in those cases where it requires no
additional e�ort.

§3.20.1. Upper Bound on EXIT Function

Definition 3.113 (BP EXIT Function). LetX be chosen uniformly at random from
a linear code of length n and dimension k, call it C[n, k]. Let Y denote the received
word a er transmission over a BEC(є). Consider a �xed graphical representation of
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the code and a �xed schedule of the BP decoder. Let x̂BP,ℓi (Y�i) denote the extrinsic
estimate delivered by the BP decoder in the ℓ-th iteration. ¿e BP EXIT function is
de�ned as

hBP,ℓi (є) = P�x̂BP,ℓi (Y�i) =?�.
S

Discussion: Since the code might contain cycles, set Yi to be an erasure when
computing the extrinsic BP estimate of bit xi. ¿is ensures that this estimate is only
a function of Y�i.

Lemma 3.114 (EXIT versus BP EXIT Function).

hi(є) B hBP,ℓi (є).
Proof. We have

hi(є) = H(Xi S x̂i(Y�i))
(i)
B H(Xi S x̂BP,ℓi (Y�i))

(ii)
B P�x̂BP,ℓi (Y�i) =?� = hBP,ℓi (є).

Step (i) is a simple rephrasing of (the data processing inequality) (1.48). Consider
step (ii). We are given the BP estimate x̂BP,ℓi (Y�i) and the structure of the code and
we want to compute the entropy of Xi. If x̂BP,ℓi (Y�i) x? then the entropy is zero. On
the other hand, if x̂BP,ℓi (Y�i) =?, which happens with probability P�x̂BP,ℓi (Y�i) =?�,
then the entropy is at most 1.

It would seem that not much more can be said about the relationship of EXIT
function andBPEXIT function. But in the limit of large blocklengths, a fundamental
connection between these two quantities appears. ¿erefore, we turn our attention
to the MAP performance of long codes.

§3.20.2. Asymptotic BP and MAP EXIT Function

Definition 3.115 (EXIT Function of (λ, ρ)). ¿e EXIT function associated with
the degree distribution (λ, ρ) is de�ned as

h(є) = lim sup
n�ª

ELDPC(n,λ,ρ)� 1n
n
Q
i=1
hG,i(є)�,

where G denotes an element taken uniformly at random from LDPC (n, λ, ρ). S

Discussion: We used the lim sup instead of the ordinary limit. Towards the end
of this section we will have proved that, at least for the regular case, the ordinary
limit exists. If you prefer, simply ignore this technicality and think of the standard
limit.
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Definition 3.116 (BP EXIT Function of (λ, ρ) for the BEC(є)). ¿e BP EXIT
function associated with the degree distribution pair (λ, ρ) is de�ned as

hBP(є) = lim
ℓ�ª

lim
n�ª

ELDPC(n,λ,ρ)� 1n
n
Q
i=1
hBP,ℓG,i (є)�. S

Contrary to h(є), hBP(є) can be computed easily.
Lemma 3.117 (BP EXIT Function forRegular Ensembles). Consider the regular
degree distribution pair (λ(x) = xl−1, ρ(x) = xr−1). ¿en the BP EXIT function is
given in parametric form by

hBP(є) =
¢̈̈
¦̈̈
¤
(є,0), є > [0,єBP),
(є(x),L(1 − ρ(1 − x))), є > (єBP,1]� x > (xBP,1],

where є(x) = x
λ(1−ρ(1−x)) , and where x

BP denotes the location of the unique mini-
mum of є(x) in the range (0,1] and єBP = є(xBP).
Proof. Suppose that we �rst let the blocklength tend to in�nity and then let the
number of iterations grow. We know from Section 3.12 that in this case the erasure
probability emitted by the variable nodes, call it x, tends to a limit and that this limit
is a �xed point of the density evolution equation єλ(1 − ρ(1 − x)) = x. Solving this
�xed point equation for є, we get є(x) = x

λ(1−ρ(1−x)) , x > (0,1]. In words, for each
non-zero �xed point x of density evolution, there is a unique channel parameter є. If
at the �xed point the erasure probability emitted by the variable nodes is x, then the
extrinsic erasure probability of the decision equals L(1 − ρ(1 − x)). ¿is is also the
value of the BPEXIT function at this point.¿at є(x) has indeed a uniqueminimum
as claimed in the lemma and that this minimum determines the threshold єBP is the
topic of Problem 3.14.

Example 3.118 (BP EXIT Function). ¿e BP EXIT function hBP(є) for the (l =
3,r = 6)-regular case is shown on the le of Figure 3.119. By explicit computation
we see that the unique minimum of є(x) appears at xBP � 0.2605710 and, therefore,
єBP = є(xBP) � 0.429439814. As predicted by Lemma 3.117, hBP(є) is zero for є >
[0,єBP). At є = єBP it jumps to the value L(1 − ρ(1 − xBP)) � 0.472646. Finally, to
the right of єBP, both є(x) and L(1 − ρ(1 − x)) are increasing and continuous, and
so hBP(є) increases smoothly until it reaches one at є = 1. n

¿e integral under the curve (є(x),L(1−ρ(1−x))) appears frequently in what
follows. It is therefore handy to compute it once and for all and to give it a name.We
call this integral the trial entropy, a choice that will hopefully become clear a er we
have stated and proved¿eorem 3.121.
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Figure 3.119: Le : BP EXIT function hBP(є); Right: Corresponding EXIT function
h(є) constructed according to¿eorem 3.121.

Definition 3.120 (Trial Entropy). Consider a degree distribution pair (λ, ρ) and
de�ne є(x) = x

λ(1−ρ(1−x)) . ¿e associated trial entropy P(x) is de�ned as

P(x) = S
x

0
L(1 − ρ(1 − z))є′(z)dz

= є(x)L(1 − ρ(1 − x)) + L′(1)xρ(1 − x) − L
′(1)
R′(1)(1 − R(1 − x)),

where the second line follows from the �rst one by applying integration by parts
twice. In the case of (l,r)-regular degree distributions we get

P(x) = x + 1
r
(1 − x)r−1(l + l(r − 1)x − rx) − l

r
. S

Here is the punch line: the EXIT function can be constructed from the BP EXIT
function as shown on the right of Figure 3.119.¿is explains why we called P(x) the
trial entropy.

Theorem 3.121 (EXIT Function for Regular Degree Distributions). Con-
sider the (l,r)-regular degree distribution, let P(x) denote the associated trial en-
tropy, and de�ne є(x) = x~λ(1−ρ(1−x)). Let xMAP be the unique positive solution
of P(x) = 0 and de�ne єMAP

= є(xMAP). ¿en

h(є) =
¢̈̈
¦̈̈
¤
0, є > [0,єMAP),
hBP(є), є > (єMAP,1],

and for єMAP
B є B 1

lim
n�ª

EG[HG(X SY(є))~n] = S
є

0
h(є′)dє′ = P(x(є)),

where x(є) is the largest solution of the equation є(x) = є.
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Discussion: In words, the theorem states that limn�ªEG[HG(X SY(є))~n] ex-
ists and that the quantity єMAP de�ned above is the MAP threshold. In the limit of
in�nite blocklengths, the average conditional entropy converges to zero for є < єMAP

and it is non-zero for є A єMAP. Further, for є A єMAP, the EXIT function h(є) coin-
cides with the BP EXIT function hBP(є) and limn�ªEG[HG(X SY(є))~n] is equal
to the integral of h(є), which in turn is equal to P(x(є)).¿is is the reasonwe called
P the trial entropy.

Example 3.122 (EXIT Curve for (l = 3,r = 6)-Regular Ensemble). ¿e right
hand side of Figure 3.119 shows the application of¿eorem 3.121 to the (3,6)-regular
degree distribution. ¿e result is xMAP

� 0.432263 and єMAP
= є(xMAP) � 0.488151.

n

Proof of ¿eorem 3.121. We prove the theorem by establishing the following four
claims.

(i) h(є) = 0,є > [0,єMAP), (ii) h(є) B hBP(є),є > [0,1],
(iii)S

1

0
h(є)dє C r(λ, ρ), (iv)S

1

єMAP
hBP(є)dє = r(λ, ρ).

Let us �rst see how the theorem follows from these claims. From (i) we see that h(є)
is zero for є > [0,єMAP). Consider h(є) for є A єMAP. We have

S
1

єMAP
h(є)dє (i)= S

1

0
h(є)dє (iii)C r(λ, ρ) (iv)= S

1

єMAP
hBP(є)dє.

But since on the other hand h(є) (ii)
B hBP(є) for є > (єMAP,1], it must be true that

h(є) = hBP(є) for almost all є > (єMAP,1]. Since further h(є) is a monotone func-
tion and hBP(є) is continuous we have equality everywhere. From this argument we
know that r(λ, ρ) = R 1

0 h(є)dє. Using Lemma 3.27, which asserts that for regular
ensembles the actual rate converges to the design rate, we can rewrite this as

lim sup
n�ª

S
1

0
EG[hG(є)]dє = S

1

0
lim sup
n�ª

EG[hG(є)]dє Def. 3.115= S
1

0
h(є)dє.

In fact, we can conclude the more general equality

lim sup
n�ª

S
E

EG[hG(є)]dє = S
E
h(є)dє,

where E denotes any subset of [0,1]. ¿is is true since the le hand side is always
upper bounded by the right hand side (Fatou-Lebesgue). Since we have equality on
[0,1], we must have equality for all subsets E. ¿erefore,

lim sup
n�ª

S
є

0
EG[hG(є′)]є′ = S

є

0
h(є′)dє′ = r(λ, ρ) − S

1

є
h(є′)dє′.
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But conversely, we have

lim inf
n�ª S

є

0
EG[hG(є′)]є′ = lim inf

n�ª S
1

0
EG[hG(є′)]dє′ − lim sup

n�ª
S

1

є
EG[hG(є′)]dє′

= r(λ, ρ) − lim sup
n�ª

S
1

є
EG[hG(є′)]dє′

= r(λ, ρ) − S
1

є
h(є′)dє′.

Comparing the last two expressions we conclude that the limit exists and is given in
terms of the integral of h(є).¿at the latter integral is equal to P(x(є)) follows from
the de�nition of the trial entropy, the fact that P(xMAP) = 0, and that for x A xMAP,
h = hBP.

We prove the four claims in order and start with (i), which is the most di�cult
one. Let є denote the channel parameter and let x denote the corresponding �xed
point of density evolution, i.e., the largest solution of the equation єλ(1−ρ(1−x)) =
x. Further, de�ne y = 1 − ρ(1 − x). Assume we use the peeling decoder discussed
in Section 3.19. At the �xed point the expected degree distribution of the residual
graph, call it (L̃(z), R̃(z)), has the form

L̃(z) = L(zy)
L(y) ,(3.123)

R̃(z) = R(1 − x + zx) − R(1 − x) − zxR
′(1 − x)

1 − R(1 − x) − xR′(1 − x) .(3.124)

First, let us show that at є = єMAP, r(L̃, R̃) = 0, i.e., the design rate of the residual en-
semble is zero.¿ismeans that, for this parameter, the residual graph has in expecta-
tion the same number of variable nodes as check nodes.Write r(L̃, R̃) = 1− L̃′(1)R̃′(1) = 0
in the form R̃′(1) = L̃′(1). If we express the latter condition explicitly using the
de�nitions of L̃ and R̃ shown below as well as the mentioned relationships be-
tween є, x and y, we �nd a er a few steps of calculus the equivalent condition
P(x) = 0 (where P(x) is the trial entropy of De�nition 3.120). Now note that
q(x) = P(1 − x) = (rl − r − l)xr − r(l − 1)xr−1 + rx − (r − l) has three sign
changes and therefore by Descarte’s rule of signs (see¿eorem 1.52) the polynomial
equation q(x) = 0 has either one or three non-negative real solutions. If l A 2, it is
easy to check that q(1) = q′(1) = 0, i.e., q(x) has a double root at x = 0, and since
q(0) = r − l A 0, q′′(1) = −(l − 2)(r − 1)r < 0 and limx�ª q(x) = −ª, there
must be exactly one root of q(x) for x > (0,1) and so exactly one root of P(x) for
x > (0,1). If l = 2, then q(x) has a triple root at x = 1 and єMAP

B
1

r−1 .
It remains to show that the actual rate indeed is zero, i.e., that (up to a sublinear

number) all the check node equations are linearly independent with high probabil-
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ity.¿iswill settle the claim since this implies that in the limit of in�nite blocklengths
the normalized (by n) conditional entropy is zero. We use the technique introduced
in Lemma 3.22 and show that

Ψ(u) = log�1
2
(1 + ul)1−l

r

M
i=2
((1 + ul−1)i + (1 − ul−1)i)R̃i� B 0,(3.125)

for u > [0,1], where we have equality only at u = 0 and u = 1. To show that this
inequality indeed holds does not require any sophisticated math but the proof is
lengthy. We therefore relegate it to Problem 3.32.

Let us prove (ii). Using the upper bound discussed in Lemma 3.114, we know
that for any G > LDPC (n, λ, ρ) and ℓ > N

1
n

n
Q
i=1
hG,i(є) B 1

n

n
Q
i=1
hBP,ℓG,i (є).

If we take �rst the expectation over the elements of the ensemble, then the lim sup
on both sides with respect to n, and �nally the limit ℓ�ª, we get the desired result.

Consider (iii). By (the Area) ¿eorem 3.82 we have for any G > LDPC (n, λ, ρ)

r(G) = S
1

0

1
n

n
Q
i=1
hG,i(є)dє.

If we take the expectation over the elements of the ensemble and the limit as n tends
to in�nity, then by Lemma 3.27 the le hand side converges to the design rate r(λ, ρ).
¿erefore, taking into account that the integrand is non-negative and bounded (by
the value 1) we have

r(λ, ρ) = lim
n�ª

E�S
1

0

1
n

n
Q
i=1
hG,i(є)dє�(Lemma 3.27)

= lim
n�ªS

1

0
E� 1
n

n
Q
i=1
hG,i(є)�dє(Fubini)

B S
1

0
lim sup
n�ª

E� 1
n

n
Q
i=1
hG,i(є)�dє(Fatou-Lebesgue)

= S
1

0
h(є)dє.(De�nition 3.115)

To see (iv) let us determine that number єMAP so that r(λ, ρ) = R 1
єMAP hBP(є)dє.

We see from Lemma 3.117 and De�nition 3.120 that

S
1

єMAP
hBP(є)dє = P(1) − P(xMAP) = P(1),
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where the last step follows since we have already seen that P(xMAP) = 0. If we spe-
cialize the expression P(x) for the regular case given in De�nition 3.120 we readily
see that P(1) = r(λ, ρ).

§3.20.3. Maxwell Construction

It is surprising, that (at least in the regular case) the MAP performance can be de-
rived directly from the performance of the BP decoder. So far this connection is seen
through a sequence of lemmas. Let us give a more direct operational interpretation
of this connection. ¿e central character in this section is the extended BP EXIT
curve.

Definition 3.126 (Extended BP EXIT Curve). For a given a degree distribution
pair (λ, ρ) de�ne є(x) = x~λ(1 − ρ(1 − x)). ¿en the extended BP (EBP) EXIT
curve is de�ned as

hEBP = (є(x),L(1 − ρ(1 − x))), x > [0,1]. S

We know from ¿eorem 3.121 that for regular ensembles and x A xBP, hBP =
hEBP. But hEBP also contains a second “spurious” branch (x < xBP) which corre-
sponds to unstable �xed points of density evolution.

Example 3.127 (EBP EXIT Curve for (l = 3,r = 6)-Regular Ensemble). ¿e
EBP EXIT curve is shown in Figure 3.128. For small values of x, the EBP curve goes
“outside the box.” ¿is is a consequence of λ′(0)ρ′(1) = 0 < 1: for small values of
x we have єλ(1 − ρ(1 − x)) = єλ′(0)ρ′(1)x +O(x2) = O(x2). ¿erefore, є(x) x�0

�

1~(λ′(0)ρ′(1)) =ª. But in general, even for ensembles for which λ′(0)ρ′(1) A 1,
part of the EBP curvemight have “є” coordinates larger than one. One such example
is discussed in Problem 3.38. n

¿eEBPEXIT curve has its own area theorem.Apriori, this area theoremhas no
connection to (the Area)¿eorem 3.82 – a er all, the EBP EXIT curve is de�ned in
terms of the (in general) suboptimal BP decoder, whereas the EXIT curve to which
¿eorem 3.82 applies concerns optimal (MAP) decoding. ¿at there is nevertheless
a connection between the two is discussed in Problem 3.82.

Lemma 3.129 (Area Theorem for EBP EXIT Curve). Assume that we are given a
degree distribution pair (λ, ρ) of design rate r. ¿en the area under the EBP EXIT
curve satis�es

S
1

0
hEBP(x)dє(x) = r(λ, ρ).
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Figure 3.128: Le : EBP EXIT curve of the (l = 3,r = 6)-regular ensemble. Note
that the curve goes “outside the box” and tends to in�nity. Right: According to
Lemma 3.129 the gray area is equal to 1 − r(l,r) = l

r
=

1
2 .

Proof. According to De�nitions 3.120 and 3.126 we have R 1
0 h

EBP(x)dє(x) = P(1) =
r(λ, ρ), where the last step follows from a direct computationwhichwe have already
discussed in the proof of ¿eorem 3.121.

Example 3.130 (Area of EBP EXIT Curve for (l = 3,r = 6)-Regular Ensem-
ble). ¿e right hand picture of Figure 3.128 shows the area of the EBP EXIT curve
for this case. Since part of the EPB EXIT curve lies outside the unit box it is slightly
more convenient to regard the complement of this area which is shown in gray. As
predicted by Lemma 3.129, the gray area is equal to 1 − r(l,r) = l

r
=

1
2 . n

Let us now combine Lemma 3.129 (the area theorem of the EBP EXIT curve)
with ¿eorem 3.121 (which describes the EXIT function.) ¿is combination gives
rise to the Maxwell construction. Rather than giving a formal de�nition, let us ex-
plain this construction by means of an example.

Example 3.131 (Maxwell Construction for (l = 3,r = 6)-Regular Ensem-
ble). ¿eMaxwell construction is depicted in the le picture of Figure 3.132. Con-
sider the EBP EXIT curve associated with the degree distribution. Take a vertical
line and adjust its position in such a way that the area which is to the le of this
line and bounded to the le by the EBP EXIT curve is equal to the area which is to
the right of this line and bounded above by the EBP EXIT curve. ¿ese two areas
are shown in dark gray in the le picture. ¿e claim is that the unique such loca-
tion of the vertical line is at є = єMAP. In fact, some thought shows that this is a
straightforward consequence of ¿eorem 3.121 and Lemma 3.129.

Instead of looking at the balance of the two dark gray areas shown in the le 
picture we can consider the balance of the two dark gray areas shown in the middle
and the right picture. ¿ese two areas di�er only by a constant from the previous

Preliminary version – October 18, 2007



132 binary erasure channel

such areas. In the next section we give an operational interpretation of the latter two
areas in terms of the so-calledMaxwell decoder. n

0.20.40.60.8

0.2
0.4
0.6
0.8
1.0

0.0 є

єM
A
P

0.20.40.60.8

0.2
0.4
0.6
0.8
1.0

0.0 є 0.20.40.60.8

0.2
0.4
0.6
0.8
1.0

0.0 є

Figure 3.132: Le : Because of ¿eorem 3.121 and Lemma 3.129, at the MAP thresh-
old єMAP the two dark gray areas are in balance. Middle: ¿e dark gray area in the
middle picture is proportional to the total number of variables which theMdecoder
introduces. Right:¿e dark gray area in the right picture is proportional to the total
number of equations which are produced during the decoding process and which
are used to resolve variables.

§3.21. Maxwell Decoder
Let us de�ne the Maxwell (M) decoder: Given the received word which was trans-
mitted over the BEC(є), the M decoder proceeds like the standard peeling decoder
described in Section 3.19. At each time step a parity-check equation involving a sin-
gle undetermined variable is chosen and used to determine the value of the variable.
¿is value is substituted in any parity-check equation involving the same variable.
If at any time the peeling decoder gets stuck in a non-empty stopping set, a posi-
tion i > [n] is chosen uniformly at random from the set of yet undetermined bits
and a binary (symbolic) variable vi representing the value of bit i is associated with
this position. In what follows, the decoder proceeds as if position i was known and
whenever the value of bit i is called for it is referred to as vi. ¿is means that mes-
sages consist not only of numbers 0 or 1 but in general contain (combinations of)
symbolic variables vi. In other words, the messages are really equations which state
how somequantities can be expressed in terms of other quantities. It can happen that
during the decoding process of the peeling decoder a yet undetermined variable is
connected to several degree-one nodes. It will then receive a message describing its
value from each of these connected degree-one check nodes. Of course, all these
messages describe the same value (recall that over the BEC, no errors occur).¿ere-
fore, if and only if at least one of these messages contains a symbolic variable, then
the condition that all these messages describe the same value gives rise to linear
equations which have to be ful�lled. Whenever this happens, the decoder resolves
this set of equations with respect to some of the previously introduced variables vi
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and eliminates those resolved variables in the whole system. ¿e decoding process
�nishes once the residual graph is empty. By de�nition of the process, the decoder
always terminates.

At this point there are two possibilities. Either all introduced variables �vi�i>I ,
I b [n], were resolved at some later stage of the decoding process (a special case
of this being that no such variables ever had to be introduced). In this case each bit
has an associated value (either 0 or 1) and this is the only solution compatible with
the received information). In other words, the decoded word is the MAP estimate.
¿e other possibility is that there are some undetermined variables �vi�i>I remain-
ing. In this case each variable node either has already a speci�c value (0 or 1) or
by de�nition of the decoder can be expressed as linear combination of the variables
�vi�i>I . In such a case each realization (choice) of �vi�i>I > �0,1�SIS gives rise to
a valid codeword and all codewords compatible with the received information are
the result of a particular such choice. In other words, we have accomplished a com-
plete list decoding, so that SI S equals the conditional entropy H(X SY). All this is
probably best understood by an example.

Example 3.133 (M Decoder Applied to (l = 3,r = 6) Code). Figure 3.134 shows
the workings of the M decoder applied to a simple code of length n = 30. Assume
that the all-zero codeword has been transmitted. In the initial decoding step the re-
ceived (i.e., known and equal to 0) bits are removed from the bipartite graph. ¿e
remaining graph is shown in (i). ¿e �rst phase is equivalent to the standard peel-
ing algorithm: in the �rst three steps, the decoder determines the bits 1 (from check
node 1), 10 (from check node 5), and 11 (from check node 8). At this point the peel-
ing decoder is stuck in the constellation shown in (iv). ¿e second phase is distinct
to the M decoder: the decoder assigns the variable v2 to the (randomly chosen) bit
2, which is now considered to be known. ¿e decoder then proceeds again as the
standard peeling algorithm. Any time it gets stuck, it assigns a new variable vi to
a yet undetermined and randomly chosen position i. ¿is process continues until
some of the previously introduced variables can be eliminated. E.g., consider step
(ix): the variable node at position 30 receives the messages v6 + v12 as well as the
message v12. ¿is means that the decoder has deduced from the received word that
the only compatible codewords are the ones for which the value of bit 30 is equal
to the value of bit 12 and also equal to the sum of the values of bit 6 and bit 12.
¿e decoder can now deduce from this that v6 = 0, i.e., the previously introduced
variable v6 is eliminated from the system. Phases in which new variables are intro-
duced, phases during which some previously introduced variables are resolved, and
regular BP decoding phases might alternate. Decoding is successful (in the sense
that a MAP decoder would have succeeded) if at the end of the decoding process,
all introduced variables have been resolved. ¿is is the case for the shown example.
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1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(i) Decoding bit 1 from check 1
10

2 3 4 5 6 7 8 9 10 11 12 13 14 15

(ii) Decoding bit 10 from check 5

11

2 3 4 6 7 8 9 10 11 12 13 14 15

(iii) Decoding bit 11 from check 8
2

2 3 4 6 7 9 10 11 12 13 14 15

(iv) Introducing variable v2

6

2 3 4 6 7 9 10 11 12 13 14 15

(v) Introducing variable v6

v2 v2 v2

28

2 3 4 6 7 9 10 11 12 13 14 15

(vi) Decoding bit 28 (v2 + v6) from check 6

v6 v2
v2+v6
´¹¹¹¹¸¹¹¹¶ v2 v6

19

2 3 4 7 9 10 11 12 13 14 15

(vii) Decoding bit 19 (v6) from check 14

v2+v6±v6 v2
v2+v6± v2 v6

12

2 3 4 7 9 10 11 12 13 15

(viii) Introducing variable v12

v2+v6±v6 v2
v2+v6± v6 v2

30

2 3 4 7 9 10 11 12 13 15

(ix) Decoding bit 30 (v6 + v12 = v12)
from checks 11 and 15Ð� v6 = 0

v2+v6±
v6+v12²

v2
v2+v6±

v6+v12²v2 v12

24

2 3 4 7 9 10 12 13

(x) Decoding bit 24 (v12) from check 3

v2 v12 v2 v2 v12

23

2 4 7 9 10 12 13

(xi) Decoding bit 23 (v2 + v12)
from check 4

v2
v2+v12²

v2+v12²v12 v2

21

2 7 9 10 12 13

(xii) Decoding bit 21 (v2 + v12) from check 7

v2
v2+v12²

v2+v12²v2 v2

29

2 9 10 12 13

(xiii) Decoding bit 29 (v12 = v2 + v12)
from checks 2 and 9Ð� v2 = 0

v12

v2+v12²v2 v12

26

10 12 13

(xiv) Decoding bit 26 (v12 = 0)
from checks 10, 12, and 13Ð� v12 = 0

0 v12 v12

Figure 3.134: M decoder applied to a (l = 3,r = 6)-regular code of length n = 30.
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n

¿e following lemma, whose proof we skip, explains why at the MAP thresh-
old the two dark gray areas are in balance. In short, the area on the le is propor-
tional to the total number of variables which the decoder introduces and the area on
the right is proportional to the total number of equations which are generated and
which are used to resolve those variables. Further, as long as the number of generated
equations is no larger than the number of introduced variables then these equations
are linearly independent with high probability. ¿erefore, when these two areas are
equal then the number of unresolved variables at the end of the decoding process is
(essentially) zero, which means that MAP decoding is possible.

Lemma 3.135 (Asymptotic Number of Unresolved Variables). Consider the
(l,r)-regular degree distribution pair. Let є(x) = x~λ(1 − ρ(1 − x)) and let P(x)
denote the trial entropy of De�nition 3.120.

LetGbe chosenuniformly at random fromLDPC �n, λ(x) = xl−1, ρ(x) = xr−1�.
Assume that transmission takes place over the BEC(є) where є C єMAP and that we
apply the M decoder. Let S(G, ℓ) denote the number of variables nodes in the resid-
ual graph a er the ℓ-th decoding step and let V(G, ℓ) denote the number of unre-
solved variables �vi�i>I at this point, i.e., V(G, ℓ) = SI S. ¿en, as n tends to in�nity,
(s(x),v(x)) = limn�ª(EG[S(G, 
xn�)~n], EG[V(G, 
nx�)~n]) exists and is given
by

s(x) = є(x)hEBP(x), v(x) = P(x̄) − P(x) + (єBP − є(x))hEBP(x)1�xBxBP�,

where x̄ is the largest real solution of є = є(x̄). Further, the individual instances
(S(G, 
zn�)~n,V(G, 
nz�)~n) concentrate around this asymptotic limit.
Example 3.136 (Unresolved Variables for (l = 3,r = 6)-Ensemble). Fig-
ure 3.137 compares the evolution of the number of unresolved variables as a function
of the size as predicted by Lemma 3.135 with empirical samples.We see a good agree-
ment of the predicted curves with the empirical samples, even for the case є = 0.46
for which the lemma is not guaranteed to apply (since 0.46 < єMAP). n

§3.22. Exact Finite-Length Analysis
¿e density evolution equations give a precise and simple characterization of the
asymptotic (in the blocklength) performance under BP decoding. Nevertheless, this
approach has several shortcomings. ¿e concentration of the individual perfor-
mance around the ensemble average is exponential in the blocklength but the con-
vergence of the ensemble performance to the asymptotic limit can be as slow as
O(1~n). ¿erefore, for moderate blocklengths the performance predicted by the
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Figure 3.137: Comparison of the number of unresolved variables for the Maxwell
decoder applied to the LDPC �n,xl−1,xr−1� ensembles as predicted by Lemma 3.135
with samples for n = 10000.¿e asymptotic curves are shown as solid lines, whereas
the sample values are printed as dashed lines. ¿e parameters are є = 0.50 (le ),
є = єMAP

� 0.48815 (middle), and є = 0.46 (right). ¿e parameter є = 0.46 is not
covered by Lemma 3.135. Nevertheless, up to the point where the predicted curve
dips below zero there is a good experimental agreement.

density evolution equations might deviate signi�cantly from the actual behavior.
¿is problem is particularly pronounced when we are interested in the construc-
tion of moderately long ensembles and impose stringent conditions on the required
error probabilities. In these cases the �nite-length e�ects cannot be ignored.

§3.22.1. Stopping Sets

We see how a �nite-length analysis for the BEC can be accomplished by studying
how the BP decoder fails. ¿e key objects for the analysis are the so-called stopping
sets (ss).

Definition 3.138 (Stopping Sets). A stopping set (ss) S is a subset of V , the set of
variable nodes, such that all neighbors ofS , i.e., all check nodeswhich are connected
to S , are connected to S at least twice. ¿e support set of any codeword is a ss and,
in particular, so is the empty set. S

Example 3.139. Consider the Tanner graph shown in Figure 3.141. ¿e subset S =
�7,11,16� is a ss – the set of check nodes connected to S is �1,2,3,6�, and each of
these nodes is connected to S at least twice. Note that this subset does not form the
support set of a codeword – check node 2 has three incoming connections. n

¿e basic structural properties of ss and their operational signi�cance is sum-
marized in the following lemma.

Lemma 3.140 (Basic Properties of Stopping Sets).

1. Let S1 and S2 be two ss. ¿en S1 8 S2 is a ss.

2. Each subset of V contains a maximum ss (which might be the empty set).
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3. Let G be a binary linear code. Assume that we use G to transmit over the BEC
and that we employ a BP decoder until either the codeword has been recov-
ered or until the decoder fails to progress further. Let E denote the subset ofV
which is erased by the channel. ¿en the set of erasures which remains when
the decoder stops is equal to the maximum ss contained in E .

Proof. To see the �rst claim note that if c is a neighbor of S1 8 S2 then it must be
a neighbor of at least one of S1 or S2. Without loss of generality assume that c is a
neighbor of S1. Since S1 is a ss, c has at least two connections to S1 and therefore
at least two connections to S1 8 S2. Each subset of V thus contains a maximum ss
– the union of all ss contained in V (which might be the empty set). It remains to
verify the third claim. Let S be a ss contained in E . We claim that the BP decoder
cannot determine the variable nodes contained in S . ¿is is true, since even if all
other bits were known, every neighbor of S has at least two connections to the set
S and so all messages to S are erasure messages. It follows that the decoder cannot
determine the variables contained in the maximum ss contained in E . Conversely,
if the decoder terminates at a set S , then all messages entering this subset must be
erasure messages, which happens only if all neighbors of S have at least two con-
nections to S . In other words, S must be a ss and, since no erasure contained in a
ss can be determined by the BP decoder, it must be the maximum such ss.

¿e name stopping set (ss) stems from the operational signi�cance outlined in
the last property: these are the sets in which the BP decoder gets stuck. Although
codewords give rise to ss, not all ss correspond to codewords.¿is gives a character-
ization of the suboptimality of the BP decoder: aMAP decoder fails if and only if the
set of erasures include the support set of a codeword – the BP decoder on the other
hand gets trapped by a larger class, the ss. ¿e basic idea of the �nite-length analy-
sis is straightforward. Consider the block erasure probability. Fix a certain erasure
pattern. Over the ensemble of all graphs with a certain degree distribution deter-
mine the number of constellations which contain stopping sets within the support
set of this erasure pattern. Since by de�nition of the ensemble all constellations have
equal probability, the probability (averaged over the ensemble and conditioned on
the speci�c erasure pattern) that this erasure pattern cannot be corrected is then the
ratio of the number of such “bad” constellations to the total number. To arrive at the
unconditional erasure probability average over all erasure patterns. In the following
we describe this procedure and its extension in some more detail. ¿e combina-
torial problem at the heart of this procedure, namely the determination of “bad”
constellations, is involved. As an example we treat one simple case in Section 3.22.4.
To keep the discussion simple, we restrict our attention to the case of (l,r)-regular
ensembles.
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Figure 3.141: ¿e subset of variable nodes S = �7,11,16� is a stopping set.

§3.22.2. Infinite Number of Iterations

Consider the regular ensemble LDPC �nxl,nl
r
xr�. Fix v variable nodes and num-

ber the corresponding vl variable node sockets as well as all nl check node sockets
in some �xed but arbitrary way. A constellation is a particular choice of how to at-
tach the vl variable node sockets to the nl check node sockets. Let T(v) denote the
cardinality of all such choices. We have T(v) = �nlvl�(vl)!.

LetB(v) denote the set of all constellations on v �xed variable nodes which con-
tain (nontrivial) ss and let B(v) denote the cardinality of B(v). Clearly, 0 B B(v) B
T(v). LetB(s,v),B(s,v) b B(v), denote the set of constellations on v �xed variable
nodeswhosemaximum ss is of size s. As before, letB(s,v) denote the corresponding
cardinality. For χ > C, and with some abuse of notation, de�ne

B(χ,v) =Q
s
B(s,v) � s

n
�
χ
, P(χ,є) =

n
Q
v=0
�n
v
�єv(1 − є)n−vB(χ,v)

T(v) .

Consider �rst the case χ = 0, so that B(χ = 0,v) = B(v). Note that B(χ = 0,v)~T(v)
denotes the probability that v chosen variable nodes contain a non-empty stopping
set. Since �nv�єv(1 − є)n−v is the probability that there are v erased bits

P(χ = 0,є) = E[PBP
B (G,є)],

where the expectation is over the ensemble LDPC �nxl,nl
r
xr�. In words, P(χ =

0,є) denotes the average block erasure probability. If, on the other hand, we pick
χ = 1, then B(χ = 1,v)~T(v) equals the expected fraction (normalized to n) of bits
participating in a ss contained in the v �xed variable nodes. It follows that

P(χ = 1,є) = E[PBP
b (G,є)],
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the average bit erasure probability. It is shown in Section 3.22.4, how the quantity B
can be determined.

Example 3.142 (Block Erasure Probability of LDPC �nx3, n2 x6�). Figure 3.143
shows the resulting curves forELDPC�nx3, n2 x6� [P

BP
B (G,є)] as a function of є for n = 2i,

i > [10]. For increasing lengths the curves take on the characteristic shape which is

0.1 0.2 0.3 0.4

10-2

10-1

є

PBP
B

єB
P
�
0.
42
94

Figure 3.143: ELDPC�nx3, n2 x6� [P
BP
B (G,є)] as a function of є for n = 2i, i > [10].

composed of a “waterfall” region and an “error �oor” region. n

As we have seen, in many aspects practically all elements of an ensemble behave
the same. ¿is is in particular true for the behavior in the initial phase of the BP
decoder where the number of erasures in the system is still large. Towards the very
end, however, there is a signi�cant di�erence among the various elements of the en-
sembles and this di�erence does not tend to zero as we increase the length. Some
elements of the ensemble exhibit small “weaknesses.” In practice it is therefore im-
portant to eliminate these weaknesses. A simple generic method of accomplishing
this is to “expurgate” the ensemble. If we were using a MAP decoder the expurga-
tion procedure should eliminate codes which contain low weight codewords. Since
we are using the BPdecoder, the appropriate expurgation is to eliminate codeswhich
contain low weight stopping sets.

Definition 3.144 (Expurgated Ensembles). Assume we are given the ensemble
LDPC (n, λ, ρ) and an expurgation parameter s, s > N. ¿e expurgated ensemble
ELDPC (n, s, λ, ρ) consists of the subset of codes in LDPC (n, λ, ρ) which contain
no stopping sets of size in the range [1,� , s − 1]. S

All our previous expressions can be generalized. In particular let B(smin, s,v),
B(smin, s,v) b B(v), denote the set of constellations on v �xed variable nodes
whose maximum ss is of size s and which contain ss only of size at least smin. De-
�ne B(χ, smin,v) = Ps B(smin, s,v) � sn�

χ, and let P(χ, smin,є) = Pnv=0 �nv�єv(1 −
є)n−v B(χ,smin,v)

T(v) .
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Example 3.145 (Expurgation of LDPC �nx3, n2 x6� Ensemble). Figure 3.146 de-
picts P(χ = 0, smin,є) for the ensemble LDPC �nx3, n2 x6�, where n = 500, 1000,
2000. ¿e dashed curves correspond to the case smin = 1, whereas the solid curves
correspond to the case where smin was chosen to be 12, 22, and 40, respectively. How
can we determine realistic values for smin? In Section 3.24 we see how to determine
the expected number of stopping sets of a given size. Applying these techniques we
can determine that for the given choices, the expected number of ss of size less than
smin is 0.787263, 0.902989, and 0.60757, respectively. Since in each case the expected
number is less than one it follows that there exist elements of the ensemble which
do not contain ss of size less than the chosen smin. ¿is bound is crude since it is
only based on the expected value and we can get better estimates by investigating
the distribution of the number of low-weight ss. Indeed, this is done in the asymp-
totic setting in¿eoremD.31.¿e plots in Figure 3.146 demonstrate the importance
of considering expurgated ensembles. n
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Figure 3.146: P(χ = 0, smin,є) for the ensemble LDPC �nx3, n2 x6�, where n =
500,1000,2000. ¿e dashed curves correspond to the case smin = 1, whereas the
solid curves correspond to the case where smin was chosen to be 12, 22, and 40 re-
spectively. In each of these cases the expected number of ss of size smaller than smin
is less than one.

§3.22.3. Fixed Number of Iterations

As a further generalization, consider the quantity

P(χ, smin, ℓ,є) =
n
Q
v=0
�n
v
�єv(1 − є)n−vB(χ, smin, ℓ,v)

T(v) .

We de�ne the depth of a constellation as the smallest number of iterations that
is required to decode this constellations. Stopping sets have in�nite depth. Here,
B(smin, s, ℓ,v), B(smin, s, ℓ,v) b B(v), denotes the set of constellations on v �xed
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variable nodes whose depth is greater than ℓ, which contain ss only of size at least
smin, and whose size a er ℓ iterations is equal to s. Further de�ne

B(χ, smin, ℓ,v) =Q
s
B(smin, s, ℓ,v) � sn�

χ
.

As a particular instance, P(χ = 1, smin = 1, ℓ,є) is the expected bit erasure probabil-
ity at the ℓ-th iteration and it is therefore the natural generalization of the asymptotic
density evolution equations to �nite-length ensembles.

Example 3.147 (Equations for LDPC �500x3,250x6� Ensemble). Figure 3.148
depicts P(χ = 1, smin = 12, ℓ,є) for the ensemble LDPC �500x3,250x6� and the
�rst 10 iterations (solid curves). Also shown are the corresponding curves of the
asymptotic density evolution for the �rst 10 iterations (dashed curves). More pre-
cisely, from the density evolution equations (3.52) we know that asymptotically the
bit erasure probability in the ℓ-th iteration is equal to єL(1 − ρ(1 − xℓ−1)), where
xℓ = єλ(1− ρ(1− xℓ−1)) and x0 = є. As one can see from this �gure, for parameters
close to the threshold the �nite length performance and the in�nite length perfor-
mance are fairly close for several iterations. As єmoves away from the threshold the
di�erence between the two curves increases. n
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Figure 3.148: P(χ = 1, smin = 12, ℓ,є) for the ensemble LDPC �500x3,250x6� and
the �rst 10 iterations (solid curves). Also shown are the corresponding curves of the
asymptotic density evolution for the �rst 10 iterations (dashed curves).

Using the quantity P(χ = 0, smin = 1, ℓ,є) we can make statements about the
distribution of the required number of iterations. More precisely, for ℓ C 1,

P(χ = 0, smin = 1, ℓ− 1,є) − P(χ = 0, smin = 1, ℓ,є)

is the probability that the required number of iterations is ℓ.
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Example 3.149 (Distribution of Iteration Number for LDPC �nx3, n2 x6� En-
semble). Figure 3.150 depicts this probability distribution of the number of iter-
ations. Over a large interval the curves are approximately straight lines (in a log-

1 10 50
10-10

10-8

10-6

10-4

10-2

number of iterations

Figure 3.150: Probability distribution of the iteration number for the
LDPC �nx3, n2 x6� ensemble, lengths n = 400 (top curve), 600, (middle curve), and
800 (bottom curve) and є = 0.3. ¿e typical number of iterations is around 5, but
e.g. for n = 400, 50 iterations are required with a probability of roughly 10−10.

log plot) which indicates that over this range the probability distribution follows a
power law, i.e., has the form ℓαβ for some suitable non-negative constants α and β.
In other words, the probability distribution has large tails. ¿is observation cannot
be ignored in the design of an message-passing system. If low erasure probabili-
ties are desired then the decoder has to be designed in a �exible enough manner
so that for some rare instances the number of iterations is signi�cantly larger than
the average. Otherwise the additional erasure probability incurred by a premature
termination of the decoding process can be signi�cant. n

§3.22.4. Recursions

So far we discussed how to accomplish the �nite-length analysis for the BEC(є),
assuming that we are given the probability of occurrence of stopping sets of all sizes.
We now show how this latter task can be accomplished via a recursive approach.

In the sequel we assume that the parameters smin and χ have been �xed and
we suppress the dependency of the recursions on these parameters in our notation.
Although we give the expressions for general χ, the combinatorial interpretation of
the quantities is simplest if we assume that χ = 0. Our language therefore re�ects
this case.

Consider the set of all constellations which contain non-trivial stopping sets. Let
A(v, t, s) be the number of such constellations on v �xed variable nodes which have
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t �xed check nodes of degree at least two and s �xed check nodes of degree one.
Note that for s = 0 these are the ss of size v, and we have

A(v, t, s = 0) = coef�((1 + x)r − 1 − rx)t ,xvl� (vl)! .

¿e �rst term describes in how many ways we can choose the vl sockets from t
�xed check nodes so that no check node has degree one and the term (vl)! takes
into account all possible permutations. ¿erefore, initialize A(v, t, s) by

A(v, t, s) = coef�((1 + x)r − 1 − rx)t ,xvl� (vl)!�v
n
�
χ
1�sminBv�1�s=0�,

where the extra factor � vn�
χ distinguishes between the block and the bit erasure case,

1�sminBv� enables us to look at expurgated ensembles and 1�s=0� indicates that this
expression is only valid for s = 0 and that A(v, t, s) is initialized to zero otherwise.

For v running from 1 to n, recursively determine A(v, t, s) for all 0 B t, s B n by
means of the update rule

A(v, t, s)+=A(v − 1, t − ∆t − σ, s + σ − ∆s)v(l)!� t + s
∆t + ∆s

��∆t + ∆s
∆t

�

coef��(1 + x)r−1 − 1�σ ((1 + x)r − 1 − rx)∆t ,xl−∆s−τ�

�(t − ∆t − σ)r − (v − 1)l + s + σ − ∆s
τ

��s + σ − ∆s
σ

�r∆s∆s
s
,

where 1 B ∆s B l, 0 B σ B l − ∆s, 0 B ∆t B 
l−∆s−σ2 �, and 0 B τ B l − ∆s − σ − 2∆t.
We then have

B(χ, smin,v) =Q
t,s
� n

l
r

t + s
�A(v, t, s).

Figure 3.151 indicates how this recursion has been derived. Recall that in the BP

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µt ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µs
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t − ∆t − σ
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∆t σ ∆s

Figure 3.151: Derivation of the recursion for A(v, t, s) for
LDPC �Λ(x) = nxl,P(x) = nl

r
xr� and an unbounded number of iterations.

decoding process one variable node which is connected to a degree-one check node
is removed together with all involved edges.¿is process is continued until we have
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reached a ss. For the recursion we proceed in the opposite direction – we start with
a ss and add one variable node at a time, each time ensuring that this variable node
has at least one check node of degree one attached to it. ¿e recursion describes in
how many ways this can be done, where some care has to be taken to ensure that
each constellation is counted only once.

More precisely, assume we add one variable node of degree l. Assume that ∆s
of its attached check nodes have degree one, where by assumption ∆s C 1. Assume
further that σ of the check nodes that previously had degree one are being “covered”
by edges emanating from the new variable node, so that each of these check nodes
now has degree at least two. Finally, assume that ∆t new check nodes of degree at
least two are added (throughmultiple edges). All remaining edges go to check nodes
that already had degree at least two. If the new constellation has parameters (v, t, s)
then the original constellationmust have had parameters (v−1, s+σ−∆s, t−∆t−σ).

Let’s look in detail at all the factors in the recursion:¿e term v(l)! accounts for
the fact that we can choose the position of the new variable node within the total v
variable nodes and that we can permute its edges. ¿e factors � t+s

∆t+∆s��∆t+∆s∆t � count
in howmanyways the∆t+∆snew check nodes can be placed among the in total t+s
check nodes. For each new check node of degree one we can choose the socket to
which we want to connect, resulting in a factor r∆s. Next, the σ check nodes which
are being covered are chosen from ∆s + σ − ∆s check nodes which had degree one,
accounting for the factor �s+σ−∆sσ �. If we assume that τ edges are connected to check
nodes that already had degree at least two, then there are �(t−∆t−σ)r−(v−1)l+s+σ−∆sτ �
many ways of choosing these τ sockets. ¿is is true since (t − ∆t − σ)r − (v −
1)l + s + σ − ∆s is the total number of open such sockets. By assumption, l −
∆s − τ edges are used to add ∆t new check nodes of degree at least two and to
cover σ check nodes which used to have degree one. ¿is accounts for the factor
coef��(1 + x)r−1 − 1�σ ((1 + x)r − 1 − rx)∆t ,xl−∆s−τ�.

Only the last factor ∆s
s , which ensures that each constellation is counted exactly

once, merits a more detailed discussion. To see its function, consider again the peel-
ing decoder. If a constellation has, e.g., u variable nodes with at least one degree-
one check node attached to it then the peeling decoder has u distinct possibilities
in choosing which node to remove next. In the same way, such a constellation can
be “reconstructed” in u distinct ways. ¿erefore, in the above recursion we should
weigh each such reconstruction with the corresponding fraction 1

u . Unfortunately,
u does not appear explicitly in the recursion. Rather, we are given s, the number of
degree-one check nodes. Since one variable node can be attached tomultiple degree-
one check nodes, u and s are not in one-to-one correspondence. Fortunately, we are
also given ∆s, the number of degree-one check nodes that the new variable node is
connected to. Let ∆s be called the multiplicity of a variable node. We then see that
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if we add the multiplicities of the u variable nodes then this multiplicity adds to s.
¿erefore, summed over all possible reconstruction paths the factor ∆s

s ensures that
each constellation is counted exactly once.

¿e complexity of the above recursion is Θ(n3) in time and Θ(n2) in space.
§3.23. Finite-Length Scaling

We have seen in the previous section how an exact (ensemble-average) �nite-length
analysis can be accomplished. ¿is solves the problem in principle. In practice this
approach becomes computationally challenging as we increase the degree of irregu-
larity or the blocklength. Further, although the analysis is exact, it reveals little about
the nature of the system.

Let us therefore consider here an alternative approach. First, we separate the
contribution to the error probability into those that stem from “large” and those
that are due to “small” failures.¿ese two contributions are fundamentally di�erent
and are therefore best dealt with separately.

In Section 3.24 we discuss methods that allow us to assess the contribution due
to small failures. In the present section we discuss a scaling law which applies to
large failures. Figure 3.63 shows the situation for the (3,6)-regular ensembles that
has one critical point, whereas Figure 3.63 shows an optimized degree distribution
which has two critical points. For a critical point xBP let νBP = єBPL(1− ρ(1− xBP)).
¿e operational meaning of νBP is the following: assume that a degree distribution
pair has a single non-zero critical point. Suppose that є � єBP and that for a large
blocklength the BP decoder fails. If the residual graph (of the peeling decoder) is
still large (i.e., the failure is not just due to a small weakness in the graph) then with
probability approaching one (as n tends to in�nity) the fraction of undetermined
bits is close to νBP.

Theorem 3.152 (Basic Scaling Law). Consider transmission over the BEC using
random elements from an ensemble LDPC (n, λ, ρ) which has a single non-zero
critical point xBP. Let єBP = єBP(λ, ρ) denote the threshold and let νBP = єBPL(1 −
ρ(1 − xBP)). Set z = ºn(єBP − є). Let Pb,γ(n, λ, ρ,є) and PB,γ(n, λ, ρ,є) denote
the expected bit/block erasure probability due to errors of size at least γνBP, where
γ > (0,1). ¿en as n tends to in�nity (with z held �xed),

PB,γ(n, λ, ρ,є) = Q (z~α) (1 + o(1)),
Pb,γ(n, λ, ρ,є) = νBPQ (z~α) (1 + o(1)),

where α = α(λ, ρ) is a constant which depends on the ensemble.
Figure 3.155 shows the application of the basic scaling law (dotted curves) to the

(3,6)-regular ensemble. As one can see, although the scaling curves follow the ac-
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tual exact curves reasonablywell, and indeed approach the true curves for increasing
lengths, the curves are shi ed.

Conjecture 3.153 (Refined Scaling Law). Consider transmission over the BEC
using random elements from an ensemble LDPC (n, λ, ρ) which has a single non-
zero critical point xBP. Let єBP = єBP(λ, ρ) denote the threshold and let νBP =
єBPL(1−ρ(1−xBP)). Set z =ºn(єBP−βn− 2

3−є). LetPb,γ(n, λ, ρ,є) andPB,γ(n, λ, ρ,є)
denote the expected bit/block erasure probability due to errors of size at least γνBP,
where γ > (0,1). ¿en as n tends to in�nity (with z held �xed),

PB,γ(n, λ, ρ,є) = Q (z~α) �1 +O�n−1~3��,
Pb,γ(n, λ, ρ,є) = νBPQ (z~α) �1 +O�n−1~3��,

where α = α(λ, ρ) and β = β(λ, ρ) are given by

α =�ρ(x̄
BP)2 − ρ((x̄BP)2) + ρ′(x̄BP)(1 − 2xBPρ(x̄BP)) − (x̄BP)2ρ′((x̄BP)2)

L′(1)λ(yBP)2ρ′(x̄BP)2 +

(єBP)2λ(yBP)2 − (єBP)2λ((yBP)2) − (yBP)2(єBP)2λ′((yBP)2)
L′(1)λ(yBP)2 �

1~2
,

β~Ω =�(є
BP)4r22(єBPλ′(yBP)2r2 − xBP(λ′′(yBP)r2 + λ′(yBP)xBP))2
L′(1)2ρ′(x̄BP)3(xBP)10(2єBPλ′(yBP)2r3 − λ′′(yBP)r2xBP) �

1~3
,

ri = Q
mCjCi
(−1)i+j�j− 1

i − 1
��m − 1

j− 1
�ρm(єBPλ(yBP))j,

where xBP is the unique critical point, x̄BP = 1−xBP, yBP = 1− ρ(1−xBP), andΩ is a
universal constant whose value can be taken equal to one for all practical purposes.3

Discussion: ¿e conjecture improves upon the basic scaling law in two aspects.
First, the re�ned scaling law predicts a �nite-length shi of the BP threshold of the
form βn−

2
3 . From Figure 3.155 we see that the re�ned scaling law indeed corrects for

the shi (dashed curves) and that it gives a much better match to the true curves.
Secondly, the re�ned scaling law gives an explicit characterization of the scaling pa-
rameters. Table 3.154 lists scaling parameters for some standard regular ensembles.
It is the topic of Problem 3.40 to show that in the regular case the scaling parameters
take on a very simple form. Figure 3.156 shows the application of the scaling result

3 De�ne

K(z) = 1
2 S

Ai(iy)Bi(21~3z + iy) −Ai(21~3z + iy)Bi(iy)
Ai(iy) dy ,

where Ai(ċ) and Bi(ċ) are the so-called Airy functions. ¿enΩ = R
ª

0 [1−K(z)2] dz. Numerically, we
get Ω = 1 � 0.001.
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l r єSha єBP α β~Ω
3 4 3

4 = 0.75 0.6473 0.54248777 0.593632
3 5 3

5 = 0.6 0.5176 0.56570013 0.616196
3 6 1

2 = 0.5 0.4294 0.56035834 0.616949
4 5 4

5 = 0.8 0.6001 0.55325619 0.571617
4 6 2

3 � 0.6666 0.5061 0.56054697 0.574356
5 6 5

6 � 0.8333 0.5510 0.56064471 0.559688
6 7 6

7 � 0.8571 0.5079 0.56228821 0.547797
6 12 1

2 = 0.5 0.3075 0.51159428 0.506326

Table 3.154:¿resholds and scaling parameters for some regular standard ensembles.
¿e shi parameter is given as β~Ω, where Ω = 1 � 0.001.

to an irregular ensemble.

0.35 0.37 0.39 0.41 0.43
10-7
10-6
10-5
10-4
10-3
10-2

є

PB

Figure 3.155: Scaling of ELDPC(n,x2,x5)[PB(G,є)] for transmission over the BEC(є)
and BP decoding. ¿e threshold for this combination is єBP � 0.4294. ¿e
blocklengths/expurgation parameters are n~s = 1024~24, 2048~43, 4096~82 and
8192~147, respectively. ¿e solid curves represent the exact ensemble averages.
¿e dotted curves are computed according to the basic scaling law stated in ¿e-
orem 3.152. ¿e dashed curves are computed according to the re�ned scaling law
stated in Conjecture 3.153. ¿e scaling parameters are α = 0.56036 and β~Ω =
0.6169, see Table 3.154.

We will not give a proof of the scaling law but we provide in the remainder of
this section an informal justi�cation of the above scaling forms. It is convenient
to visualize the decoder in the form of peeling o� one variable node at a time as
was discussed in Section 3.19. Keep track of the evolution of the residual graph as a
function of time. We know from¿eorem 3.107 that the trajectories corresponding
to individual instances of decoding closely follow the expected value (given by the
density evolution equations). For the (3,6)-regular ensemble the evolution of the
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Figure 3.156: Scaling of ELDPC�n,λ= 1
6 x+

5
6 x

3,ρ=x5�[PB(G,є)] for transmission over
BEC(є) and BP decoding. ¿e threshold for this combination is єBP � 0.482803.
¿e blocklengths/expurgation parameters are n~s = 350~14, 700~23 and 1225~35.
¿e solid curves represent the simulated ensemble averages. ¿e dashed curves are
computed according to the re�ned scaling law stated inConjecture 3.153 with scaling
parameters α = 0.5791 and β~Ω = 0.6887.

expected degree distribution is shown in Figure 3.112. Focus on the evolution of the
residual degree-one nodes (the corresponding curve is the one shown in bold in
Figure 3.112). Several individual trajectories are shown for є = 0.415 and n = 2048
and n = 8192 in Figure 3.157. From ¿eorem 3.107 we know that the deviations of
individual curves are no larger thanO(n5~6). In fact the deviations are even smaller
and, not surprisingly, they are of orderO(n1~2). Assume that the channel parameter
є is close to єBP. If є = єBP then at the critical point the expected number of degree-
one check nodes is zero. Assume now that we vary є slightly. If we vary є so that ∆є
is of order Θ(1), then we conclude that the expected number of degree-one check
nodes at the critical point is of orderΘ(n). Since the standard deviation is of order
Θ(ºn), then with high probability the decoding process will either succeed (if (є−
єBP) < 0) or die (if (є − єBP) A 0). ¿e interesting scaling happens if we choose our
variation of є in such a way that ∆є = z~ºn, where z is a constant. In this case the
expected gap at the critical point scales in the same way as the standard deviation
and one would expect that the probability of error stays constant. Varying now the
constant z gives rise to the scaling function.

What is the distribution of the states around themean? A closer look shows that
this distribution (of the degree-one nodes) is initially Gaussian and remains Gaus-
sian throughout the decoding process. ¿e mean of this Gaussian is the solution of
the density evolution equations.¿erefore, all that is required to specify the full dis-
tribution is the evolution of the covariance matrix. In a similar manner as there are
di�erential equations that describe the evolution of the mean one can write down a
system of di�erential equations that describe the evolution of the covariancematrix.
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Figure 3.157: Evolution of n(1 − r)R1 as a function of the size of the residual graph
for several instances for the ensemble LDPC �n, λ(x) = x2, ρ(x) = x5� for n = 2048
(le ) and n = 8192 (right). ¿e transmission is over a BEC of erasure probability
є = 0.415.

¿ose trajectories that hit the R1 = 0 plane die. One can quantify the probability
for the process to hit the R1 = 0 plane as follows. Stop density and covariance evo-
lution when the number of variables reaches the critical value vBP. At this point the
probability distribution of the state approaches a Gaussian (as the length increases)
with a given mean and covariance for R1 C 0 (while it is obviously 0 for R1 < 0).
Estimate the survival probability (i.e., the probability of not hitting the R1 = 0 plane
at any time) by summing the Gaussian distribution over R1 C 0. Obviously this
integral can be expressed in terms of a Q-function.

¿e above description leads to the basic scaling law. Where does the shi in
Conjecture 3.153 come from? It is easy to understand that we underestimated the
error probability in the above calculation: we correctly excluded from the sum the
part of the Gaussian distribution lying in the R1 < 0 half-space – trajectories con-
tributing to this part must have hit the R1 = 0 plane at some point in the past. On the
other hand, we cannot be certain that trajectories such that R1 A 0 when v crosses
vBP didn’t hit the R1 = 0 plane at some time in the past and bounced back (or will
not hit it at some later point). Taking this e�ect into account gives us the shi .

§3.24. Weight Distribution and Error Floor
In the previous section we have seen how we can model large-sized failures of the
decoder. We focus now on those errors that are caused by small weaknesses in the
graph. We start by determining the average weight distribution. ¿e regular case
is discussed in more detail in Lemma D.17 on page 519. If you are unfamiliar with
manipulations of generating functions you might want to review the material in
Appendix D before proceeding. If patience is not your strongest virtue, fast forward
to Lemma 3.167 to see how the following results help in �nding expressions for the
error �oor.
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Lemma 3.158 (Weight Distribution). Let Acw(G,w)/Ass(G,w) denote the num-
ber of codewords/stopping sets of weight w of a code G, G > LDPC (Λ,P). ¿en

E[Acw/ss(G,w)] =Q
e
α(w, e)βcw/ss(e),

where

α(w, e) = coef�M
i
(1 + xyi)Λi ,xwye�,

βcw(e) =
coef�Li �(1 + z)i + (1 − z)i�Pi , ze�

2nr̄�Λ′(1)e �
,

βss(e) =
coef�Li((1 + z)i − iz)Pi , ze�

�Λ′(1)e �
.

Proof. Consider the Λ(1) variable nodes, out of which there are Λi nodes of de-
gree i. In how many ways can we select w of those nodes so that the total number
of attached edges is e? Denote this number by α(w, e) and consider its generating
function Pw,e α(w, e)xwye. ¿is generating function depends on Λ(x). To start,
consider a single variable node of degree i. ¿en this generating function is equal
to 1 + xyi: we can either skip this node (corresponding to 1) or, if we include this
node, then we have one node and i edges (corresponding to the term xyi). More
generally, if we have Λi variable nodes of degree i then the generating function is
Li(1+xyi)Λi , since for each such node we can decide to include it in our set or not.
¿e expression of α(w, e) follows from this observation by letting the product range
over all node degrees. It remains to determine the probability that we get a code-
word/stopping set if we connect e edges uniformly at random to the P′(1) = Λ′(1)
check node sockets. Denote this probability by βcw/ss(e). In total there are �Λ′(1)e �
choices. How many of those give rise to codewords/stopping sets? A constellation
gives rise to a codeword if each check node socket is connected to an even num-
ber of edges. For a check node of degree i the corresponding generating function is
Pj� i2j�z2j = 1

2 �(1 + z)i + (1 − z)i� (see Section D.3). On the other hand, we get a
stopping set if no check node contains exactly one connection. ¿is is encoded by
the generating function Pjx1 �ij�zj = (1 + z)i − iz. Taking into account that there
are Pi check nodes of degree i, the expressions for βcw/ss(e) follow.

For large blocklengths and weights,E[Acw/ss(G,w)] becomes expensive to com-
pute. Fortunately, we can derive a very accurate asymptotic expansion using the
Hayman method discussed in Appendix D. ¿is expansion is substantially easier
to evaluate.
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Lemma 3.159 (Hayman Approximation of Weight Distribution). Denote the
number of codewords/stopping sets of weight w of a code G from LDPC (n,L,R)
by Acw(G,w)/Ass(G,w). De�ne

pcw(x, y, z) = �M
j
(1 + xyj)Lj�M

i
�(1 + z)

i
+ (1 − z)i
2

�
Ri r̄

,

pss(x, y, z) = �M
j
(1 + xyj)Lj�M

i
�(1 + z)i − iz�Ri r̄,

Let a = � x∂pp∂x ,
y∂p
p∂y,

z∂p
p∂z� and de�ne the 3 � 3 symmetric matrix B(x, y, z): its �rst

row consists of the vector x∂a~∂x and its second and third row of the corresponding
derivative with respect to yand z. Let (xω, yє, zє) be a positive solution of the system
of equations a(x, y, z) = (ω,є,є) and de�ne

1
σ2
= (0,1,1)B−1(xω, yє, zє)(0,1,1)T + L′(1)

є(L′(1) − є) .

¿en for ω > (0,1) and n > N so that nω > N,

E[A(G,nω)] =
¿
ÁÁÀ σ2є(1 − є~L′(1))

2πnSB(xє, yє, zє)S
µp(xω, yє, zє)n
xnωω ynєє znєє

e−nL
′(1)h(є~L′(1))(1 + o(1)),

where µ = 1 except when all variable nodes either have even degree or all have odd
degree, in which case µ = 2. ¿e growth rateG(ω) of the weight distribution, de�ne
it as

G(ω) = lim
n�ª

1
n
logE[A(G,nω)],

is given by

G(ω) = log�p(xω, yє, zє)
xωωyєєzєє

e−L
′(1)h(є~L′(1))� .

Note:¿ematrix B becomes singular for le regular ensembles.¿e special case
of regular ensembles is discussed in detail in Lemma D.17.

Proof. From Lemma 3.158 we know that

E[A(G,nω)] =Q
e
coef�p(x, y, z)n,xwyeze�~�nL

′(1)
e
�.

Fix a value ω, 0 < ω < 1, and setw = nω. Further �x є, 0 < є < L′(1), and look at val-
ues e of the form e = nє+∆e, where ∆e = o(»n logn). What is the local expansion
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of the term coef���, i.e., what is the behavior of coef��� for small deviations of e
around nє? ¿e answer is furnished by the Hayman method stated in Lemma D.14.
¿is local expansion reads

µp(xω, yє, zє)n»
(2πn)3SBS (xωωyєєzєє)n

(yєzє)−∆ee−
(∆e)2
2n (0,1,1)B−1(0,1,1)T(1 + o(1)),

where (xω, yє, zє) is the unique positive solution to the set of equations a(x, y, z) =
(ω,є,є) and where µ is equal to one unless all powers of L(x) are even or all powers
of L(x) are odd, in which case µ takes on the value two.

For the term �nL′(1)e � we have from Example D.16 the local expansion

�nL
′(1)
nє
� = enL

′(1)h(є~L′(1))
»
2πnє(1 − є~L′(1))

(є~(L′(1) − є))−∆ee−
(∆e)2

2nє(1−є~L′(1)) (1 + o(1)).

Let us combine these two expressions to get a local expansion of the number of
words with a given number of emanating edges. To simplify the notation de�ne

A=

¿
ÁÁÀє(1 − є~L′(1))

(2πn)2SBS
µp(xω, yє, zє)n e−nL′(1)h(є~L′(1))

(xωωyєєzєє)n
,

B = y−∆eє z−∆eє (є~(L′(1) − є))∆e,

C = e
−
(∆e)2
2n �(0,1,1)B−1(0,1,1)T+

L′(1)
є(L′(1)−є)�

= e−
(∆e)2
2nσ2 ,

where in the last step we havemade use of the de�nition of σ2 in the statement of the
theorem.We see that the number of codewords of weight nωwhich have e = nє+∆e
attached edges has a local expansion ABC. Here, A represents the number of such
codewords with e = nє edges, B represents the �rst order change if we alter the
number of edges, and C represents the second order change. In order to determine
the total number of codewords of weight nω (regardless of the number of attached
edges) we need to sum this expression over e. Look for the value of є where the
summands over e take on their maximum value. Since B represents the change of
the summands with respect to a change in e, this value of є is characterized by the
condition that B = 1. Explicitly, the condition reads

yєzє = (є~(L′(1) − є)).

Around this spot the expression has the expansion Ae−
(∆e)2
2nσ2 , i.e., it behaves like a

Gaussian with variance σ2n. ¿erefore, the sum is equal to A
º
2πnσ2. ¿is is the

result stated in the lemma.¿e growth rate is a special case of this general result.
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How can the above expression be evaluated e�ciently?

Corollary 3.160 (Efficient Evaluation of Weight Distribution). De�ne

acw~ss(x, y) = �M
j
(1 + xyj)Lj�, bcw(z) =M

i
�(1 + z)

i
+ (1 − z)i
2

�
Ri r̄

,

bss(z) =M
i
�(1 + z)i − iz�Ri r̄, ccw~ss(x, y) =

x∂acw~ss(x, y)
acw~ss(x, y)∂x

,

dcw~ss(x, y) =
y∂acw~ss(x, y)
acw~ss(x, y)∂y

, ecw~ss(z) =
z∂bcw~ss(z)
bcw~ss(z)∂z

.

Let z be the parameter, z A 0. Calculate in the given order

є(z) = e(z), y(z) = є(z)~(z(L′(1) − є(z))),
x(z) = solution of d(x, y(z)) = є(z), ω(z) = c(x(z), y(z)).

Insert the calculated set of parameters (x(z), y(z), z), and є(z) into the expressions
of Lemma 3.159.¿e result is the Hayman approximation of the number of words of
weight nω(z).

Discussion: ¿e evaluation of the parameters є and y as well as ω is immediate.
¿e only non-trivial computation is the determination of x as a function of z.

Example 3.161 (Weight Distribution). To be speci�c, let us consider the weight
distribution of codewords.¿eweight distribution of stopping sets behaves in a sim-
ilar way. Figure 3.162 shows the growth rate G(ω) for the (3,6) ensemble as well as
the (2,4) ensemble. Note that those two cases behave di�erently. While G(3,6)(ω),

ω0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0
0.1
0.2
0.3
0.4
0.5
0.6

ω � 0.0227

G(
ω)
�
ω l
og 2
(3)

Figure 3.162: Growth rateG(ω) for the (3,6) (dashed line) as well as the (2,4) (solid
line) ensemble.

the growth rate of the (3,6) ensemble, is initially (for small ω) negative and only
turns positive around ω � 0.0227, G(2,4)(ω) is positive over the whole range. n
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What causes this di�erent behavior in the two ensembles?¿e following lemma,
whose proof we skip, gives the answer.

Lemma 3.163 (Growth Rate). Consider an ensemble LDPC (n,L,R) and let lmin
be the minimal variable node degree. Let Llmin denote the fraction of variable nodes
having degree lmin. ¿en

Gcw/ss(ω) = ωlmin − 22
(log(ω) − 1) + ω log�Llmin�

lminρ′(1)
L′(1) �

lmin~2� +O(ω2).

For lmin = 2 this specializes to

Gcw/ss(ω) = ω ln(λ′(0) ρ′(1)) +O(ω2).
Note: If lmin C 3, then G(ω) is always negative for su�ciently small ω (due

to the term ω log(ω)). ¿e situation is more interesting if lmin = 2. In this case
G(ω) has a derivative at zero and this derivative is negative/positive if λ′(0)ρ′(1)
is smaller/bigger than one. E.g., for the growth rate of the (2,4) ensemble shown in
Figure 3.162 we have λ′(0)ρ′(1) = 3 so that G(2,4)(ω) = ω log2(3) + O(ω2). One
way to derive this results is to start with the Hayman expansion and to investigate
its behavior for ω tending to zero.

At this point it is tempting to conjecture that the minimum distance grows lin-
early if and only if λ′(0)ρ′(1) < 1. Unfortunately the situation is more involved.
First, note that the growth rate, as de�ned above, corresponds to

lim
n�ª

1
n
logE[A(G,ωn)].

¿is quantity has the advantage of being relatively easy to compute. But we have
not shown (and it is indeed generally not correct) that the growth rate of “typical”
elements of the ensemble behaves like this average. To answer this question one
should determine instead limn�ªE[ 1n logA(G,ωn)]. Unfortunately this quantity
is much harder to compute. Using Jensens’ inequality we know that

lim
n�ª

E[ 1
n
logA(G,ωn)] B lim

n�ª

1
n
logE[A(G,ωn)] = G(ω).(3.164)

¿is implies that the computed growth rate G(ω) is in general an upper bound on
the “typical” growth rate. Fortunately, this issue does not play a role if we are inter-
ested in the question whether typical codes exhibit a linear minimum distance or
not.

¿e second point is important in our current context. ¿e growth rate G(ω)
only captures the behavior of codewords/stopping sets of weight linear in n. It re-
mains to investigate the behavior of sub-linear sized constellations. For what follows
it is convenient to recall from De�nition 1.10 the notion of a minimal codeword.
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Lemma 3.165 (Expected Number of Codewords of Fixed Weight in Asymp-
totic Limit). Consider the ensemble LDPC (n, λ, ρ) and de�ne µ = λ′(0)ρ′(1).
LetE[Acw~ss(G,w,n)] denote the expected number of codewords/stopping sets and
letE[Âcw~ss(G,w,n)]denote the expected number ofminimal cw/ss. LetPcw~ss(x) =
PwC0 pcw~ss(w)xw (P̂cw~ss(x) = PwC1 p̂cw~ss(w)xw) denote the asymptotic generat-
ing function counting the number of (minimal) cw/ss sets, i.e.,

pcw~ss(w) = lim
n�ª

E[Acw~ss(G,w,n)], p̂cw~ss(w) = lim
n�ª

E[Âcw~ss(G,w,n)].

¿en

Pcw~ss(x) = 1º
1 − µx

, P̂cw~ss(x) = −12 ln(1 − µx).(3.166)

Proof. From (D.37) we know that pcw~ss(w) = µw�2ww �4−w, so that

Pcw~ss(x) = Q
wC0

µwxw�2w
w
�4−w = 1º

1 − µx
,

and we know that p̂cw~ss(w) = µw
2w , so that

P̂cw~ss(x) = 1
2 QwC1

µwxw

w
= −

1
2
ln(1 − µx).

Lemma 3.167 (Asymptotic Error Floor). Consider the ensemble LDPC (n, λ, ρ)
and de�ne µ = λ′(0)ρ′(1). Let s denote the expurgation parameter introduced in
De�nition 3.144. ¿en for є < єBP

lim
n�ª

EELDPC(n,s,λ,ρ)[PMAP~BP
B (G,є)] = 1 − e−Pªw=s (µє)

w

2w ,

lim
n�ª

nEELDPC(n,s,λ,ρ)[PMAP~BP
b (G,є)] = 1

2 QwCs
(µє)w.

For s = 1 these expressions specialize to

lim
n�ª

ELDPC(n,λ,ρ)[PMAP~BP
B (G,є)] = 1 −»1 − µє,

lim
n�ª

nELDPC(n,λ,ρ)[PMAP~BP
b (G,є)] = 1

2
µє

1 − µє
.

Discussion: For both the BP decoder as well as the MAP decoder we only con-
sider the erasure �oor below єBP. We conjecture though that under MAP decoding
the expression for the erasure �oor stays valid also in the regime єBP B є < єMAP.
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Proof. We start with the unexpurgated case.
Consider BP decoding. We claim that for є < єBP the erasure probability due to

large-weight stopping sets is negligible. Let α be any strictly positive constant. Since
є < єBP, there exists an ℓ so that xℓ, the expected fraction of erasures le in the ℓ-th
iteration, is strictly less than α. By (the Concentration) ¿eorem 3.30 this implies
that the contribution to the block erasure probability due to erasures of size exceed-
ing αn decays exponentially in the length n. Since this is true under BP decoding
this is also true under MAP decoding.

If µ = 0, i.e., if lmin C 3, then we need to show that for є < єBP

lim
n�ª

ELDPC(n,λ,ρ)[PMAP~BP
B (G,є)] = lim

n�ª
nELDPC(n,λ,ρ)[PMAP~BP

b (G,є)] = 0.

We use the union bound. From (D.32), (D.33), and (D.35) we see that the block (bit)
erasure probability due to cw/ss of size up to n

1
3 decays like 1~n (1~n2). ¿is con-

tribution therefore vanishes. Further, we know from Lemma 3.163 that for lmin C 3
the growth rateG(ω) is negative for ω su�ciently small. Fix α so thatG(ω) < 0 for
ω > (0,α]. ¿erefore, also the contributions due to cw/ss of size between n

1
3 and αn

vanish.¿is proves the claim since we know already from our discussion above that
error events of size larger than αn do not contribute in the asymptotic limit.

Let us now turn to the case µ A 0. We start with the bit-erasure probability. Fix a
maximumweightW,W > N. By (D.38), if we �x a �niteW and let n tend to in�nity,
then the minimal codewords/stopping sets of weight at mostW become asymptot-
ically non-overlapping with high probability (with high probability there is only a
small number of such words; they have bounded weight and they are distributed
over a length nwhich tends to in�nity).¿e standard union bound is therefore tight.
By (D.37) the expected number ofminimal words of sizew is equal to µw =

µw
2w . Each

such word is erased with probability єw and causes a bit erasure probability of w~n.
If we sum up the individual contributions we see that the bit erasure probability
caused by words of size at mostW multiplied by n tends to 1

2
µє−µWєW

1−µє .
If µє < 1, then the contribution to the bit erasure probability stemming from

larger words can be made arbitrarily small by choosing W su�ciently large. We
do this again in two stages. For cw/ss of size up to n

1
3 we know from (D.36) that

their number grows like µw. ¿e union bound (which is an upper bound on the
contribution) therefore shows that cw/ss of size betweenW + 1 and n

1
3 contribute

to the erasure probability only in a negligible way. By the same argument that we
used above we also know that cw/ss of size between n

1
3 and αn as well as cw/ss of

size larger than αn do not contribute to the error probability in the asymptotic limit.
¿e claim now follows by lettingW tend to in�nity.
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Consider now the block erasure probability. What is the contribution to the
block erasure probability due to cw/ss which are entirely composed of minimal
cw/ss of individual weight at mostW, whereW is a �xed integer? ¿e number of
such cw/ss and their composition is given by a Poisson distribution (see (D.38)).
We make a mistake if at least one minimal cw/ss is contained in the set of erasures.
¿erefore, the block erasure probability due to such cw/ss is given by

1 − Q
a1,�,aW

W
M
w=1

µaww e−µw

aw!
(1 − єw)aw .

In more detail: we make an error (represented by the 1) unless for a given constella-
tion (represented by the numbers a1,� ,aW) each of the minimal cw/ss has at least
one component which is not contained in the erasure set (represented by the factor
1 − єw). Now note that

Q
i

λie−λ

i!
(1 − єw)i λ̃=λ(1−є

w)
= Q

i

λ̃ie−λ̃−λє
w

i!
= e−λє

w
Q
i

λ̃ie−λ̃

i!
= e−λє

w
.

If we apply the same sequence of steps to our problem we get

1 − Q
a1,�,aW

W
M
w=1

µaww e−µw

aw!
(1 − єw)aw = 1 − e−PW

w=1 µwє
w
= 1 − e−P

W
w=1

(µє)w
2w

= 1 − e−P
ª

w=1
(µє)w
2w +P

ª

w=W+1
(µє)w
2w

= 1 −
»
1 − µєeP

ª

w=W+1
(µє)w
2w .

By using a similar argument as for the bit erasure probability one can show that
words of large weight (larger than a constant) have a negligible in�uence on the
block erasure probability. We get the promised expression by lettingW tend to in-
�nity.

¿e expurgated case follows in essentially the same manner by taking into ac-
count the following key fact: the distribution of the number of cw/ss of sizew,w C s,
in the expurgated ensemble is the same as the corresponding distribution in the
unexpurgated ensemble. ¿erefore the only change in the above derivations is the
lower summation index.

Notes
Regular LDPC codes were de�ned by Gallager in his ground breaking thesis [19].
Rather than looking at ensembles, Gallager showed that one can construct speci�c
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instances so that the corresponding computation graph is tree-like for c log(n) iter-
ations, where c is a suitable positive constant. He then argued that for that number
of iterations the message-passing decoder can be applied and analyzed in terms of
what would now be called density evolution. Although the limited computational
resources available at that time did not allow him to compute actual thresholds, ex-
plicit computations on some examples for a few iterations gave an idea of the large
potential of this scheme. Historically it is interesting to note that LDPC codes were
never patented (neither by Gallager himself, nor by Codex for whom Gallager con-
sulted, nor byMotorola that later acquired Codex). According to Forney, Codex did
not foresee a market for LDPC codes except the government market. For the latter
patents are of no use.

In 1954 Elias introduced the erasure channel as a toy example [16]. With the ad-
vent of the internet this channel was thrown into the limelight. A general historical
outline of message-passing decoding is given at the end of Chapter 4 starting on
page 262. We limit our present discussion to the BEC.

Although Gallager did not explicitly consider transmission over the BEC, the
general (class of) message-passing decoder(s) which he introduced specializes to
the BP decoder discussed in this chapter.

Zyablov and Pinsker were the �rst authors to consider the decoding problem
for sparse graph codes on the erasure channel [55]. ¿ey introduced a particular
type of regular code ensemble and a decoding algorithm which is equivalent to the
peeling decoder (and therefore also equivalent to the message-passing decoder): at
each decoding round the decoder recovers all erasures that are connected to checks
which are otherwise connected only to known bits.¿ey showed that in the asymp-
totic case and a suitable choice of parameters such a decoder has a positive erasure
correcting radius and that the number of decoding rounds is of the order log(n).
Translating their results into modern language, they accomplished this by bound-
ing the probability that a submatrix does not contain degree-one checks (i.e., by
bounding the probability of containing a stopping-set). ¿ey also computed the av-
erage weight distribution of the ensemble. Unfortunately, the paper was hidden in
the Russian literature and was essentially forgotten until recently. It therefore had
little impact on the ensuing development.

Without doubt one of most important post-Gallager developments in the realm
of the analysis of message-passing systems was the series of papers [27, 24, 25, 26]
by Luby, Mitzenmacher, Shokrollahi, Spielman, and Stemann. A good portion of
the material presented in this chapter is taken from these papers. In particular, they
introduced the notion of irregular ensembles together with the elegant and com-
pact description of these ensembles in terms of degree distributions discussed in
Section 3.3. It is only through this added degree of freedom introduced by degree
distributions that capacity can be approached arbitrarily closely. ¿ese papers also
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contain the complete asymptotic analysis whichwe have presented. In particular, the
fact that the decoding performance is independent of the transmitted codeword (the
all-zero codeword assumption discussed in Section 3.6.1), the notion of concentration
and the proof technique to show concentration (¿eorem 3.30), the convergence to
the tree ensemble (¿eorem 3.50), the density evolution equations (¿eorem 3.51),
the stability condition (¿eorem 3.66), the proof that the heavy-tail Poisson distri-
bution (which the authors called Tornado sequence) gives rise to capacity achieving
degree distributions (Example 3.91), and, �nally, the idea of using linear program-
ming to �nd good degree distributions (Section 3.18) are contained in these papers.
¿e original analysis was based on the peeling decoder discussed in Section 3.19. It
is fair to say that almost all we know about message-passing coding we �rst learned
in the context of message-passing coding for the BEC, and a good portion of the
fundamental ideas was developed in this sequence of papers.

¿e fact that there can be global constraints in addition to the local constraints
described by the computation tree (see discussion on page 93) was pointed out in-
dependently by Montanari, Macris, as well as Xu.

¿e lower bound on the gap to capacity expressed in ¿eorem 3.86 is due to
Shokrollahi [37]. It was the �rst bound in which the Shannon capacity was de-
rived explicitly from the density evolution equations. One can therefore think of
it as a precursor to the (asymptotic) area theorem. A systematic study of capacity-
achieving degree distributions was undertaken by Oswald and Shokrollahi [37].
¿ey showed that the check-concentrated (which was called right-concentrated in
their paper) degree distribution has a better complexity-versus-performance trade-
o� than the Tornado sequence. Further properties of the class of capacity-achieving
degree distribution pairs were discussed by Orlitsky, Viswanathan, and Zhang [35].

Sason and Urbanke presented in [44] the so-called Gallager lower bound on the
density of codes (Section 3.16 as well as¿eorem 3.94). It is a variant of an argument
originally put forth by Gallager in his thesis [19]. ¿e same paper also contained
the material of Section 3.17, which proves that check-concentrated ensembles are
essentially optimal. Upper bounds on achievable rates of LDPC ensembles under
message-passing decoding were derived by Barak, Burshtein, and Feder [7].

EXIT chartswere introduced by ten Brink [49] as an e�cient visualization of BP
decoding. For the BEC, EXIT charts are equivalent to the density evolution analysis
and they are exact. ¿e basic properties of EXIT charts for transmission over the
BEC, in particular the duality result (¿eorem 3.78) as well as the area theorem
(¿eorem 3.82) are due to Ashikhmin, Kramer, and ten Brink [4, 5]. Rather than
following one of the original proofs of the area theorem as given by these authors
(one of which is discussed in Problem 3.30), we have taken the point of view of
Méasson,Montanari, Richardson, andUrbanke in [28], which uses characterization
(iii) in Lemma 3.76 as a starting point. From this vantage point, the area theorem is
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just an application of the fundamental theorem of calculus (see ¿eorem 3.82).
¿eMAPdecoding threshold for transmission over the BECwas �rst determined

byMontanari [34] essentially by themethod onpage 128whichwe use to prove claim
(i) of ¿eorem 3.121. ¿e realization that the EXIT curve can be derived from the
BP curve via the area theorem is due to Méasson and Urbanke [31]. ¿e material in
Section 3.20 is taken from the papers of Méasson, Montanari, and Urbanke [29, 30].

Several authors have considered ways of improving the BP decoder. Although
one can phrase this in many ways, the essential idea is to use the BP decoder to
reduce the originally large linear system to a (hopefully) small one (think of the
Maxwell decoder that introduces some symbolic variables and expresses the re-
maining bits in terms of these unknowns). ¿e latter system can then be decoded
directly by Gaussian elimination with manageable complexity. A patent application
which contains this idea was �led by Shokrollahi, Lassen, and Karp [45]. A varia-
tion on this theme was independently suggested by Pishro-Nik and Fekri [38]. ¿e
idea described above is reminiscent of the e�cient encoding method described in
Appendix A. ¿eMaxwell decoder (see Section 3.21) as the hidden bridge between
MAP and BP decoding is due toMéasson,Montanari, andUrbanke [29, 30]. Further
connections relating to the upper bound on the MAP threshold can be found at the
end of Chapter 4.

¿e concept of stopping sets (Section 3.22.1) was introduced by Richardson and
Urbanke in the context of e�cient encoding algorithms for LDPC ensembles [42].
Stopping sets play the same role for BP decoding over the BEC that codewords play
under MAP decoding. ¿e exact �nite-length analysis (Section 3.22) for regular en-
sembles was initiated by Di, Proietti, Richardson, Telatar, and Urbanke in [13]. ¿is
paper contained recursions to compute the exact ensemble average block erasure
probability for the regular case and more e�cient recursions for the special case of
le degree two and three. ¿is was quickly followed by extensions to irregular en-
sembles and the development of more e�cient recursions by Zhang and Orlitsky in
[54]. E�cient expressions for the general case which allowed the determination of
the bit as well as block erasure probability (with equal complexity) as well as a the
determination of the �nite-length performance for a �xed number of iterations and
expurgated cases were given by Richardson and Urbanke in [43]. Our exposition
follows closely this paper. An alternative approach to the �nite-length analysis was
put forth by Yedidia, Sudderth, and Bouchaud [53] (see also Wang, Kulkarni, and
Poor [52]).

Scaling laws have a long and successful history in statistical physics. We refer
the reader to the books by Fisher [17] and Privman [39]. ¿e idea of scaling was
introduced into the coding literature by Montanari [33]. ¿e scaling law presented
in Section 3.23 is due to Amraoui, Montanari, Richardson, and Urbanke [2]. ¿e
explicit determination of the scaling parameters for the irregular case as well as the
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optimization of �nite-length ensembles is due toAmraoui,Montanari, andUrbanke
and can be found in [3] (for a description of the Airy functions see [1].) ¿e re�ned
scaling law stated in Conjecture 3.153 was shown to be correct for le -regular right-
Poisson ensembles by Dembo and Montanari [11].

Miller and Cohen [32] proved that the rate of a regular LDPC code converges
to the design rate (Lemma 3.27). Lemma 3.22, which gives a general condition of
convergence of the code rate to the design rate, is due to Méasson, Montanari, and
Urbanke [30].

¿e �rst investigations into the weight distribution of regular LDPC ensembles
were already done by Gallager [18]. ¿e combinatorial expressions and expressions
for the growth rate were extended to the irregular case simultaneously for various
�avors of LDPC codes by Burshtein and Miller [9], Litsyn and Shevelev [22, 23]
as well as Di, Richardson, and Urbanke [14, 15]. ¿e related weight distribution of
stopping sets was investigated byOrlitsky, Viswanathan, and Zhang [36].Asymptotic
expansions for the weight distribution (not only its growth rate) using the Hayman
method were �rst given by Di [12]. Rathi [40] used the Hayman method to prove
concentration results for the weight distribution of regular codes (see also Barak
and Burshtein [6]).

¿e error �oor under BP decoding was investigated by Shokrollahi, Richardson,
and Urbanke in [41].

¿e weight distribution problem received considerable attention also in the sta-
tistical physics literature. Sourlas pointed out in [46, 47] that a code can be consid-
ered as a spin-glass system, opening the way for applying the powerful methods of
statistical physics to the investigation of the performance of codes. ¿e weight dis-
tribution of regular LDPC code ensembles was considered by Kabashima, Sazuka,
Nakamura, and Saad [20] and it was shown both by Condamin [10] as well as by
van Mourik, Saad, and Kabashima [50] that in this case the limit of 1

n log of the ex-
pected number of codewords equals the expected value of 1

n log of the number of
codewords, i.e., that the inequality (3.164) is in fact an equality. ¿e general weight
distribution was investigated by Condamin [10], and by van Mourik, Saad, and
Kabashima [50, 51].

Problems
3.1 (Poisson Ensemble). Consider the in�nite degree distribution Ri = cνi~i!,
i C 0, where ν is strictly positive. Find the constant c so that Pi Ri = 1. Express
the generating function R(x) = Pi Rixi in a compact form. What is the average
degree R′(1)? Find the corresponding degree distribution from an edge perspective
ρ(x). Consider the ensemble LDPC (n, λ, ρ). How should we choose ν so that the
ensemble has rate r?
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3.2 (Edge Perspective). Let (L(x),R(x)) denote a degree distribution pair from
the node perspective. Let (λ(x), ρ(x)) be the corresponding degree distribution
pair from an edge perspective as de�ned in (3.16). Prove that λi (ρi) is the probability
that a randomly chosen edge is connected to a variable (check) node of degree i.

3.3 (Average Variable and Check Node Degree). Prove that (Rλ)−1 is the av-
erage variable node degree and, similarly, that (Rρ)−1 is the average check node
degree.

3.4 (Design Rate). Prove that 1 − Rρ~ Rλ is equal to the design rate r(λ, ρ) of the
ensemble LDPC (n, λ, ρ).

3.5 (Your Friends HaveMore Friends Than You). ¿e following standard exer-
cise in graph theory has a priori no connection to coding. But it demonstrates very
well the di�erence of node and edge perspective.

Consider a graph (not bipartite) with node degree distributionΛ(x) = Pi Λixi.
¿is means that there are Λi nodes of degree i. ¿e total number of nodes is Λ(1)
and, since every edge has two ends, in order that such a graph exists we need Λ′(1)
to be even. ¿ink of the nodes as people and assume that each edge represents the
relationship of “friendship”, i.e, two nodes are connected if and only if the two re-
spective people are friends.

Express the average number of friends, call it a, in terms of Λ(x). Now express
the average number of friends of a friend in terms of Λ(x). Denote this quantity by
b. Show that in average a friend has more friends than the average person, i.e., show
that b − a C 0. What is the condition on Λ(x) so that this inequality becomes an
equality? Don’t take it personally. ¿is applies to everyone.

3.6 (Random Degree-One Variable Nodes are Bad). Consider an ensemble
LDPC (n, λ, ρ) ; LDPC (n,L,R) with λ(0) = λ1 A 0. Prove that in the limit of
large blocklengths, the fraction of degree-one variable nodes which are connected
to check nodeswhich in turn are connected to at least two degree-one variable nodes
converges to γ = 1− ρ(1− λ1). Use this result to conclude that if transmission takes
place over the BEC(є), then under any decoder the resulting bit erasure probability
is lower bounded by L1є2γ, which is strictly positive for any є A 0.

Discussion:¿is is the reasonwhywe did not include degree-one variable nodes
in our de�nition of LDPC ensembles. ¿e picture changes if edges are placed in a
structured way as discussed in more detail in Chapter 7.

3.7 (Tanner Codes – Tanner [48]). ¿e de�nition of the ensemble can be gener-
alized in the following way. Consider a set of n variable nodes and m generalized
check nodes. ¿e check nodes are de�ned in terms of a code C, where C has length
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r and dimension k. Assume that a check node is satis�ed if and only if the con-
nected variable nodes form a codeword in C. What is the design rate of the code as
a function of the parameters?

3.8 (Proper Projections). Prove Lemma 3.47 for general ℓ. Also, what happens if
you consider a projection onto a set of k randomly chosen components?

Hint: Take G and remove from it the computation tree T except for the leaf vari-
able nodes. Compute the expected number of codewords in such a graph assuming
that the leaf nodes take on the value 0. Lemma D.25 might come in handy for this
purpose. ¿en proceed as in the case ℓ = 0.

3.9 (Elements ofH(n, k)HaveHighDensity). ¿epurpose of this exercise is to
show that almost no binary linear code has a low-density representation. Consider
binary linear codes C[n, k], where k is the design dimension.

(i) Write down the total number of binary (n− k) � n parity-check matrices H.

(ii) Prove that each code C[n, k] is represented by at most 2(n−k)2 distinct (n −
k) � n parity-check matrices H.

(iii) Determine an upper bound on the number of binary (n−k)�n parity-check
matrices H with at most na non-zero entries, where a > R.

(iv) Conclude from (i), (ii), and (iii) and using Problem 1.25 that if we pick a bi-
nary linear code C[n, k] uniformly at random from Gallager’s parity-check
ensemble then the probability that one of its parity-checkmatrices has a num-
ber of ones which is at most na tends to zero. More precisely, show that if
k = rn, where r > (0,1), then the probability is upper bounded by an ex-
pression which asymptotically (as n grows) reads 2−αn2 for some constant α
which is positive (calculate α).

3.10 (Equivalence of Decoders). Show that the message-passing decoder of Sec-
tion 3.5 and the iterative decoder introduced in Section 1.9 (more precisely, the gen-
eralization of this decoder working on the Tanner graph) lead to identical results.
For any graph and any erasure pattern, the remaining set of erasures at the end of
the decoding process is identical.

3.11 (Suboptimality of Iterative Decoder). Find a simple graph and an erasure
pattern so that message-passing decoding fails on the BEC, but on the other hand
the ML decoder recovers the transmitted codeword. ¿is shows that in general the
message-passing decoder is suboptimal. What is the smallest example you can �nd?
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3.12 (Regular Example). Consider the regular degree distribution pair (λ(x) =
x2, ρ(x) = x6). Determine the rate, the threshold єBP (both graphically and analyti-
cally), the gap to capacity, and the stability condition. Further, determine the gap to
capacity which is predicted by¿eorem 3.86 and¿eorem 3.94.

3.13 (Density Evolution For Regular Example). Consider the regular degree
distribution pair (λ(x) = x2, ρ(x) = x5). For є = 4~10, determinePBP

ÑTℓ(є) andP
BP
T̊ℓ
(є)

for ℓ > [10].

3.14 (Analytic Determination of Threshold – Bazzi, Richardson, and Ur-
banke [8] ). Although one can use the graphical method discussed in Section 3.12
to determine the threshold to any degree of accuracy, it is nevertheless pleasing (and
not too hard) to derive analytic expressions. Solving (3.52) for є we get

(3.168) є(x) = x
λ(1 − ρ(1 − x)) .

In words, for a given positive real number x there is a unique value of є such that x
ful�lls the �xed point equation f(є,x) = x. ¿erefore, if x B є then the threshold is
upper bounded by є.

Consider the regular degree distribution pair (l,r). Let x̄BP denote the unique
positive real root of the polynomial p(x) = ((l − 1)(r − 1) − 1)xr−2 − Pr−3

i=0 xi.
Prove that the threshold єBP(l,r) is equal to єBP(l,r) = є(1 − x̄BP), where є(x) is
the function de�ned in (3.168).

Show that єBP(3,4) = 3125
3672+252

º
21
� 0.647426.

3.15 (Over-Complete Tanner Graphs – Vardy). Let C be a binary linear code
with dual CÙ. Let H be the parity-check matrix of C whose rows consist of all ele-
ments ofCÙ and let G be the corresponding Tanner graph. Assume that transmission
takes place over the BEC(є) and that the BP decoder continues until it no longer
makes progress. Show that in this case the BP decoder performs bit MAP decoding.
What is the drawback of this scheme?

3.16 (Equivalence of Convergence). Show that PBP
ÑTℓ(є)

ℓ�ª
Ð� 0 if and only if

PBP
T̊ℓ
(є) ℓ�ªÐ� 0.

3.17 (Asymptotic Bit Erasure Probability Curve). Regard the asymptotic bit
erasure probability curveELDPC(ª,λ,ρ) [PBP

b (G,є, ℓ�ª)]. Prove that it has the para-
metric form

(є,єL(1 − ρ(1 − x(є)))), є > [єBP,1],
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where x(є) is the largest root in [0,1] of the equation єλ(1−ρ(1−x)) = x. It is more
convenient to parametrize the curve by x (instead of є). Show that an equivalent
parametrization is

� x
λ(1 − ρ(1 − x)) ,

xL(1 − ρ(1 − x))
λ(1 − ρ(1 − x)) �, x C x(є

BP).

3.18 (Lower Bound on Gap). Prove¿eorem 3.86.
Hint: Start with (3.52) and argue that you can rewrite it in the form 1−ρ(1−x) B

λ−1 (x~єBP), 0 B x B 1. Now integrate the two sides from zero to єBP and simplify.

3.19 (Heavy-Tail Poisson Distribution Achieves Capacity). Show that the
heavy-tail Poisson distribution introduced in Example 3.91 gives rise to capacity-
achieving degree distribution pairs.

3.20 (Rank of Random Binary Matrix). Let R(l,m, k) denote the number of
binary matrices of dimension l �m and rank k, so that by symmetry R(l,m, k) =
R(m, l, k). Show that for l B m
(3.169)

R(l,m, k) =

¢̈̈
¨̈̈̈
¦̈̈̈
¨̈̈̈
¤̈

1, 0 = k < l,
2mlLl−1

i=0 �1 − 2i−m� , 0 < k = l,
R(l − 1,m, k)2k + R(l − 1,m, k − 1)(2m − 2k−1), 0 < k < l,
0, otherwise.

3.21 (ML Performance of H(n, k)). In this exercise we are concerned with the
maximum likelihood performance of the ensemble H(n, k). Let PBP

b (H,є) denote
the bit erasure probability of a particular code de�ned by the parity-check matrix
H when used to transmit over a BEC(є) and when decoded by a ML decoder. Let
PBP
B (H,є) denote the corresponding block erasure probability. Show that

EH(n,k)[PBP
b (H,є)] =

n
Q
e=0
�n
e
�єeє̄n−e e

n
PjR(e − 1,n − k, j)2j

2(n−k)e
,(3.170)

EH(n,k)[PBP
B (H,є)] =

n−k
Q
e=0
�n
e
�єeє̄n−e �1 −

e−1
M
i=0
�1 − 2i−n+k�	+

n
Q

e=n−k+1
�n
e
�єeє̄n−e,(3.171)

where R(l,m, k) is the number of binary matrices of dimension l �m and of rank
k (see Problem 3.20).
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3.22 (CycleCodes and the StabilityCondition). Consider the degree distribu-
tion pair (λ(x) = x, ρ(x)). Codes from such an ensemble (with all variable nodes
of degree 2) are called cycle codes. Show that єBP(λ(x) = x, ρ(x)) = 1

ρ′(1) , i.e., the
threshold of such a degree distribution pair is given by the stability condition.

3.23 (EXIT Function of Dual of Hamming Code). Find the dual of the [7,4,3]
Hamming code and determine its EXIT function by direct computation. Check that
your result agrees with the (duality) ¿eorem 3.78.

3.24 (Bounds on the Girth of a Tanner Graph –Gallager [19]). We are given
an undirected graph G with node set V and edge set E , where each edge e is a an
unordered pair of (not necessarily distinct) vertices, e.g., e = �vi,vj�. In this case
we say that e connects vertices vi and vj. A path is an ordered alternating sequence
of nodes and edges vi1 ,ei1 ,vi2 ,ei2 , . . . , so that eik = �vik ,vik+1�. A cycle in a graph
is a closed path. ¿e length of the cycle is the number of nodes (or edges) on this
path.¿e girth g of a graph is the length of the smallest cycle in the graph. Consider
the Tanner graph of an (l,r)-regular LDPC code of length n. Show that the girth g
of this graph grows at most logarithmically in n. More precisely, show that

g~4 − 1 < logn
log(l − 1)(r − 1) .

Conversely, can you show that it is always possible to construct such a graph with
girth ful�lling

g~4 + 1 A logn + log lr−l−r
2r

2 log(l − 1)(r − 1) C g~4 − 1.

For large n the construction promises a girth which is at least half of the given upper
bound.

3.25 (ConnectionGirthandMinimumStopping Set Size –Orlitsky,Urbanke,
Viswanathan, and Zhang). Let σ(l, g) denote the size of the smallest possible
stopping set in a bipartite graph with variable node degree l and girth g. Show that

(i) ∀l C 2, σ(l,2) = 1.

(ii) ∀l C 2, σ(l,4) = 2.

(iii) σ(l,6) = l + 1.

(iv) σ(l,8) = 2l.
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Can you show that, more generally,

σ(l, g) C
¢̈̈
¦̈̈
¤
1 + l + l(l − 1) +� + l(l − 1) g−6

4 , g~2 is odd,
1 + l + l(l − 1) +� + l(l − 1) g−8

4 , g~2 is even.
Conversely, can you show that

σ(l, g) B 4
l − 2

(l − 1) g+4
2

and σ(2, g) B g~2?
Note: if l = 2 the bounds on g grow linearly in n and, therefore, the size of the

smallest stopping set is atmostO(logn).¿is suggests that if in a graph a signi�cant
fraction of variable nodes has degree two then small stopping sets are likely to exist.

3.26 (Finite Geometry Construction – Kou, Lin, and Fossorier [21]). Con-
sider the following construction of a (l,r)-regular LDPC code of length n. Pick a
prime p. Let n = p2 and arrange the n variable nodes in a p� p grid. Choose a
slope and a shi and consider a line, i.e., the set of all points on this line. Each such
line contains exactly p points. Associate to each such line a check node, which is
connected to all the variable nodes on this line. If we pick all p shi s for a given
slope then we get pcheck nodes and every variable node participates in exactly one
check. Show that if we pick l distinct slopes then we get an LDPC code (i) of length
p2, (ii) with lp check nodes, (iii) with variable node degree l, and (iv) with check
node degree p. Show further that the resulting graph has girth exactly 6.

3.27 (Various Characterizations of EXIT Function). Prove the equivalence of
the various characterizations in Lemma 3.76.

3.28 (CycleCodes). Consider a cycle code ensemble LDPC (n,x, ρ(x)). Show that
the BP threshold and the MAP threshold are identical.

3.29 (EXIT Function of Hamming Code). Derive the EXIT function given in
Example 3.74 for the [7,4]Hamming code.
3.30 (Alternative Proof of Area Theorem). For the BEC there are many alter-
native proofs of the area theorem. Let us consider one such alternative here. Let C
be a binary linear code of rate r and length n. We want to show that R 1

0 h(є)dє = r.
LetΠ(n) denote the set of permutations on n letters. Assume that the 2nr code-

words of the code C are equally likely. Let K denote the index set of known bits.
Justify each of the following steps.

nS
1

0
h(є)dє = S

1

0

n
Q
i=1
hi(є)dє =

n
Q
i=1
S

1

0
H(Xi SY[n]��i�)dє
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=

n
Q
i=1
S

1

0
Q

K>[n]��i�
(1 − є)SKSєn−1−SKSH(Xi SXK)dє

(i)
=

n
Q
i=1

Q
K>[n]��i�

(n − 1 − SKS)!(SKS)!
n!

H(Xi SXK)

(ii)
=

1
n!

n
Q
j=1
Q

σ>Π[n]
H(Xσ(j) SXσ([j−1]))

=
1
n! Qσ>Π[n]

n
Q
j=1
H(Xσ(j) SXσ([j−1]))

(iii)
=

1
n! Qσ>Π[n]

H(X1, . . . ,Xn) (iv)= H(X) (v)= nr.

3.31 (Interpretation of Area Theorem). In the general case where bits are sent
over di�erent channels (the Area) ¿eorem 3.82 has the following interpretation: if
we change the set of all channels from some starting state to some �nal state (change
the individual channel parameters) then by doing so we change the conditional
entropy H(X SY). Assume that we connect the initial and the �nal state by some
smooth path, i.e., єi = єi(є) is a piecewise di�erentiable function of є for i > [n].
¿en the (average) EXIT function h(є) measures the change per dє of H(X SY).
More interestingly, since h(є) = 1

n P
n
i=1 hi(є), every bit position i contributes lo-

cally to this change according to hi(є). For di�erent curves that connect the same
�nal and initial state the total change ofH(X SY) along the path is the same but the
individual contributions according to hi(є) are in general di�erent.¿is is best seen
by a simple example.

Consider the [2,1,2] repetition code. Assume �rst that the two channels are
parametrized by є1 = є = є2, where є goes from 0 to 1.

Consider next the alternative parametrization є1(є) = min�1,є� and є2(є) =
max�0,є− 1�, where є > [0,2].

For both cases compute the individual contributions of the two EXIT functions.

3.32 (EXIT for Regular Ensembles). Prove inequality 3.125.
Hint: Although there is no conceptual di�culty, the proof we are aware of is on

the lengthy side. Either pick a particular l and prove the assertion for this l or prove
the statement for some “su�ciently large” l. Bon courage!

3.33 (Scaling of PB for H). Consider Gallager’s parity-check ensemble H(n, r)
and transmission over BEC(є). Show that the average block error probability under
MAP decoding behaves like

EH(n,r)[PB(H,є)] = Q �
º
n(є� − є)º
є�є̄�

�(1 +O(1~n)) .
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Hint: Make use of the results of Problem 3.20. More precisely, let A be a k �
m random binary matrix where each entry is chosen independently uniformly at
random from �0,1�. Use the fact that

P�rank (A) = k� =
¢̈̈
¦̈̈
¤
0, k A m,
Lk−1
i=0 �1 − 2i−m� , 0 B k B m.

3.34 (Minimal Codewords). Consider an ensemble LDPC (n, λ, ρ) with λ′(0) A
0. Show that as n tends to in�nity the number of codewords of a �xed weight w is
roughly

»
4w~π larger than the number of minimal codewords of weight w.

Hint: Expand out the two generating functions in Lemma 3.165.

3.35 (MAPversus BPThreshold). Consider the sequence of (i,2i)-regular LDPC
ensembles in the limit of large blocklengths.¿is exercise will show that the perfor-
mance of BP and MAP decoding can be arbitrarily di�erent but nevertheless the
�xed points of BP completely specify the MAP performance.

(i) What is the design rate of these ensembles? What is the Shannon threshold?

(ii) Give the parametric expression (є(x),hEBP(x)) for the EBP EXIT function.

(iii) Show that limi�ª є(x) = x for any 0 < x B 1.

(iv) Use (iii) to show that the sequence of BP thresholds єBP(i) converges to 0
when i �ª.

(v) Show that the sequence of MAP thresholds єMAP(i) converges to єSha = 1
2 if

i �ª.

(vi) Plot the asymptotic EBP EXIT curves for i = 2,3,4,6,12,24,72.

3.36 (Alternative Derivation of Stability Condition). Consider the asymp-
totic generating function as given in Lemma 3.165 and the resulting erasure �oor as
stated in Lemma 3.167. At what value of є does this erasure �oor expression diverge?
Does this value look familiar to you?

3.37 (Dominant Codeword Type). Consider the degree distribution pair (λ(x) =
0.15x + 0.15x2 + 0.7x60, ρ(x) = 0.1x4 + 0.2x5 + 0.2x6 + 0.3x7 + 0.2x20). Plot the
function Ψ(y) de�ned in Lemma 3.22 for this case and show that its maximum is
not taken on at u = 1. Does this necessarily mean that the relative weight of the
“dominant” codeword type is not one-half?
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3.38 (EXIT Out of Box). We have seen in Figure 3.128 that the EBP EXIT curve
can extend outside the “unit box.” ¿is happens, e.g., if λ′(0)ρ′(1) < 1. But this is
not the only possibility.

Construct a degree distribution with λ′(0)ρ′(1) A 1 whose EBP EXIT curve
goes “out of the unit box”.

3.39 (Dual Stability Condition at the BP Threshold). Consider a degree dis-
tribution pair (λ, ρ). Let єBP denote its threshold and let xBP denote a critical point.
Assume that xBP A 0. Let (λ̃, ρ̃) denote the degree distribution of the residual graph
at the threshold. Show that λ̃′(1)ρ̃′(0) = 1.

Hint: Start with the expressions (3.123) and (3.124).

3.40 (Scaling Parameters for Regular Case). Starting with the general expres-
sions given in Conjecture 3.153, show that for the (l,r)-regular case the scaling pa-
rameters take on the simple form

α = єBP
¾

l − 1
l
� 1
xBP
−

1
yBP
�,

and

β~Ω = єBP � l − 2
lxBPyBP

�
2~3
� l

(l − 1) +
(r − 2)xBP
1 − xBP

− 2�
−1~3

.

Hint: Use the relationships between єBP,xBP, and yBP obtained from the �xed point
equations and from the fact that the derivative of є(x) = x

λ(1−ρ(1−x)) vanishes at the
�xed point.
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Chapter 4

B I N A R Y M E M O R Y L E S S S Y M M E T R I C
C H A N N E L S

We now broaden our scope of channels from the BEC to the class of binary memo-
ryless symmetric (BMS) channels. Many concepts encountered during our study of
the BEC still apply and reappear suitable generalized. It might at �rst seem that this
expanded class of channels is still restricted and special, and that we are only cover-
ing a small portion of the large volume of channels encountered in practice. Actually,
however, a wide range of situations can be dealt with rather straightforwardly once
we have mastered BMS channels. One should therefore view the following as part
of the foundation upon which much of communications rests.

Sections 4.2-4.10 mirror Sections 3.5-3.6 and 3.8-3.14 and they form the core
material. ¿e remaining sections can be read in essentially any order. ¿ey contain
either more advanced topics or less accessible material.

General BMS channels aremathematicallymore challenging than the BEC. Sec-
tion 4.1 summarizes the necessary prerequisites. ¿is section is technical. Our ad-
vice: quickly skim it so you know what material it contains but do not study it in
detail. At any point later, when the need arises, you can return to �ll in gaps.

§4.1. Basic Definitions and Examples
§4.1.1. Log-Likelihood Ratios

It is convenient to let the input alphabet be ��1� instead of �0,1�, which we used
for the BEC. We use the standard mapping

F2 �
0 �� +1
1 �� −1 � ��1�

Under this mapping the additive group of F2, modulo-2 addition over �0,1�, is
faithfully represented as multiplication (of integers) over ��1�.

We denote the input to the channel by X, X > ��1�, and the output by Y, Y > Y ,
where Y can be either discrete or continuous. To avoid distracting and gratuitous
abstraction we nearly always assume that Y is a subset of R̄ = [−ª,+ª].We con-
sider only discrete time channels and we indicate the channel input and output at
time t by Xt and Yt, respectively.

¿ere are a few BMS channels of particular interest and we frequently illustrate
concepts and properties by means of them. We refer to the BEC, which is discussed

175
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176 binary memoryless symmetric channels

in detail in Chapter 3, but also to the binary symmetric channel (BSC) which is
discussed in Example 1.3, and the binary additive white Gaussian noise channel
(BAWGNC), which we review now.

Xt Yt

Zt � N (0,σ2)
Figure 4.2: BAWGNC(σ)

Example 4.1 (BAWGNC(σ)). Figure 4.2 depicts the binary additive white Gaussian
noise channel with noise variance σ2. We denote it by BAWGNC(σ). ¿e input Xt
is an element of ��1� and the output Yt is real-valued. More precisely, Yt = Xt +Zt,
where Zt is a Gaussian random variable with zero mean and variance σ2. ¿e ran-
domvariables �Zt� are independent. In the engineering literature several alternative
parametrizations are common.We can characterize the channel by EN~σ2, the ratio
of the energy per transmitted bit EN to the noise energy σ2 (this is called the signal-
to-noise ratio). For our setting we have EN = 1 since Xt > ��1�. Alternatively, the
measure Eb~N0 is o en quoted. Here, Eb is the energy per transmitted information
bit, Eb = EN~r, where r is the rate, andN0 = 2σ2 is the so-called double-sided power
spectral density. We therefore have Eb~N0 = EN~(2rσ2). ¿e signal-to-noise ratio
is sometimes quoted in dB, this means as 10 log10(EN~σ2), and the same is true for
Eb~N0. You can �nd a discussion on why these various characterizations are useful
on page 194. n

Definition 4.3 (Memoryless Channels). A channel described in terms of its
transition probability pY SX(y S x) is said to bememoryless 1 if

(4.4) pY SX(y S x) =M
t
pYt SXt(yt S xt).

¿e BEC(є), the BSC(є), and the BAWGNC(σ) are all memoryless. Except for
some extensions discussed in Section 5.3, all channels considered in this book are
memoryless.

Definition 4.5 (Log-LikelihoodRatio). Consider a binarymemoryless channel
de�ned by its transition probability pY SX(y S x). ¿e associated log-likelihood ratio

1¿e above de�nition is adequate if we restrict ourselves to channels without feedback,
as is always the case in this book. More generally, a channel is memoryless if and only if
pYt S Xt ,Xt−1 ,...,Yt−1 ,...(yt S xt,xt−1, . . . , yt−1 . . .) = pYt S Xt(yt S xt).
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function l(y) is de�ned as

(4.6) l(y) = ln pY SX(y S 1)
pY SX(y S − 1)

.

¿e log-likelihood ratio associatedwith the randomvariableY is de�ned as L = l(Y).
It is a random variable itself. Sometimes, slightly abusing notation, we denote it by
L(Y). S

§4.1.2. L is a Sufficient Statistic

For a binary memoryless channel, L constitutes a su�cient statistic with respect to
decoding. ¿is means that an optimal decoder can be based on the log-likelihood
ratio l(y) instead of on y itself.
Lemma 4.7 (Sufficient Statistic). Assume that X = (X1,� ,Xn) is chosen with
probability pX(x) from a code C and that transmission takes place over a binary
memoryless channel. Let Y = (Y1,� ,Yn) denote the observation at the output of
the channel and let L = (L1,� ,Ln) denote the corresponding vector of (bit-wise)
log-likelihood ratios, i.e., Li = l(Yi). ¿en L constitutes a su�cient statistic for esti-
mating X given Y and L also constitutes a su�cient statistic for estimating Xi given
Y.
Proof. To prove that L constitutes a su�cient statistic for estimating X given Y
it su�ces to show that pY SX(y S x) can be factored as a(x, l)b(y) for some suit-
able functions a(ċ, ċ) and b(ċ) (see page 29). Start with pY SX(y S x) and express it
asLi pYi SXi(yi S xi) using the fact that the channel is memoryless. Now divide the
expression by the constantLi pYi SXi(yi S − 1) and write each ratio

pYi SXi(yi S xi)~pYi SXi(yi S − 1)
as exp(li 12(xi + 1)). Putting it together, we have

pY SX(y S x) = �e
1
2 Pi xi li��e 1

2 Pi liM
i
pYi SXi(yi S − 1)� = a(x, l)b(y),

where the last step is valid since li is a function of yi. In a similar manner,

pY SXi(y S xi) =
�
� Q
c>C�ci=xi

e
1
2 Pjxjlj pX(x)

pXi(xi)
�
��e

1
2 Pj ljM

j
pYj SXi(yj S − 1)�

= a(xi, l)b(y),
showing that L constitutes a su�cient statistic for estimating Xi given Y.

Without essential loss of generality we can therefore assume that the �rst step of
a receiver is to apply the function l(ċ). In fact, this preprocessing can be interpreted
as part of the channel.
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§4.1.3. Symmetric Channels

Definition 4.8 (Channel Symmetry). AssumeY ⊂ R̄.We say that a binarymem-
oryless channel is symmetric (more precisely, output-symmetric) if

(4.9) pY SX(y S 1) = pY SX(−y S − 1).

Example 4.10 (Symmetryof StandardChannels). Our three standard channels,
the BEC, the BSC, as well as the BAWGNC, are all symmetric. n

§4.1.4. Distributions

¿e distributions of log-likelihood ratios L = l(Y) associated with BMS channels
play an important role in the study of iterative decoding. For some (standard) chan-
nels these distributions show esoteric mathematical features, including the occur-
rence of (Dirac) delta functions at in�nity. In order to provide a mathematically
sound foundation it is necessary to discuss these concepts in some detail.

Let AL denote the space of right continuous, non-decreasing functions A de-
�ned over R satisfying limx�−ªA(x) = 0 and limx�+ªA(x) B 1. To each A > AL
we associate a randomvariableXover (−ª,+ª].¿erandomvariableXhas law or
distributionA, i.e.,P�X > (−ª,x]� = A(x).¿ereasonwe allow limx�+ªA(x) B 1
(i.e., we allow an inequality) is to permit X to have some probability mass at +ª.
Indeed, P�X = +ª� = 1 − limx�+ªA(x). Given an element A > AL we de�ne
A−(x) to be the le limit of A at x, i.e., A−(x) = limy�x A(y). Note that A−(x) is
le continuous.

We work with “densities” over (−ª,+ª]. Formally, these densities are (Radon-
Nikodyn) derivatives of elements ofAL.¿ederivative, when it exists, is the density
of the associated random variable X over (−ª,+ª), although there may be an
additional point mass at +ª. We use densities primarily in the following way: given
A > AL the Lebesgue-Stieltjes integral R g(x)dA(x) is well-de�ned for, e.g., non-
negative continuous functions g. If a is the density corresponding to the distribution
A we write R g(x)a(x)dx as a proxy for R g(x)dA(x). If A−(+ª) < 1 and if the
limit limx�+ª g(x) exists, then one has to include the term

(1 −A−(+ª))( lim
x�+ª

g(x))

in the de�nition of R g(x)a(x)dx.
For z > R, let Hz denote the (Heavyside) distribution de�ned by

Hz(x) =
¢̈̈
¦̈̈
¤
0, x < z,
1, x C z.
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¿e density associated with Hz is ∆z, de�ned by ∆z(x) = ∆0(x − z), where ∆0(x)
is the (Dirac) delta of unit mass centered at zero.

Given A,B > AL, their convolution A e B is de�ned by (A e B)(x) = R A(x −
y)dB(y) = R B(x − y)dA(y). ¿e integral is de�ned for almost all x and right
continuity determines the rest. Note that A e B > AL. ¿is generalizes the notion
of convolution of densities, for if A and B have corresponding densities a and b,
respectively, then (AeB) is the distribution corresponding to the density aeb.We
write aeb to indicate the density associated with the distribution AeB > AL.One
can check that if Z1 and Z2 are independent random variables over (−ª,+ª]with
distributions AZ1 and AZ2 respectively, then the distribution of Z1 +Z2 is AZ1 eAZ2
(as is the case for independent random variables de�ned over (−ª,+ª)).
Definition 4.11 (Symmetry of Distribution). We call A > AL symmetric if

S f(x)dA(x) = S e−x f(−x)dA(x)

for all bounded continuous functions f(x) so that f(−x)e−x is bounded. For den-
sities the equivalent statement is that a density a is symmetric if a(x) = exa(−x) for
all x > R (see Problem 4.3). S

¿is concept is closely linked to that of the symmetric channel introduced in
Section 4.1.3.

As we will discuss shortly, the space AL is the space of distributions of log-
likelihood ratios L = l(Y) of BMS channels, conditioned on X = 1. Elements of
this space are therefore referred to as L-distributions and the corresponding densi-
ties as L-densities. Sometimes it is more convenient to work with alternative quan-
tities, i.e., to make a change of variables. One example is the absolute value of the
log-likelihood ratio SLS. If the distribution of L is symmetric (in the next section we
show that L-distributions for BMS channels are always symmetric), then the distri-
bution of L, conditioned on X = 1, is determined by the distribution of SLS, which
does not depend on the value X.¿e distributions of these random variables is the
sub-space of AL consisting of those A > AL such that A−(0) = 0. ¿is space we
denote byASLS and the elements are termed SLS-distributions.

A function which is closely related to l(y) is

d(y) = tanh(l(y)~2) = 1 − e−l(y)

1 + e−l(y)
= pX SY(1 S y) − pX SY(−1 S y),(4.12)

where in the last step we have used Bayes rule and assumed that pX(1) = pX(−1) =
1
2 .We see that d(y) takes values in [−1,1]. By de�nition, from l(y) one can compute
d(y), but the reverse is true as well.Whenwe conceive of d(y) as a random variable
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we write D = d(Y). Conditioned on X = 1, we have d(Y) > (−1,1]. A distribution
of D conditioned on X = 1 is termed a D-distribution and the associated density a
D-density. We denote the space of right continuous distributions on (−1,1] byAD.
For each A > AD we have A(1) = 1 and limy�−1 A(y) = 0.

If a is a D-density then symmetry takes the form

(4.13)
a(y)
a(−y) =

1 + y
1 − y

.

In integral form, we say that A is symmetric if

S
1

−1
f(y)dA(y) = S

1

−1
f(−y)1 − y

1 + y
dA(y)(4.14)

for all bounded continuous functions f(y) on [−1,1] so that f(−y) 1−y1+y is bounded.
¿us, again,when symmetry holds, theD-distribution is completely determined

by the distribution of SDS.¿is random variable is distributed on [0,1]. Its distribu-
tion is termed a SDS-distribution and the associated density is termed a SDS-density.
¿e space of channels with symmetric distributions is therefore equivalent to the
space of probability distributions on [0,1].

In the analysis of iterative decoding we are o en concerned with the issue of
convergence of densities. Let us make this precise.

Definition 4.15 (Convergence inDistribution/WeakConvergence). We say
that a sequence of D-densities �ai� converges in distribution to a density a if their
cumulative distributions �Ai� converge point-wise at all points of continuity of A.
Rather than looking at D-distributions, it is equivalent to consider the point-wise
convergence of L-distributions or G-distributions.

Convergence in distribution is equivalent to weak convergence. We say that a
sequence of D-densities �ai� converges weakly to the density a if for all bounded
and continuous functions f(x) on [−1,1]

lim
i�ªS

1

−1
f(x)dAi(x) = S

1

−1
f(x)dA(x).

Naturally, we can invoke the equivalent condition for densities in any of the standard
representations. S

Lemma 4.16 (The Limit of Symmetric Densities is Symmetric). If a sequence
of symmetric densities converges in distribution/weakly then the limit density is
symmetric.
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Proof. Assume that the sequence of symmetric D-densities with cumulative distri-
butions �Ai� converges weakly to theD-density with cumulative distributionA. By
assumption each Ai is symmetric. Using the characterization of symmetry (4.14),
this means that for all bounded continuous f(x) on [−1,1] so that f(−x) 1−x1+x is
bounded we have

S
1

−1
f(x)dAi(x) = S

1

−1
f(−x)1 − x

1 + x
dAi(x).

By assumption the sequence �Ai� converges weakly to A. Since both f(x) as well
as f(−x) 1−x1+x are continuous and bounded we can take the limit on both sides to
conclude that Aª is symmetric.

A technical but important point is the following.

Lemma 4.17 (Sequential Compactness). ¿e space of symmetric densities is se-
quentially compact.

Discussion: If you are not familiar with sequential compactness you need not
worry. We will use this result sparingly and primarily as a technical convenience. It
means that given a sequence of symmetric densities there exists a subsequence that
converges to a limit density and that this limit density is symmetric (which we know
from Lemma 4.16).

Proof. To be concrete, consider a sequence of D-densities �ai� and their associ-
ated D-distributions �Ai�. Let �yi�i>N be an enumeration of the rational points in
[−1,1]. (¿is is a countable set.)

We use a standard diagonalization procedure. First, �nd a subsequence �1i�i>N
of N so that �A1i(y1)� converges. ¿is can be done since each distribution takes
values in [0,1], which is compact (and so also sequentially compact). Next �nd
�2i�i>N, a subsequence of �1i�i>N, so that �A2i(y2)� converges. Continue in this
fashion. By construction, the sequence of distributions �Aii� (this is the sequence
of “diagonal” elements) converges at all rational points of [−1,1].

Since each Aii is non-decreasing it follows that the limit (on the rationals) is
non-decreasing. Using right continuity we uniquely de�ne the limit distribution
Aª. If x is any point of continuity of Aª then by looking at rational points arbi-
trarily close to x we see that �Aii(x)� converges toAª(x). It follows that �Aii(x)�
converges in distribution/weakly to Aª(x).

From Lemma 4.16 we know that the weak limit of symmetric densities is sym-
metric.
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Let us agree on the following slightly unconventional probabilistic de�nition of
the hard-decision function. ¿is function takes as input a log-likelihood ratio asso-
ciated with a bit and outputs the hard decision of this bit:

H(x) =

¢̈̈
¨̈̈̈
¦̈̈̈
¨̈̈̈
¤̈

+1, if x A 0,
+1, with probability 1

2 if x = 0,
−1, with probability 1

2 if x = 0,
−1, if x < 0.

(4.18)

¿e reason for �ipping a fair coin to make the decision if the random variable takes
on the value zero is that in some cases (e.g., in the case of transmission over the
BEC) the observed random variable has a point mass at zero.

-5 -4 -3 -2 -1 0 1 2 3 40
1
2
3
4

x

Figure 4.19: ln coth S x S2

Another quantity that is of special interest in the analysis of parity checks is

(4.20) g(y) =�H(l(y)), ln coth(Sl(y)S~2)�=�H(d(y)),− ln Sd(y)S�.

Note that g(y) takes values in ��1��[0,+ª].A plot of ln coth S x S2 is shown in Fig-
ure 4.19. We write G = g(Y), or simply G(Y), if we refer to the corresponding ran-
dom variable. Distributions of G conditioned on X = 1 are termed G-distributions
and the associated densities G-densities.

For a G-density a(s,x), where s > ��1� and x > [0,ª], symmetry exhibits the
form

a(1,x) = a(−1,x) coth(x~2).(4.21)

As before, when symmetry holds, aG-distribution is completely speci�ed by its cor-
responding SGS-distribution. Consider aG-distributionA(s,x).WriteA(s,x) in the
form

A(s,x) = 1�s=1�A(1,x) + 1�s=−1�A(−1,x),
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where A(1,x) and A(−1,x) are non-decreasing and right continuous,

lim
x�+ª

A(1,x) C lim
x�+ª

A(−1,x),

and where A(1,0) C 0 and A(−1,0) = 0 (the last two conditions correspond to
the conditions limx�+ªA(x) B 1 and limx�−ªA(x) = 0 for functions inAL.) We
speak of densities over ��1� � [0,+ª],

a(s,x) = 1�s=1�a(1,x) + 1�s=−1�a(−1,x) ,

by substituting for A(1,x) and A(−1,x) their associated densities.¿e de�nition is
analogous to that used forAL except that, here, a(1,x) has a point mass at x = 0 of
magnitude A(1,0), and both a(1,x) and a(−1,x) have point masses at x = +ª of
magnitude 1

2(1 − limx�+ªA(1,x) − limx�+ªA(−1,x)). We split this point mass
(which corresponds to the probability of erasure) evenly so that the symmetry con-
dition (4.21) stays ful�lled also for x = +ª. We are only interested in densities over
��1� � [0,+ª] that satisfy these conditions. We denote the space of such distribu-
tions byAG.

Let Γ be themapwhichmaps L-distributions intoG-distributions and let Γ−1 be
its inverse. LetA be an L-distribution and letA be the correspondingG-distribution.
We then have

A(1,x C 0) = 1 −A−(ln coth(x~2)), A(−1,x C 0) = A(− ln coth(x~2)),
A(x C 0) = 1 −A−(1, ln coth(x~2)), A(x < 0) = A(−1, ln coth(−x~2)).

and A(0) = 1
2(1 − limx�+ªA(1,x) − limx�+ªA(−1,x)). One can check that

Γ−1(Γ(A)) = A for all A > AL. Further, Γ and Γ−1 are linear operators on the spaces
AL and AG, respectively. For convenience, although it constitutes an abuse of no-
tation, we apply Γ and Γ−1 to densities as well. It is implicitly understood that the
notation is a representation of the appropriate operation applied to distributions.

¿e spaceAG has a well-de�ned convolution: the convolution of

1�s=1�A(1,x) + 1�s=−1�A(−1,x) and 1�s=1�B(1,x) + 1�s=−1�B(−1,x)

is the distribution

1�s=1��A(1, ċ) � B(1, ċ) +A(−1, ċ) � B(−1, ċ)�+
1�s=−1��A(−1, ċ) � B(1, ċ) +A(1, ċ) � B(−1, ċ)�,

where � denotes the (one-sided) convolution of standard distributions. In other
words, the new convolution is a convolution over the groupF2 �[0,+ª].We denote
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A(z) = A(2 tanh−1(z)),L to D
a(z) = 2a(2 tanh−1(z))~(1 − z2),
A(z) = A(tanh(z~2)),D to L
a(z) = a(tanh(z~2))~(2 cosh2(z~2)),

A(1, z C 0) = 1 −A−(ln coth(z~2)),L to G
A(−1, z C 0) = A(− ln coth(z~2)),
a(1, z C 0) = a(ln coth(z~2))~ sinh(z),

a(−1, z C 0) = a(− ln coth(z~2))~ sinh(z),
A(z C 0) = 1 −A−(1, ln coth(z~2)),G to L
A(z < 0) = A(−1, ln coth(−z~2)),
a(z C 0) = a(1, ln coth(z~2))~ sinh(z),
a(z < 0) = a(−1, ln coth(−z~2))~ sinh(−z),

Table 4.22: Relationship between various representations of distributions.

this convolution by the symbol�. Again, we shall allow the convolution operator to
act on the densities associated with elements ofAG with the implicit understanding
that the above provides the rigorous de�nition.

We have seen above that the variables of interest to us can be represented in the
L, D, or G-domain and that the L and the G domain have associated convolutions.
¿e following convention will limit our notational burden. We write e if we mean
the convolution in the L domain and � if we refer to the convolution in the G do-
main, regardless of the representation of the density which is used: a � b denotes
the density which is the result of transforming both a and b into theG domain, then
performing the � convolution, and �nally transforming the result back into the L-
domain. We will see shortly that e describes how the distribution of the messages
changes at a variable node under the so-called belief-propagation decoder, while �
describes the change of this distribution at the check node side.

We frequently need to convert random variables from one representation into
another. ¿erefore, for later reference we record in Table 4.22 the relationships be-
tween the various distributions and densities. Since channels can be represented by
their distributions, very o en we use a distribution to indicate the associated chan-
nel. It is sometimes convenient to represent this in the following graphical way:

x a
Ð� Y, Z � a, Y = xZ,L-densities
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x
SaS
ÐÐ� (S,Y), Y � SaS, x

BSC� e−Y

1+e−Y
�

ÐÐÐÐÐÐÐ� S,SLS-densities
x a
Ð� Y, Z � a, Y = xZ,D-densities

x
SaS
ÐÐ� (S,Y), Y � SaS, x

BSC� 1−Y2 �
ÐÐÐÐÐ� S.SDS-densities

To be concrete, consider the �rst line. It gives an operational interpretation of the
L-representation of a symmetric density a: the transmitted bit x > ��1� is multi-
plied by a random variable Z which is distributed according to a. If, on the other
hand, we characterize the channel by its SLS-density, then it is natural to represent
the observation by the tuple (S,Y). Here, Y is distributed according to SaS and gives
the reliability of the observation. Further, S is the result of sending x through a BSC
with cross-over parameter e−Y

1+e−Y . We can think of S as the sign. ¿e interpretations
using D-densities is similar.

Let us determine the distributions associated with our three standard examples
demonstrate symmetry of the distributions in each case.

Example 4.23 (Distributions fortheBEC(є)). Consider theBEC(є) as inChap-
ter 3 but assume that the input takes values in ��1�. Let ABEC(є)(y) denote the L-
distribution, assuming that X = 1. Note that Y can only take on the values 1 or ?. We
have l(1) = ln((є̄)~0) = +ª and, since pY SX(1 S 1) = є̄, this occurs with probability
є̄. In the samemanner l(?) = ln(є~є) = 0, which occurs with probability є. It follows
that

ABEC(є)(y) = SABEC(є)S(y) = єH0(y),
aBEC(є)(y) = SaBEC(є)S(y) = є∆0(y) + є̄∆+ª(y).

Since both∆0 and∆+ª are symmetric L-distributions, it follows that aBEC(є) is sym-
metric. ¿e D-distribution and associated D-density are given by

ABEC(є)(y) = SABEC(є)S(y) = єH0(y) + є̄H1(y),
aBEC(є)(y) = SaBEC(є)S(y) = є∆0(y) + є̄∆1(y).

In both cases it is understood that the functions are only de�ned on [−1,1]. Since
both ∆0 and ∆1 are symmetric D-distributions, it follows that aBEC(є) is symmetric.
Finally, the G-distribution and associated G-density are

ABEC(є)(1, y) = є̄H0(y), ABEC(є)(−1, y) = 0,
aBEC(є)(1, y) = є̄∆0(y) + є2∆+ª(y), aBEC(є)(−1, y) = є2∆+ª(y).

Symmetry is checked easily using (4.13). Of course, symmetry of a distribution in
any representation (L,D,G) implies symmetry in all other representations. n
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Example 4.24 (Distributions for the BSC(є)). ¿e L-distribution assuming
X = 1 is

ABSC(є)(y) = єH− ln є̄
є
(y) + є̄Hln є̄

є
(y), SABSC(є)S(y) = Hln є̄

є
(y),

aBSC(є)(y) = є∆− ln є̄
є
(y) + є̄∆ln є̄

є
(y), SaBSC(є)S(y) = ∆ln є̄

є
(y).

For y x �y0 = ln є̄
є , we have aBSC(є)(�y) = 0, so symmetry follows from

aBSC(є)(y0) = є̄ = eln
є̄
єє = ey0aBSC(є)(−y0).

Similarly, the D-distribution and the corresponding D-density are

ABSC(є)(y) = єH−(1−2є)(y) + є̄H1−2є(y), SABSC(є)S(y) = H1−2є(y),
aBSC(є)(y) = є∆−(1−2є)(y) + є̄∆1−2є(y), SaBSC(є)S(y) = ∆1−2є(y).

To verify the symmetry in this representation directly using (4.13) note that

є̄
є
=
1 + (1 − 2є)
1 − (1 − 2є) .

Finally, the G-distribution and associated G-density are

ABSC(є)(1, y) = є̄H− ln(1−2є)(y), ABSC(є)(−1, y) = єH− ln(1−2є)(y),
aBSC(є)(1, y) = є̄∆− ln(1−2є)(y), aBSC(є)(−1, y) = є∆− ln(1−2є)(y).

We can verify the symmetry in this representation directly using (4.21). We have

є̄ = є coth�− ln(1 − 2є)
2

� = єє̄
є
. n

Example 4.25 (Distributions for BAWGNC(σ)). For the BAWGNC(σ) it is eas-
ier to specify the L-density directly (instead of the L-distribution),

aBAWGNC(σ)(y) =
¾

σ2

8π
e−

(y− 2
σ2
)2σ2

8 .

¿is is a Gaussian with mean 2
σ2 and variance

4
σ2 . Symmetry is veri�ed by

aBAWGNC(σ)(y) =
¾

σ2

8π
e−

(y− 2
σ2
)2σ2

8 =

¾
σ2

8π
eye−

(−y− 2
σ2
)2σ2

8 = eyaBAWGNC(σ)(−y).
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¿e D-density is given by

aBAWGNC(σ)(y) = σº
2π(1 − y2)e

−
(1−σ2 tanh−1(y))2

2σ2 =
e−

4+σ4 ln2((1+y)~(1−y))
8σ2º

2π(1 − y2)

¾
1 + y
1 − y

.

Symmetry is easily checked using the last formulation. Finally, the G-density is

aBAWGNC(σ)(�1, y) = e−
(2�σ2 ln coth(y~2))2

8σ2
σº

8π sinh(y)
= e−

4+σ4(ln coth(y~2))2
8σ2

σº
8π sinh(y)�coth(y~2)�

�
1
2 .

¿e second representation allows us to check the symmetry condition in a straight-
forward fashion. Figure 4.26 shows the L-density , the D-density , as well as the cor-
responding G-density for σ = 5~4. n
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Figure 4.26: ¿e L-density aBAWGNC(σ)(y), the D-density aBAWGNC(σ)(y), as well as
the corresponding G-density aBAWGNC(σ)(�1, y) for σ = 5~4.

§4.1.5. BMS Channels Have Symmetric Distributions

¿e symmetry of the above three examples is no coincidence. As the following the-
orem asserts, the L-distribution for any BMS channel is symmetric (and hence so
are the D-distribution and the G-distribution).

Theorem 4.27 (Symmetry of L-Distribution for BMS Channels). Consider a
BMS channel with transition probability pY SX(y S x) and letA denote the associated
L-distribution. ¿en A is symmetric.
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Proof. Recall that the L-density is the density of l(Y) conditioned on X = 1. In
order to avoid technicalities, let us assume that a is a smooth density (without, e.g.,
point masses).

According to De�nition 4.11 we need to show that a(z) = eza(−z) for all z > R.
Consider a small interval [z, z + ∆z]. ¿en we have

a(z)∆z � P�Y > l−1([z, z + ∆z])� = S
y>l−1([z,z+∆z])

pY SX(y S 1)dy,

a(−z)∆z � P�Y > l−1([−z − ∆z,−z])� = S
y>l−1([−z−∆z,−z])

pY SX(y S 1)dy.

Using the channel symmetry condition (4.9) we have

l(y) = ln pY SX(y S 1)
pY SX(y S − 1)

= ln
pY SX(−y S − 1)
pY SX(−y S 1)

= −l(−y).(4.28)

¿is implies that l−1(z) = −l−1(−z). We therefore have

a(z)∆z � S
y>l−1([z,z+dz])

pY SX(y S 1)dy
(i)
� S

y>l−1([z,z+dz])
ezpY SX(y S − 1)dy

(4.9)
= S

y>l−1([z,z+dz])
ezpY SX(−y S 1)dy

(4.28)
= ezS

y>l−1([−z−dz,−z])
pY SX(y S 1)dy � eza(−z)∆z.

In step (i) we used the fact that for all y > Y wehave pY SX(y S 1) = el(y)pY SX(y S−1).
¿e proof concludes by letting ∆z tend to zero.

Recall that a symmetric L-density a is fully determined by the associated SLS-
density SaS,

a(y) = 1�yC0� 1
1 + e−y

SaS(y) + 1�yB0� ey

1 + ey
SaS(−y).

¿is has the important practical consequence that if we want to estimate a(−y) for
large values of y (where a(−y) is typically very small since a(y) = a(−y)ey and
since the integral is normalized to one) then it su�ces to estimate the much larger
quantity SaS(y) – an easier task.

Motivated by Lemma 4.7, we say that two BMS channels are equivalent if they
have the same L-distribution. It is o en convenient to pick one representative from
each equivalence class. ¿is can be done as shown in the following lemma.

Lemma 4.29 (Channel Equivalence Lemma). Let a(y) be a symmetric L-density.
¿e binary symmetric channel pY SX(ċ S ċ) with pY SX(y S 1) = a(y) (and, hence, by
symmetry pY SX(y S − 1) = a(−y)) has an associated L-density equal to a(y).
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Proof.

l(y) = ln pY SX(y S 1)
pY SX(y S − 1)

= ln
a(y)
a(−y) = ln

a(y)
a(y)e−y = y.

§4.1.6. APP Processing and Symmetry

Wehave just seen that for a BMS channel the distribution of L, conditioned onX = 1,
is symmetric. ¿is symmetry is preserved under APP processing.

Theorem 4.30 (LinearCodes andAPP Processing). Let X be chosenwith prob-
ability pX(x) from a binary linear code C. Assume that transmission takes place
over a binary and memoryless channel and let Y denote the output of the channel.
De�ne

ϕi(y�i) = ln
pXi SY�i(+1 S y�i)
pXi SY�i(−1 S y�i)

,(4.31)

and Φi = ϕi(Y�i). Further, let li(yi) = ln
pYi S Xi(yi S+1)
pYi S Xi(yi S−1)

and Li = li(Yi). ¿en Φi

constitutes a su�cient statistic for estimating Xi given Y�i and Li +Φi constitutes a
su�cient statistic for estimating Xi given Y.

If pX(x) is uniform, the i-th component of C is proper, and the channel is sym-
metric then the distribution of Φi assuming that Xi = 1 is equal to the distribution
ofΦi assuming that the all-one codeword was transmitted. Further, in this case the
“channel” pΦi SXi(ϕi S xi) is symmetric and ϕi is a log-likelihood ratio.

Discussion: ¿e quantity Φi = ϕi(Y�i) is called the extrinsicMAP estimate (of
Xi). ¿e word “extrinsic” refers to the fact that we base our estimate on Y�i and do
not include the direct observation Yi.

Proof. Start with pY�i SXi(y�i S xi). Use the Bayes rule, divide the resulting expres-
sion by pXi SY�i(−1 S y�i), and rewrite pXi SY�i(xi S y�i)~pXi SY�i(−1 S y�i) in the form
eΦi

(xi+1)
2 . From this we see that

pY�i SXi(y�i S xi) =
eΦi

xi
2

pXi(xi)
�eΦi

2 pXi SY�i(−1 S y�i)pY�i(y�i)� =
exi

Φi
2

pXi(xi)
b(y�i).

According to our discussion on page 29, this shows that Φi constitutes a su�cient
statistic for estimating Xi given Y�i. In a similar manner,

pY SXi(y S xi) =
exi

Φi+Li
2

pXi(xi)
b(y).
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¿is shows that Li +Φi constitutes a su�cient statistic for estimating Xi given Y.
If we assume that X is chosen uniformly at random from a binary linear code

whose i-th component is proper then it follows that Xi has a uniform prior. ¿ere-
fore, applying the Bayes rule to both denominator and numerator of the ratio (4.31),
we see thatΦi is in fact a log-likelihood ratio. We now show that the distribution of
Φi conditioned on X = c, c > C, is only a function of ci. Let ϕ−1i (z) denote the set
of all y�i > Rn−1 such that ϕi(y�i) = z. Now, for any codeword w > C, we have

pY�i SXi(y�i S 1)
pY�i SXi(y�i S − 1)

=

Pu>C�ui=1 pY�i SX(y�i Su)
Pu>C�ui=−1 pY�i SX(y�i Su)

=

Pu>C�ui=1 pY�i SX(w�iy�i Suw)
Pu>C�ui=−1 pY�i SX(w�iy�i Suw)

BMS channel

=

Pu>C�ui=wi pY�i SX(w�iy�i Su)
Pu>C�ui=−wi pY�i SX(w�iy�i Su)

by linearity of C

=

pY SXi(w�iy�i Swi)
pY SXi(w�iy�i S −wi)

,

so that for all w > C

(4.32) y�i > ϕ−1i (z)� w�iy�i > ϕ−1i (wiz).
Let Au

i (z) denote the cumulative distribution of Φi conditioned that u was trans-
mitted, u > C. If u,w > C then

Au
i (z) = Sy�i>ϕ−1i ((−ª,z])

pY SX(y�i Su)dy�i

= S
y�i>ϕ−1i ((−ª,z])

pY SX(u�iw�iy�i Sw)dy�iBMS channel

= S
u�iw�iy�i>ϕ−1i ((−ª,z])

pY SX(y�i Sw)dy�i.

If uiwi = 1 then by (4.32) the last expression is equal to Awi (z). On the other hand if
uiwi = −1 then by (4.32) the last expression is equal to 1 − Awi (−z) (assuming that
there is no point mass at z).

¿is shows that the distribution ofΦi conditioned on Xi = 1 equals the distribu-
tion ofΦi conditioned that the all-one codeword was transmitted, since the former
is just the average of all choices where ci = 1 and all these choices have the same
distribution. Further, the distribution of Φi conditioned on Xi = 1 is the reverse
(�ip around vertical axis) of the distribution ofΦi conditioned on Xi = −1. In other
words, the channel pΦi SXi(ϕi S xi) is symmetric.

Problem 4.6 discusses a simple generalization.
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§4.1.7. Smooth Channel Families

Definition 4.33 (Smooth Channel Families). Consider a family of BMS chan-
nels characterized by their L-densities �aє� and parameterized by є, where є takes
values in some interval I b R.¿e channel family is said to be smoothwith respect to
the parameter є if for all continuously di�erentiable functions f(y) so that ey~2 f(y)
is bounded, the integral R f(y)aє(y)dy exists and is a continuously di�erentiable
function with respect to є, є > I. S

Discussion: Why do we ask that ey~2 f(y) is bounded rather than f(y) itself?
¿is is due to the symmetry of a: it is then “natural” to write

S f(y)aє(y)dy = S �ey~2 f(y)� �e−y~2aє(y)�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

even in y

dy.

In the sequel we o en say as a shorthand that BMSC(є) is smooth to mean that
we are transmitting over BMSC(є) and that the family �BMSC(є)� is smooth at the
point є. Under the stated conditions, the derivate d

dє R f(y)aє(y)dy exists and it is
a linear functional of f. It is therefore consistent to formally de�ne the derivative of
aє(y) with respect to є by setting

S f(y)daє(y)
dє

dy =
d
dє S f(y)aє(y)dy.(4.34)

For a large class of channel families it is straightforward to check that they are
smooth. ¿is is, e.g., the case if the output alphabet Y is �nite and the transition
probabilities are di�erentiable functions of є, or if it admits a density with respect
to the Lebesgue measure, and the density is di�erentiable for each y. In these cases,
the formal derivative (4.34) coincides with the ordinary derivative.

Example 4.35 (Smoothness of Standard Families). ¿e families �BEC(є)�1є=0,
�BSC(є)�

1
2
є=0, as well as �BAWGNC(σ)�+ªσ=0 are all smooth. n

§4.1.8. Capacity Functional for BMS Channels

We now show that the capacity of a BMS channel is a linear functional of its L-
density. ¿is simpli�es the determination of the capacity itself. ¿is fact can also be
exploited when searching for good degree distribution pairs and it plays a vital role
in the de�nition of the EXIT as well as the GEXIT function.

Lemma 4.36 (Capacity Functional). Let a be the L-density and a be the D-
density associated with a BMS channel. ¿en the capacity of this channel in bits
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per channel use, call it C(a), is

C(a) = S a(y)�1 − log2(1 + e−y)�dy = S
+ª

0
SaS(y)�1 − h2� e−y

1 + e−y
��dy

= S
1

−1
a(y) log2(1 + y)dy = S

1

0
SaS(y)�1 − h2((1 − y)~2)�dy,

where h2(x) = −x log2(x) − (1 − x) log2(1 − x).
Proof. Since the channel is symmetric, the optimal input distribution is the uniform
one, see Problem 4.8. Further, by (the Channel Equivalence) Lemma 4.29 we can
assume without loss of generality that pY SX(y S x) = a(xy).

C(a) = I(X;Y) = H(Y) −H(Y SX)
= S �−pY(y) log2 pY(y) +

1
2 Qx=�1

pY SX(y S x) log2 pY SX(y S x)�dy

= S
1
2 Qx=�1

pY SX(y S x) log2
pY SX(y S x)

1
2(pY SX(y S 1) + pY SX(y S − 1))

dy,

= S pY SX(y S 1) log2
pY SX(y S 1)

1
2(pY SX(y S 1) + pY SX(y S − 1))

dy,

= S a(y) log2
a(y)

1
2a(y)(1 + e−y)

dy = S a(y)(1 − log2(1 + e−y))dy,

where in the transition to the fourth line we have used the fact that pY SX(−y S −x) =
pY SX(y S x).¿e three further representations can be proved in a similarmanner but
it is more insightful to consider the following alternative proof.

Consider the operational characterization of the channel according to its SLS-

density SaS as discussed on page 184: x SaS
ÐÐ� (S,Y), where Y � SaS and x

BSC� e−Y

1+e−Y
�

ÐÐÐÐÐÐÐ�

S. In words, for each given reliability value y the channel acts like a BSC with cross-
over probability e−y

1+e−y . ¿e second representation of capacity follows since such a
BSC has associated capacity 1−h2� e−y

1+e−y�. ¿e remaining two representations have
a similar interpretation in terms of D and SDS-densities, and we skip the details.
Example 4.37 (Capacity of BEC(є)). Inserting SaBEC(є)S(y) = є∆0(y)+ є̄∆1(y) to
the previous formula gives us back the familiar

C(aBEC(є)) = S
1

0
[є∆0(y) + є̄∆1(y)] (1 − h2((1 − y)~2))dy

= 1 − є bits per channel use. n
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Example 4.38 (Capacity of BSC(є)). We recover from SaBSC(є)S(y) = ∆1−2є(y)
the familiar C(aBSC(є)) = 1 − h2(є) bits per channel use. n

Example 4.39 (Capacity of BAWGNC(σ)). Unfortunately the capacity for the
BAWGNC(σ) cannot be expressed in an elementary form. To compute it numeri-
cally it is best to use the representation of capacity in terms of theD-density as stated
in Lemma 4.36 with the D-density as given in Example 4.25:

C(aBAWGNC(σ)) = S
+1

−1

σº
2π(1 − y2)e

−
(1−σ2 tanh−1(y))2

2σ2 log2(1 + y)dy.

Alternatively, C(aBAWGNC(σ)) can be computed via the series (see Problem 4.11)

1 +
1

ln(2)��
2
σ2
− 1�Q� 1

σ
� −
¾

2
πσ2

e−
1

2σ2 +

ª

Q
i=1

(−1)i
i(i + 1)e

2i(i+1)
σ2 Q�1 + 2i

σ
��.

¿is series converges quickly: the error which we incur by considering only the �rst
i terms in the series is of order O(i−3).

Problem 4.12 discusses the limiting cases of C(aBAWGNC(σ)) for both very small
and very large σ.

¿e capacity is a function of 1~σ2 alone. More generally, if we allow a scaling of
the inputs then the capacity is a function of EN~σ2, where EN is the energy expended
per channel use (dimension). (¿is means that we use inputs from the set ��ºEN�
instead of ��1�.) A plot of CBAWGNC as a function of EN~σ2 is shown in Figure 4.40.
Also shown is the capacity of the additive white Gaussian noise channel (AWGNC)

EN~σ21.0 2.0

0.25
0.50
0.75
1.00
bits

0.00 (Eb~N0)dB0.0 0.4

10-4
10-3
10-2
10-1
Pb

Figure 4.40: Le : Capacity of the BAWGNC (solid line) and the AWGNC (dashed
line) in bits per channel use as a function of EN~σ2. Also shown are the asymp-
totic expansions (dotted) for large and small values of ENσ2 discussed in Problem 4.12.
Right: ¿e achievable (white) region for the BAWGNC and r = 1

2 as a function of(Eb~N0)dB.

with real-valued inputs, which is equal to

CAWGNC =
1
2
log2(1 + EN~σ2) bits per channel use.
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As we can see from this �gure, for low rates (small values of EN~σ2) we pay only
a small penalty for restricting the input to be binary. In order to assess the perfor-
mance of a code over the BAWGN channel it is natural to plot the bit error proba-
bility Pb as a function of EN~σ2. For low rates r, it is even more useful to plot the bit
error probability as a function of Eb~N0, where Eb = EN~r is the energy expended
per information bit and N0 = 2σ2 is the one-sided power spectral density, so that
Eb~N0 =

1
2rEN~σ2. Why is it convenient to use Eb~N0 for low rates? In this case

CBAWGNC � CAWGNC =
1
2
log2(1 + 2rEb~N0) = r

log2(e)
Eb~N0 +O((Eb~N0)2).

Suppose that a given coding scheme achieves a fraction (1 − δ) of capacity, i.e.,
using this coding scheme we can transmit at rate r = (1 − δ)CAWGNC (and achieve
the desired error probability). If the rate is su�ciently small then we see from the
above approximation that

CAWGNC �
r

log2(e)
Eb~N0 =

(1 − δ)
log2(e)

CAWGNCEb~N0.

Comparing the le and right side we conclude that Eb~N0 � log2(e)~(1−δ), which
is independent of r. In other words, measuring the performance with respect to
Eb~N0 allows us to compare codes of di�erent (low) rates on an (almost) equal foot-
ing. Let C denote the Shannon capacity of a given channel. ¿en any rate below C
can be achieved with vanishing probability of error and, vice-versa, to achieve a
vanishing probability of error we have to transmit below C.What if we allow a non-
vanishing probability of error, lets say p?What is then the maximal rate at which we
can transmit? Call this rate C(p). In this case we can proceed as follows: �rst com-
press the information such that the original bits can be reconstructed from the com-
pressed versionwith aHamming distortion of (atmost) p. From rate-distortion the-
ory we know that this requires a source code of rate 1− h2(p), where h2(ċ) denotes
the binary entropy function. ¿ese compressed bits can be transmitted over the
channel at vanishing probability of error, so that the condition for successful trans-
mission reads r(1−h2(p)) < C. Further, by the source-channel separation theorem
for point-to-point channels this is the best we can do. It follows that C(p) = C

1−h2(p) .
To be concrete, consider the channel family �BAWGNC(Eb~N0)�. ¿e associated
capacity C(Eb~N0) is a strictly increasing function of Eb~N0. From our remarks
above we see that to transmit over this channel at rate rwith a bit error probability of
at most Pb requires that r <

C(Eb~N0)
1−h2(Pb) or, vice-versa, that Eb~N0 A C−1(r(1− h2(p)).

Figure 4.40 shows the resulting achievable (Pb,Eb~N0)-region. n
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§4.1.9. Further Functionals for BMS Channels

Capacity plays an important role in the analysis and practice of iterative coding, but
there are also other linear functionals that are of interest. ¿e �rst is trivially related
to capacity.

Definition 4.41 (EntropyFunctional). ¿e entropyH(a) associatedwith a sym-
metric L-density a is H(a) = 1 −C(a). ¿erefore, from Lemma 4.36

H(a) = S
+ª

−ª

a(y) log2(1 + e−y)dy =S
+ª

0
SaS(y)h2� e−y

1 + e−y
�dy

= S
1

−1
a(y) log2

2
1 + y

dy =S
1

0
SaS(y)h2((1 − y)~2)dy,

where h2(x) = −x log2(x) − (1 − x) log2(1 − x). S

Lemma 4.42 (Duality Rule For Entropy). Let a and b denote two symmetric
L-densities. ¿en

H(ae b) +H(a � b) = H(a) +H(b).

Discussion: We call this the “duality” rule since it relates the output entropy at a
repetition code to the output entropy at a parity-check code

Proof. Let X, Y denote two independent random variables having associated den-
sities a and b, respectively. De�ne Z = 2 tanh−1(tanh(X~2) tanh(Y~2)). From the
de�nition of� on page 183 and the discussion in Example 4.88, we know that Z has
density c = a � b. ¿erefore,

H(c) = S c(z) log2(1 + e−z)dz

= S S a(x)b(y) log2�1 + e−2 tanh
−1(tanh(x~2) tanh(y~2))�dx dy

= S S a(x)b(y) log2�
(1 + e−x)(1 + e−y)

1 + e−x−y
�dx dy

= H(a) +H(b) −H(ae b).

To see the last step note that

H(ae b) = S �S a(x)b(y− x)dx� log2(1 + e−y)dy

= S S a(x)b(y) log2(1 + e−x−y)dx dy.
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In Section 3.14 we discussed the use of EXIT functions for the case of trans-
mission over the BEC. ¿ese EXIT functions are de�ned in terms of entropies, a
concept that, as we have just seen, carries over naturally to the general case.¿e no-
tion of EXIT involves the computation of entropy only of the extrinsic part of the
information (the information regarding a bit that we get via the code constraints by
observing other bits). Although it constitutes an abuse of notation, it is convenient
to introduce the notion of an EXIT functional in a more general way.

Definition 4.43 (EXIT Functional). ¿e entropy functional H(ċ) is also called
the EXIT functional and the associated kernel the EXIT kernel. Assuming that we
represent densities in the L-domain, this kernel2 is l(y) = log2(1 + e−y). S

If you revisit Chapter 3 you will see that EXIT functions for the BEC have two
possible interpretations. From De�nition 3.71 we see that the EXIT value equals the
uncertainty of a bit Xi given the extrinsic observationY�i. We generalize this notion
in De�nition 4.131 using the above EXIT functional. On the other, from characteri-
zation (iii) in Lemma 3.76 and its discussion in the proof, we see that the i-th EXIT
function for the BEC is also equal to the rate of change of the mutual information of
the overall system due to a small change in the capacity of the i-th channel. ¿is in-
terpretation formed the basis for (the Area)¿eorem 3.82. In the general case these
two notions are no longer equivalent and so we next introduce the functional which
allows us to extend the second notion. Currently we are only interested in the func-
tional itself and someof its properties.¿eoperational signi�cance of this functional
and how it gives rise to a general area theorem is discussed in Section 4.12.

In what follows, we write �BMSC(h)� to denote a family of BMSC channels
parametrized by entropy. ¿erefore, with some abuse of notation, we write in the
sequel �BEC(h)�, �BSC(h)�, and �BAWGNC(h)�. We have h = є for the BEC,
h = h2(є) for the BSC, and h = H(aBAWGNC(σ)) for the BAWGNC.

Definition 4.44 (GEXIT Functional). Consider a family �BMSC(h)� of smooth
BMS channels. Let �aBMSC(h)� denote the corresponding family of L-densities. ¿e
generalized EXIT (GEXIT) functional with respect to �BMSC(h)� applied to the
symmetric L-density b is

G(aBMSC(h),b) = d
dh
H(aBMSC(h) e b).

If we de�ne the GEXIT kernel

laBMSC(h)(y) = S
daBMSC(h)(z)

dh
log2(1 + e−z−y)dz,(4.45)

2Not to be confused with the log-likelihood ratio function, which is unfortunately also denoted
by l(y).
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then G(aBMSC(h),b) can be written as

G(aBMSC(h),b) = S b(y)laBMSC(h)(y)dy. S

Discussion: Expression (4.45) has to be interpreted in the sense ofDe�nition 4.33:
we write R

daBMSC(h)(z)
dh log2(1 + e−z−y) dz as a proxy for

d
dh
�S aBMSC(h)(z) log2(1 + e−z−y) dz  .

¿e latter expression exists according to De�nition 4.33: for a �xed y and as a func-
tion of z, log2(1 + e−z−y) is continuously di�erentiable and log2(1 + e−z−y)ez~2 is
bounded. Further, by assumption the channel family is smooth. Note further that
laBMSC(h)(y) is continuous and non-negative so that G(aBMSC(h),b) exists as well.

Example 4.46 (GEXIT Kernel for �BEC(h)�). We have

S aBEC(h)(z) log2(1 + e−z−y)dz = h log2(1 + e−y),

so that laBEC(h)(y) = log2(1 + e−y), which is the regular EXIT kernel. ¿is agrees
with our previous observation that for the BEC the notions of EXIT and GEXIT
coincide. n

Example 4.47 (GEXIT Kernel for �BSC(h)�). We have

S aBSC(h)(z) log2(1 + e−z−y)dz = є̄ log2(1 +
є
є̄
e−y) + є log2(1 +

є̄
є
e−y),

where є = h−12 (h). Di�erentiating with respect to h gives

laBSC(h)(y) = �log �1 +
є̄
єe
−y

1 + є
є̄e
−y� +

1
є+ є̄ey

−

1
є̄+ єey

�~ log� є̄
є
�.

As we will discuss very soon, the kernel is not unique. An equivalent kernel is

laBSC(h)(y) = log �1 +
є̄
єe
−y

1 + є
є̄e
−y�~ log�

є̄
є
�.

For a �xed y > R and h � 0, the kernel converges to 1 as 1 + y~ ln(є), whereas the
limit when h� 1 is equal to 2

1+ey . n
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Example 4.48 (GEXIT Kernel for �BAWGNC(h)�). We get

laBAWGNC(h)(y) = �S
e
−
(z−2~σ2)2σ2

8

1+ez+y
dz�~�S

e
−
(z−2~σ2)2σ2

8

1+ez
dz�,

where σ is the unique positive number so that the BAWGNC with noise variance σ
has entropy h. n

Example 4.49 (Alternative Kernel Representations). Because of the symme-
try property of L-densities we can write for any kernel l(y)

S a(y)l(y) dy = S
+ª

0
SaS(y) l(y) + e

−yl(−y)
1 + e−y

dy.

In words, the kernel is uniquely speci�ed on the absolute value domain [0,+ª], but
for each y > [0,+ª] we can split the weight of the kernel between +y and −y in an
arbitrary fashion restricted only by the constraint that l(y) + e−yl(−y) equals the
desired value. We can use this degree of freedom to bring some kernels into a more
convenient form. E.g., the second kernel given in Example 4.47 is equivalent to the
�rst one but it is simpler. To see this consider the function f(y) = 1

є+є̄ey −
1

є̄+єey and
note that f(y)+e−yf(−y) = 0. Problem 4.19 discusses some particularly insightful
and convenient kernel representations for the Gaussian case. n

In general, for any kernel of a functional in the L-domain there is an associ-
ated kernel in the SLS, D, SDS, G, and SGS domain and it is o en useful to consider a
particular domain if we want to exhibit a particular property. ¿e di�erences (and
similarities) of various kernels are best seen in the SDS-domain.¿e L-domain kernel
and the associated SDS-domain kernel are linked by a change of variables as follows,

SdS(w) = 1 −w
2

l(ln 1 −w
1 +w

) + 1 +w
2

l(ln 1 +w
1 −w

).(4.50)

In Figure 4.51 we compare the GEXIT kernel for the �BEC(h)� with the GEXIT
kernels for the �BSC(h)� and the �BAWGNC(h)� in the SDS-domain for several
channel parameters (see Problems 4.16, 4.17, and 4.18).¿ese kernels are distinct but
similar. In particular, for h = 0.5 the GEXIT kernel with respect to �BAWGNC(h)�
is hardly distinguishable from the regular EXIT kernel. ¿e GEXIT kernel with re-
spect to the family �BSC(h)� shows more variation.

Entropy plays a fundamental role in information theory, which helps motivate
our interest in the EXIT and GEXIT functionals. In iterative decoding, especially
for LDPC ensembles, convolutions of densities appear frequently. Consequently,
Fourier transforms of densities in their various representations also play important
roles. In fact, many information theoretic functionals of interest are the evaluation
of a Fourier transform at a point.
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Figure 4.51: Comparison of the kernels SdSaBEC(h)(ċ) (dashed line) with SdSaBSC(h)(ċ)
(dotted line) and SdSaBAWGNC(h)(ċ) (solid line) at channel entropy h = 0.1 (le ), h =
0.5 (middle), and h = 0.9 (right).

Definition 4.52 (Variable-Domain Fourier Transform). Let a be an L-density
and let X denote a random variable distributed according to a.¿e Fourier trans-
form of a is

Fa(s) = E [e−sX],
de�ned for all s > C where the expectation exists. S

From standard properties of the Fourier transform it follows that for any L-
densities a and b

Faeb = FaFb.

Symmetry of the L-density a is equivalent to Fa(s) = Fa(1 − s):

E[e−sX] =S a(x)e−sxdx Def. 4.11
= S a(−x)exe−sxdx = E[e−(1−s)X].

For symmetric L-densities a,Fa exists and is analytic in the strip where the real part
of s is contained in [0,1].
Definition 4.53 (Check-Domain Fourier Transform). Let a be an G-density
and let (S,Y) denote a random variable distributed according to a. For this de�ni-
tion we use the convention S > �0,1� and we identify �0,1�with the additive group
of F2. ¿e Fourier transform of this density is

Ga(µ,ν) = E [e−µS−νY]

for all µ > �0, iπ), ν > C where the expectation exists. S

From standard properties of the Fourier transform it follows that for any G-
densities a and b

Ga�b = GaGb.
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Symmetry of the G-density a is equivalent to Ga(iπ,ν) = Ga(0,ν + 1):

Ga(iπ,ν) = S
y
(a(0, y) − a(1, y))e−νydy

(4.21)
= S

y
(a(1, y) coth(y~2) − a(1, y))e−νydy

= S
y
a(1, y) e−y~2

sinh(y~2)e
−νydy

= S
y
a(1, y) ey~2

sinh(y~2)e
−(ν+1)ydy

= S
y
(a(1, y) coth(y~2) + a(1, y))e−(ν+1)ydy

(4.21)
= S

y
(a(0, y) + a(1, y))e−(ν+1)ydy

= Ga(0,ν + 1).
Sometimes we write G and F for densities which are not G-densities and L-

densities respectively. Of course, we mean by this that the functional is applied a er
the appropriate change of variables.

Definition 4.54 (Error Probability Functional). ¿e error probability associ-
ated with the symmetric L-density a is

E(a) = 1
2 S a(x)e−(Sx~2S+x~2)dx.(4.55)

Note that E(a) is the incurred probability of error if we (optimally) estimate the
value of a bit based upon the channel output. S

Discussion: You might wonder why instead of (4.55) we did not just de�ne
E(a) = R 0

−ª
a(x)dx. Using symmetry, the two de�nitions are equal provided a does

not have a point mass at 0.When there is a point mass at 0, however, we need to in-
clude half of it in the error probability – formulation (4.55) is correct also in this case
without modi�cation. (In the case that the density is not symmetric we need to use
the more awkward de�nitionE(a) = R 0

−ª
a(x)dx and include half of the mass at 0.)

Example 4.56 (Error Probability). We have E(aBEC(є)) = є~2, E(aBSC(є)) = є,
and E(aBAWGNC(σ)) = Q� 1σ�. n

Definition 4.57 (D-Mean Functionals). ¿e D-mean associated with the sym-
metric L-density a is

D(a) = S a(x) tanh(x~2)dx = S
1

−1
a(y)ydy.(4.58)
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More generally, the D-k-moment associated with the symmetric L-density a is

Dk(a) = S a(x) tanhk(x~2)dx = S
1

−1
a(y)ykdy,(4.59)

where k is a non-negative integer. S

Example 4.60 (D-Mean). We have D(aBEC(є)) = 1 − є and D(aBSC(є)) = (1 − є)2.
¿ere does not seem to be an elementary expression for D(aBAWGNC(σ)), but it can
be computed numerically. n

Lemma 4.61 (Multiplicativity ofDk under�-Convolution). Let a and b de-
note two symmetric L-densities. ¿enDk(a � b) =Dk(a)Dk(b).
Proof. For even k we have Dk(a) = Ga(0, k), while for odd k we have Dk(a) =
Ga(iπ, k) .

Consider the following situation: we have a symmetric L-density a and we are
interested in the behavior ofE(aen) as a function of n, where aen denotes the n-fold
L-convolution of a with itself. ¿is probability decays in general to zero exponen-
tially fast in n. What is its exponent, i.e., what is limn�ª

1
n logE(aen)? ¿e answer

is given by the log of the so-called Bhattacharyya constant.

Definition 4.62 (Bhattacharyya Functional). ¿e Bhattacharyya constant as-
sociated with the symmetric L-density a is

B(a) = S a(x)e−x~2dx.(4.63)

¿e Bhattacharyya constants for our standard channels are worked out in Exam-
ples 4.128, 4.129, and 4.130 in the context of the so-called stability analysis of BP
decoding. Problems 4.24, 4.25, and 4.26 discuss the computation of B(ċ) for these
three channels by directly computing E(aen) and Problem 4.23 shows yet another
alternative using Bernstein’s inequality (see Section C.2). Finally, Problem 4.20 gives
a way of computing the Bhattacharyya constant directly from the transition proba-
bility pY SX(y S x) without �rst computing the L-density a. S

¿e key to �nding the exponent describing the decay of the error probability is
to show that the Bhattacharyya constant behavesmultiplicatively under convolution
and to establish a link between the Bhattacharyya constant and the error probability.
¿ese two steps are achieved in the following two lemmas.

Lemma 4.64 (Multiplicativity of B under e-Convolution). Let a and b de-
note two symmetric L-densities. ¿enB(ae b) =B(a)B(b).
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Proof. ¿is follows fromB(a) = Fa( 12).
Lemma 4.65 (B versus E). Let a be a symmetric L-density. ¿en

2E(a) BB(a) B 2
»

E(a)(1 −E(a)),(4.66)

where the le inequality is tight for the BEC and the right is tight for the BSC.

Proof. ¿e tightness of the le and the right bound for the case of the BEC and the
BSC is best veri�ed by direct calculation (see Problem 4.21). ¿e le bound follows
from characterizations (4.55) and (4.63) since e−(Sx~2S+x~2) B e−x~2. To see the right
bound, consider the BSC(є). We have E(aBSC(є)) = є and B(aBSC(є)) = 2

º
єє̄. But

2
º
єє̄ is convex-9 on [0, 12] (recall that we write “convex-9” to indicate a concave

function). ¿erefore, if є = αє1 + (1− α)є2, where α > [0,1] and є1,є2 > [0, 12], then
αB(aBSC(є1)) + (1 − α)B(aBSC(є2)) BB(aBSC(є)).

¿e result now follows since any symmetric channel aBMSC can be represented as a
convex combination of elements from �aBSC(є)�.

If we combine the above two lemmas we see that E�aen� B 1
2 B(a)n, so that

limn�ª
1
n logE�aen� B logB(a). A generalization and the reverse inequality are

proved in the next Lemma.

Lemma 4.67 (Large Deviation). Let the L-densities ai, i = 1,� , k, be symmetric.
¿en for any set of natural numbers di, i = 1,� , k,

2Bk
min

3π
(e2 Bmin

4D )
1
2

1 + e2 Bmin
4D

k
M
i=1

Bdi(ai) B E�a� B 1
2

k
M
i=1

Bdi(ai),(4.68)

where a = aed11 e aed22 e . . .e aedkk , D = Pi di, andBmin = mini B(ai).
Proof. ¿eright side of (4.68) follows from the le bound in (4.66) andLemma4.64.

Let us show the le hand side of (4.68) for k = 1.¿e basic idea is to express
the probability of error in the (variable node) Fourier domain. Recall from De�ni-
tion 4.54 that for a symmetric L-density a we have

E(a) = 1
2 S e−Sx~2S�e−x~2a(x)�dx.

We view this as the inner product of the functions e−Sx~2S and e−x~2a(x) and apply
the Parseval theorem. Let us denote the Fourier transform (restricted to the imagi-
nary axis) of e−x~2a(x) by â(f).Note that â(f) is Fa( 12 + 2πjf). Due to the sym-
metry of a, e−x~2a(x) is even and â(f) is therefore real valued and even in f.¿e
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Fourier transform of e−Sx~2S is R e−Sx~2Se−2πjfxdx = 4
1+4(2πf)2 . Parseval’s theorem

gives us

(4.69) E(a) = 1
2 S

ª

−ª

4
1 + 4(2πf)2 â(f)df = S

ª

0

4
1 + 4(2πf)2 â(f)df.

We want to bound â(f) from below:

â(f) = S
ª

−ª

e−x~2a(x)e−2πjfx dx = S
ª

−ª

e−x~2a(x) cos(2πfx)dx
cos(x)C1−x2~2

C S
ª

−ª

e−x~2a(x)(1 − 1
2
(2πfx)2)dx

=B(a) − S
ª

0
e−x~2a(x)(2πfx)2 dx CB(a) − 16e−2(2πf)2,

where, for the last step, we used the inequality e−x~2x2 B 16e−2, x C 0, and the
fact that R ª0 a(x)dx B 1. Recall that Faed = Fda so that the Fourier transform of
e−x~2aed(x) is âd(f). If d is an even integer then âd(f) is positive. We then have

âd(f) C max�0,Bd(a)�1 − 16e−2

B(a) (2πf)
2�d� CBd(a)�1 − d16e

−2

B(a) (2πf)
2�
+

.

Plugging this into (4.69) we get

E(aed) = S
ª

0

4
1 + 4(2πf)2 â

d(f)df

C S
ª

0

4
1 + 4(2πf)2 Bd(a)�1 − d16e

−2

B(a) (2πf)
2�
+

df

4πf
e
=u
=

e

4π S
ª

0

4
1 + e2u2

Bd(a)�1 − 4d
B(a)u

2�
+

du

C
1

1 + e2 B(a)
4d

e

π
Bd(a)S

¼
B(a)
4d

0
�1 − 4d

B(a)u
2�du

=
1

1 + e2 B(a)
4d

e

π
Bd(a)�2

3

¾
B(a)
4d
� = 2

3π
(e2 B(a)

4d )
1
2

1 + e2 B(a)
4d

Bd(a).

To handle odd d we note thatB(a) B 1 and that E(aed) is non-decreasing in d
and write

E(aed) C 2
3π
(e2 B(a)

4d )
1
2

1 + e2 B(a)
4d

Bd+1(a)
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which then holds in general.
¿e proof for k A 1 follows essentially the same line substitutingBmin forB(ai)

at the appropriate places.

Problems 4.59, 4.60, 4.61, and 4.62 explore further relationships between H(ċ),
E(ċ), andB(ċ).

§4.1.10. Linear Codes and BMS Channels

¿emain theme of this book is the investigation of low complexity coding schemes
that are capable of approaching the capacity of a wide range of channels. Since all
these schemes are based on linear codes, before venturing any further, we should
�rst ensure that linear codes by themselves are powerful enough for our purpose. In
this respect it is comforting to know the following theorem.

Theorem 4.70 (Linear Codes Achieve Capacity). Linear codes achieve the ca-
pacity of BMS channels.

Proof. We will not give a full proof here but rather just point out how it can be de-
duced from standard coding theorems. As already mentioned in Section 4.1.8, be-
cause of the symmetry of the channel the optimal input distribution is the uniform
one. ¿is is good news since for proper binary linear codes the induced marginal
for each bit (assuming a uniform distribution on the codewords) is the uniform one
(see Problem 1.5).

From Problem 1.16 we know that if we add a shi (chosen uniformly at ran-
dom) to a random sample of Elia’s generator ensemble G , then pairs of codewords
are independent.We have seen in the proof of the coding theorem for the BSC (¿e-
orem 1.17) that we only need the pairwise independence of codewords. ¿is is true
also in the general case. We conclude that (shi ed) random linear codes do not in-
cur a penalty (at least in terms of rate) over truly random codes. Finally, all shi ed
versions of the same code have exactly the same performance over a BMS channel.
¿erefore, linear codes themselves can achieve the capacity of anyBMS channel.

§4.1.11. Degradation

In traditional information theory one frequently considers a sequence of codes, usu-
ally of increasing length, whose rates approach the capacity of a given �xed channel.
For us it is more natural to take an alternate route where we �x the rate and con-
sider an ordered family of channels, parametrized by a real-valued parameter. ¿e
parameter orders the channels within the family – with an increase in the param-
eter indicating a “worsening” of the channel. We are then interested in the largest
channel parameter (the worst channel) for which reliable transmission at the given
rate is possible.
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A natural and very useful way of ordering the individual elements of the family
of channels is bymeans of degradation, a notion that we encountered already for the
BEC. In general, degradation induces a partial order on the space of all channels.
¿is partial order plays an important role in our understanding of the asymptotic
behavior of iterative systems.

Definition4.71 (StochasticandPhysicalDegradation). Consider twomem-
oryless channels speci�ed bymeans of their transition probabilities pY SX and pZ SX,
respectively. Let the output alphabets be denoted by Y and Z , respectively. We say
that pZ SX is stochastically degradedwith respect to pY SX if there exists amemoryless
channel with transition probability pZ SY(z S y), y > Y and z > Z , such that for all x
in the input alphabet of the channel pZ SX(ċ S ċ) and all z > Z

pZ SX(z S x) =Q
y
pY SX(y S x)pZ SY(z S y).(4.72)

We speak of physical degradation if (see the discussion on Markov chains on page
28) X� Y � Z, i.e., if

pY,Z SX(y, z S x) = pY SX(y S x)pZ SY(z S y).
Physical degradation implies stochastic degradation since

pZ SX(z S x) =Q
y
pY,Z SX(y, z S x) =Q

y
pY SX(y S x)pZ SY(z S y). S

Discussion: Stochastic degradation concerns the marginal distribution pZ SX,
whereas physical degradation concerns the joint distribution pY,Z SX(y, z S x). For
our purpose, however, there is essentially no di�erence between the two concepts.
¿e quantities we are interested in (e.g., probability of error or capacity) are func-
tions of the marginal distribution only. We are therefore free to choose the joint
distribution as we see �t. ¿erefore, whenever we have a channel pZ SX which is
stochastically degraded with respect to another channel pY SX we will assume that
the channel pZ SX is “realized” as a physically degraded version of pY SX. Since in
this case X � Y � Z, we know already (see again page 28) that the error prob-
ability of the channel pZ SX cannot be smaller than that of the channel pY SX. We
will soon discuss many other functionals which preserve ordering by degradation.
¿ese functionals are all functionals of the marginal distribution only. For this rea-
son we make no further distinction in the future and simply speak of degradation.
We denote the relationship of degradation by pY SX _ pZ SX.

Example 4.73 (Degradation of the Family �BSC(є)�). Consider the serial con-
catenation of the BSC(є) and the BSC(∆є), i.e., the output of the BSC(є) is used
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as the input to the BSC(∆є). ¿is serial concatenation (in any order) yields the
BSC(є′), with

(4.74) є′ = є̄∆є+ ∆̄єє.

Moreover, for any є′ > [0, 12] and any 0 B є < є′ there exists a positive∆є, namely∆є =(є′ − є)~(1 − 2є), such that (4.74) is ful�lled. ¿is shows that the family �BSC(є)�
is ordered by degradation. Pictorially,

��1� BSC(є)
ÐÐÐÐ� ��1� BSC(∆є)

ÐÐÐÐÐ� ��1� � ��1� BSC(є′)
ÐÐÐÐ� ��1� n

Equivalent statements are true for the family of BAWGN channels, the fam-
ily of binary-input Cauchy channels (BCC), and the family of binary-input Laplace
channels (BLC) except that the latter two examples are not self-degrading, see Prob-
lems 4.4, 4.27, and 4.28. In the above example, the degrading channel is symmetric.
A natural question is whether it is su�cient to consider symmetric degrading chan-
nels when pY SX and pZ SX are symmetric. ¿is is answered in the a�rmative in the
next lemma, the proof of which is le as Problem 4.29.

Lemma4.75 (SymmetricDegradingChannels). Let pY SX and pZ SX be twomem-
oryless symmetric channels and assume that pY SX _ pZ SX. ¿en there exists a
memoryless symmetric channel pZ SY such that

pZ SX(z S x) = Q
y>Y

pY SX(y S x)pZ SY(z S y).

§4.1.12. Functionals That Preserve Degradation

Degradation for BMS channels is intimately connectedwith convexity. In the sequel,
we use the notation ċ_ ċ to indicate the relationship of degradation also in conjunc-
tion with distributions that characterize the channels: e.g., we write in the next the-
orem A _ B to indicate that the BMS channel characterized by its D-distribution
B is degraded with respect to the BMS channel characterized by its D-distribution
A. Since the proof is on the lengthy side we relegate it to Appendix E.

Theorem 4.76. Let A and B denote two D-distributions, and let SAS and SBS de-
note the two corresponding SDS-distributions, i.e., distributions on [0,1]. ¿en the
following are equivalent.

(i) A _ B

(ii) R 1
0 f(x)dSAS(x) B R 1

0 f(x)dSBS(x), for all f that are non-increasing and
convex-9 on [0,1]
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(iii) R 1
z SAS(x)dx B R 1

z SBS(x)dx, for all z > [0,1]
¿ere is a rich class of functionals that preserve ordering by degradation. In fact,

the class is rich enough to imply the following.

Corollary 4.77 (Convergence under Degradation). Any sequence of sym-
metric densities ordered by degradation converges to a symmetric limit density.

Proof. Let us assume that the sequence of densities are SDS-densities SaSi and let SASi
be the associated cumulative distributions. By Lemma 4.17 there exists a limit SASª
for some subsequence. ¿is is our candidate for the limit. By ¿eorem 4.76(iii) the
sequences R 1

z SASi(x)dx are monotonic (in i) and hence converge for all z > [0,1].
Clearly, the limit must be R 1

z SASª(x)dx.
It remains to show that the convergence of the integrals implies the convergence

of the distributions themselves. Let z > (0,1) be a point of continuity of SASª.¿en,
for small є A 0,

SASª(z)є+ o(є) = S
z

z−є
SASª(x)dx = lim

i�ªS
z

z−є
SASi(x)dx

= lim inf
i�ª S

z

z−є
SASi(x)dx B lim inf

i�ª
SASi(z)є,

where the last step follows since SASi is non-decreasing. Letting є tend to 0we obtain
SASª(z) B lim inf i�ª SASi(z). Similarly,

SASª(z)є+ o(є) = S
z+є

z
SASª(x)dx = lim

i�ªS
z+є

z
SASi(x)dx

= lim sup
i�ª

S
z+є

z
SASi(x)dx C lim sup

i�ª
SASi(z)є.

Hence SASª(z) C lim supi�ª SASi(z), and so SASª(z) = limi�ª SASi(z).

¿eorem 4.76 characterizes degradation of densities as an ordering of a certain
class of linear functionals. It is also valuable to know the class of all functionals that
respect the ordering of degradation. It turns out to be the same class.

Theorem 4.78 (Functionals That Preserve Degradation). A function f sat-
is�es

S
1

0
f(x)dSAS(x) B S

1

0
f(x)dSBS(x)

for every degraded pair of densities A _ B if and only if f is non-increasing and
convex-9 on [0,1].
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Proof. From¿eorem 4.76 we know that if f is a non-increasing convex-9 function
then the implication holds.

To prove the inverse implication assume �rst that f is increasing. ¿is means,
that there exist two points x1 < x2, x1,x2 > [0,1], such that f(x1) < f(x2). Let SAS
correspond to the BSC((1− x2)~2) and let SBS correspond to the BSC((1− x1)~2).
We know from Example 4.73 that the family �BSC(є)� is ordered by degradation.
Since (1−x2)~2 < (1−x1)~2, this proves thatA _ B. From page 186 we know that
SBS(x) = Hx1(x) and SAS(x) = Hx2(x). ¿erefore,

S
1

0
f(x)dSAS(x) = f(x2) A f(x1) = S

1

0
f(x)dSBS(x).

On the other hand, if f is not convex-9 then there exists a probability distribu-
tion SAS such that

S
1

0
f(x)dSAS(x) A f�S

1

0
x dSAS(x)�.

Consider the sequence X
SAS
ÐÐ� (S,Y) q

Ð� (S), i.e., the channel q makes a hard
decision on the received bit.¿e overall channel is therefore equivalent to a BSC. Let
SBS be this channel. If we receive the value y then the associated error probability is
(1 − SyS)~2 (see Problem 4.59). De�ne α = R 1

0 x dSAS(x), so that SBS corresponds to
the BSC((1 − α)~2). Clearly A _ B and yet

S
1

0
f(x)dSAS(x) A f(α) = S

1

0
f(x)dSBS(x).

Many functionals of interest either preserve (or reverse) the partial order in-
duced by degradation. In Problem 4.59 the SDS-domain kernels of E(ċ), H(ċ), and
B(ċ), are discussed. Consider �rst the probability of error: the associated kernel in
the SDS-domain is 1

2(1 −w), which is decreasing and convex-9 on [0,1]. ¿e EXIT
kernel in the SDS-domain is h2((1 − w)~2), which is decreasing and convex-9 on
[0,1] as well. Finally, the Bhattacharyya kernel in the SDS-domain is

º
1 −w2. ¿is

function has �rst derivative −w~º1 −w2 and second derivative −1~(1 −w2)3~2. It
is therefore also decreasing and convex-9 on [0,1]: degraded channels have hence
a larger probability of error, higher entropy, and larger Bhattacharyya constant than
the original one.

¿e proof of the following lemma is the topic of Problem 4.32.

Lemma 4.79 (GEXIT Kernels Preserve Ordering). Let �aBMSC(h)� represent a
smooth family of symmetric L-densities and let laBMSC(h)(z) denote the associated
GEXIT kernel. ¿en laBMSC(h)(z) is non-increasing and convex-9 on [0,1].
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Lemma 4.80 (Erasure Decomposition Lemma). A BMS channel characterized
by its L-density a is degraded with respect to aBEC(2E(a)).

Proof. In Problem 4.33 you are asked to provide a proof by directly constructing the
degrading channel. Here we give an alternative, more conceptual, proof.

De�ne є = E(a). Let SAS denote the SDS-distribution associated with a and let
SABEC(2є)S denote the SDS-distribution associated with the BEC(2є). From Exam-
ple 4.23 we know that SABEC(2є)S(x) = 2є for x > [0,1) so that R 1

z SABEC(2є)S(x)dx =
2є(1 − z). Consider the function f(z) = R 1

z SAS(x)dx. Clearly, f(1) = 0. We claim
that f(0) = 2є. To see this, note that the kernel of the error probability functional
in the SDS-domain is 1

2(1 − w) as discussed in Problem 4.59. ¿erefore E(a) =
1
2 R

1
0 (1 −w)SaS(w)dw. If we use integration by parts we see that є = E(a) = 1

2�(1 −
w)SAS(w)T1w=0 + R

1
0 SAS(w)dw� = 1

2 R
1
0 SAS(w)dw. Since SAS(x) is increasing in x, it

follows that f is a convex-9 function. We conclude that

S
1

z
SAS(x)dx = f(z) C 2є(1 − z) = S

1

z
SABEC(2є)S(x)dx.

By¿eorem 4.76 we have ABEC(2є) _ A.

Discussion: ¿is lemma shows that one can have two channels, one degraded
with respect to the other, which have the same error probability.¿erefore, degrada-
tion does not imply a strict increase in the value of a given decreasing and convex-9
functional. But for any pair of degraded channels some such functional is strictly
increasing.

§4.1.13. APP Processing and Degradation

Lemma 4.81 (Sufficient Statistic Preserves Degradation). Let X be chosen
with probability pX(x). Consider transmission over the BMS channels pY SX and
pZ SX where X � Y � Z, i.e., pZ SX is degraded with respect to pY SX. If Ỹ = f(Y)
constitutes a su�cient statistic for X given Y and Z̃ = g(Z) constitutes a su�cient
statistic for X given Z then X� Ỹ � Z̃, i.e., pZ̃ SX is degraded with respect to pỸ SX.

Proof. As discussed on page 28, where we introduced Markov chains, we need to
show that pZ̃ SX,Ỹ(z̃ S x, ỹ) = pZ̃ S Ỹ(z̃ S ỹ). We have

pZ̃ SX,Ỹ(z̃ S x, ỹ) =Q
y,z
pY,Z,Z̃ SX,Ỹ(y, z, z̃ S x, ỹ)

=Q
y,z
pY SX,Ỹ(y S x, ỹ)pZ,Z̃ SX,Y,Ỹ(z, z̃ S x, y, ỹ)

=Q
y,z
pY S Ỹ(y S ỹ)pZ,Z̃ SY,Ỹ(z, z̃ S y, ỹ)
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=Q
y,z
pY,Z,Z̃ S Ỹ(y, z, z̃ S ỹ) = pZ̃ S Ỹ(z̃ S ỹ).

In the third step we have used for the transformation of the �rst expression the
fact that Ỹ constitutes a su�cient statistic for X given Y so that X � Ỹ � Y. To
transform the second term, note that Z̃ is a function of Z and so we can just look
at pZ SX,Y,Ỹ(z S x, y, ỹ) instead. But X � Y � Z and Ỹ is a function of Y, so that
conditioned on Y, Z is no longer a function of X.

Lemma 4.82 (APP Processing Preserves Degradation). Let X be chosen with
uniformprobability fromabinary linear codewhose i-th position is proper. LetXbe
transmitted over a memoryless channel. Let Y be the output if we assume that the i-
th bit is transmitted through the BMS channel characterized by its L-density aBMSCi ,
i > [n], and let Z denote the corresponding output if we assume that the i-th bit is
transmitted over the BMS channel characterized by its L-density bBMSCi , i > [n]. Let
ai, respectively bi, denote the density ofΦi (as de�ned in¿eorem 4.31) under these
two cases, assuming that Xi = 1. If �aBMSCi�_ �bBMSCi� then �ai�_ �bi�.

Discussion: In words the lemma states the intuitive fact that if we degrade all or
just some of the observations then the output of the APP processor is degraded as
well. A particular simple case of degradation which appears frequently in practice
is if we erase some observations.

Proof. Note that pX,Z�i SY�i(x, z�i S y�i) = pX SY�i(x S y�i)pZ�i SY�i(z�i S y�i) implies
pXi,Z�i SY�i(xi, z�i S y�i) = pXi SY�i(xi S y�i)pZ�i SY�i(z�i S y�i).We conclude thatXi �
Y�i � Z�i.

We know from¿eorem 4.30 that Xi � Φi(Y�i) � Y�i, and by the same argu-
ment Xi � Φi(Z�i) � Z�i (in the statement of ¿eorem 4.30 we assume that all
components are sent through the same channel but the proof applies verbatim to the
more general case were the channels are possibly di�erent). Applying¿eorem 4.81
we conclude that Xi � Φi(Y�i)� Φi(Z�i).

Again by¿eorem4.30we know that pΦi(Y�i) SXi(ϕi S xi) and pΦi(Z�i) SXi(ϕi S xi)
represent BMS channels. By assumption the associated L-densities under the condi-
tion Xi = 1 are ai and bi, respectively. We conclude from Xi � Φi(Y�i)� Φi(Z�i)
that ai _ bi.

§4.2. Message-Passing Decoder
All the decoders which we consider in the sequel are motivated by the decoder de-
rived in Chapter 2. In particular, they are all of the message-passing type, i.e., the
output sent along a particular edge only depends on the input along all other edges.
It is convenient to introduce some degrees of freedom regarding the message al-
phabet as well as regarding the computation rules. ¿ese degrees of freedom allow
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a trade-o� between performance and complexity. We start by de�ning the class of
message-passing decoders that we consider.

¿e decoding proceeds by rounds of message exchanges. First, the incoming
messages at the check nodes are processed and the outgoingmessages are forwarded
to the variable nodes. ¿ese messages are then processed at the variable nodes and
messages are sent back along all edges to the check nodes.¿is constitutes one round
of message-passing. In general, decoding consists of several such rounds. As men-
tioned above, an important condition on the processing is that a message sent from
a node along a particular edge must not depend on the message previously received
along this edge. It is exactly this restriction that makes it possible to analyze the
behavior of the decoder.

In order not to complicate the notation, we suppress in the sequel the depen-
dency of the maps on the node degrees. Let O denote the alphabet of the received
messages which, without loss of essential generality, we can assume to be equal
to the channel output alphabet. Further, letM denote the message alphabet. Let
Φ(ℓ) � Mr−1 � M, ℓ C 0, denote the check-node message map as a function of
ℓ > N, and letΨ(ℓ) � O�Ml−1 �M, ℓ C 0, denote the variable-node message map
where r and l are the check and variable node degree, respectively. ¿ese func-
tions represent the processing performed at the check nodes and variables nodes
respectively. Iteration ℓ = 0 corresponds to the initialization and the “real” message-
passing algorithm starts at ℓ = 1. Because of the imposed restriction on the depen-
dence of messages, the outgoing message only depends on (r − 1) incoming mes-
sages at a check node and (l − 1) incoming messages at a variable node. Also, we
allow these maps to depend on the iteration number. We assume that each node of
the same degree invokes the samemessagemap for each edge and that all edges con-
nected to such a node are treated equally. In other words, the maps are symmetric
functions.

It is helpful to think of the messages (and the received values) in the following
way. Each message represents an estimate of a particular codeword bit. ¿e sign of
the message indicates whether the transmitted bit is estimated to be −1 or +1 and
the absolute value of the message is a measure of the reliability of this estimate. ¿e
sign of the particular value 0,which represents an erasure, is equally likely to be +1
or −1.

In the sequel we denote the receivedmessage by µ0, the incoming messages to a
check node of degree r by µ1,� , µr−1, and the incoming messages to a variable of
degree l by µ1,� , µl−1.

Our subsequent analysis and notation is greatly simpli�ed by imposing the fol-
lowing symmetry conditions on the decoding algorithm.

Definition 4.83 (Message-Passing Symmetry Conditions).
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Check-Node Symmetry:

Φ(ℓ)(b1µ1,� ,br−1µr−1) = Φ(ℓ)(µ1,� , µr−1)�
r−1
M
i=1
bi�

for any �1 sequence (b1,� ,br−1), i.e., signs factor out of the check-node message
map.

Variable-Node Symmetry:

Ψ(ℓ)(−µ0,�) = −Ψ(ℓ)(µ0,�),ℓ = 0

Ψ(ℓ)(−µ0,−µ1,� ,−µl−1) = −Ψ(ℓ)(µ0, µ1,� , µl−1),ℓ C 1

i.e., the initial message out of a variable node only depends on the value received
at this node from the channel and sign inversion invariance of the variable-node
message map holds. S

Example 4.84 (Gallager Algorithm A). Gallager’s algorithm A is probably the
simplest non-trivialmessage-passing algorithmapplicable to general channels. Con-
sider transmission over the BSC. (If the transmission takes place over a more gen-
eral channel then apply a hard-decision at the input.) ¿e message alphabet isM =
�−1,1�.¿emessage maps are given by

Φ(ℓ)(µ1, ..., µr−1) =
r−1
M
i=1

µi,

Ψ(ℓ=0)(µ0, µ1, ..., µl−1) = µ0,

Ψ(ℓC1)(µ0, µ1, ..., µl−1) =
¢̈̈
¦̈̈
¤
−µ0, if µ1 = µ2 = ... = µl−1 = −µ0,
µ0, otherwise.

In words, check nodes send a message indicating the product of the incoming mes-
sages. ¿e variable nodes send their received value unless the incoming messages
are unanimous, in which case the sign indicated by these messages is sent. At iter-
ation zero the messages emitted by the variable nodes depend only on the values
received from the channel but not on the internal messages in the graph so that we
do not need to specify the initial internal messages which enter the check nodes.

¿ese message-processing rules are intuitive. At check nodes the product rule
(applied to the �1-valued messages) re�ects the modulo-2 structure of check con-
straints. At variable nodes we assume that the message received from the channel
is more reliable than the internal messages. Only if all internal messages agree on a
value do we trust them.
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Let us give a short preview of themain characteristics whichwe encounter when
using Gallager’s algorithm A. Figure 4.85 shows the block (le ) and bit (right) error
probability ofGallager’s algorithmA for the (3,6)-regular ensemblewhen transmis-
sion takes place over the BSC. We will show in Section 4.7 that the algorithm has
a threshold and that the threshold for the (3,6)-regular ensemble is єGal

� 0.0394.
We recognize in the �gure the characteristic “waterfall” shape of the performance
curve. (Since the �gure shows the performance of expurgated ensembles the “error
�oor” is not visible.) As the length increases the curves converge to a step function
at the threshold. ¿e solid lines correspond to scaling laws of essentially the same
form as we discussed in Section 3.23 for the BEC. ¿ese scaling laws are discussed
in Section 4.13. n
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Figure 4.85: Performance of Gallager’s algorithm A for the (3,6)-regular ensem-
ble when transmission takes place over the BSC. ¿e block lengths are n = 2i,
i = 10,� ,20. ¿e le �gure shows the block error probability, whereas the right
�gure concerns the bit error probability. ¿e dots correspond to simulations. For
most simulation points the 95% con�dence intervals (see Problem 4.37) are smaller
than the dot size.¿e lines correspond to the analytic approximation of the waterfall
curves based on scaling laws (see Section 4.13).

Example 4.86 (Decoder With Erasures). Assume that we extend the previous
example by allowing “erasures” in the decoder, i.e., the alphabet isM = �−1,0,1�.
¿e message maps are speci�ed by

Φ(ℓ)(µ1, ..., µr−1) =
r−1
M
i=1

µi,

Ψ(ℓ=0)(µ0, µ1, ..., µl−1) = µ0,

Ψ(ℓC1)(µ0, µ1, ..., µl−1) = sgn (w(ℓ)µ0 +
l−1
Q
i=1

µi),
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wherew(ℓ) is an appropriately chosen weight sequence. ¿e motivation for this ex-
tension is simple. At the beginning of the decoding process, the received messages
are more reliable than the computed messages sent from the check nodes to the
variable nodes: consider the messages entering the variable nodes during the �rst
iteration; if the initial error probability of a message is є (where we think of є as
a small positive number) then at the output of a check node of degree r the error
probability is roughly (r − 1)є. Assuming that the iterative algorithm succeeds, it
is clear that a er some iterations this relationship is reversed. It is therefore natural
to give a relative weight to these kinds of messages when they are processed at the
variable nodes. A good choice is the weight sequence w(1) = 2, and w(ℓ) = 1 for
ℓ A 1.

Figure 4.87 shows the block (le ) and bit (right) error probability of the decoder
with erasures for the (3,6)-regular ensemble when transmission takes place over
the BSC. ¿e threshold for the (3,6)-regular ensemble is єDE

� 0.0708, which is
considerably larger than the threshold for Gallager’s algorithm A. ¿is shows that
small increases in complexity can result in large increases in performance. Again,
the waterfall part of the curves is well captured by a scaling law (see Section 4.13).
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Figure 4.87: Performance of the decoder with erasures for the (3,6)-regular en-
semble when transmission takes place over the BSC. ¿e block lengths are n = 2i,
i = 10,� ,20.¿e le �gure shows the block error probability, whereas the right �g-
ure concerns the bit error probability.¿e dots correspond to simulations.¿e lines
correspond to the analytic approximation of the waterfall curves based on scaling
laws (see Section 4.13).

n

Example 4.88 (Belief Propagation Decoder). ¿e belief propagation (BP) de-
coder is the most powerful example, employing a “locally” optimal processing rule.
Nodes act under the assumption that each message communicated to them repre-
sents a conditional probability on the bit, and that each message is conditionally
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independent of all others, i.e., the random variables on which the di�erent mes-
sages are based are independent. ¿is is the message-passing algorithm discussed
in Chapter 2, i.e., the message-passing algorithm which results naturally from the
factor graph approach.

As we have seen in Section 2.5.2, assuming that the messages (received from the
channel) are in log-likelihood form, we have

Φ(ℓ)(µ1, ..., µr−1) =
¢̈̈
¦̈̈
¤
0, ℓ = 0,
2 tanh−1 �Lr−1

i=1 tanh( µi2 )� , ℓ C 1,
(4.89)

Ψ(ℓ)(µ0, µ1, ..., µl−1) = µ0 +
l−1
Q
i=1

µi.(4.90)

¿e processing rule on the check-node side can be written in several equivalent
forms. We have

2 tanh−1�
r−1
M
i=1

tanh(µi
2
)� = 2 coth−1�

r−1
M
i=1

coth(µi
2
)� = g−1�

r−1
Q
i=1

g(µi)�.

In the last expression we have used the map g(l) =�H(l), ln coth(SlS~2)� which we
introduced on page 182. With a slight abuse of notation we have assumed here that
the received messages are already in log-likelihood ratio form so that the function
takes as input l and not y. ¿e “sum” Pr−1

i=1 g(µi) has to be interpreted in the fol-
lowing way. For µ > R, g(µ) has the form (s, y), where the �rst component is the
sign taking values in ��1� and the second is the reliability which is a non-negative
extended real number. We then havePr−1

i=1 (si, yi) = (Lr−1
i=1 si,Pr−1

i=1 yi). ¿e equiv-
alence of the �rst two forms is straightforward – instead of multiplying the terms
tanh(µi~2) we can multiply their inverses 1~ tanh(µi~2) = coth(µi~2). ¿e equiva-
lence of the �nal form is also easy to see: �rst, factor out the signs of themessages µi.
¿ese signs multiply. ¿en, instead of taking the productLr−1

i=1 coth(SµiS~2) we can
compute Pr−1

i=1 ln coth(SµiS~2) and then exponentiate the result. ¿is is the essence
of the last representation.

Figure 4.91 shows the block (le ) and bit (right) error probability of the BP de-
coder for the (3,6)-regular ensemble when transmission takes place over the BSC.
¿e threshold for the (3,6)-regular ensemble is єBP � 0.084. Again, the waterfall
part of the curves is well captured by a scaling law. n

It is apparent that there is an in�nite variety of decoders which ful�ll the basic
symmetry conditions described in De�nition 4.83.¿is degree of freedom is impor-
tant in practice. Although the BP decoder is the optimum choice, it requires in�nite
precision arithmetic. ¿erefore, in any digital implementation one must resort to
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Figure 4.91: Performance of the BP decoder for the (3,6)-regular ensemble when
transmission takes place over the BSC. ¿e block lengths are n = 2i, i = 10,� ,20.
¿e le �gure shows the block error probability, whereas the right �gure concerns
the bit error probability. ¿e dots correspond to simulations. ¿e lines correspond
to the analytic approximation of the waterfall curves based on scaling laws.

quantized versions of BP. Typically one tries to mimic as much as possible the be-
havior of the BP decoder given the constraint that the messages take values only in
a �nite set. ¿is provides a natural trade-o� between achievable performance and
complexity of the decoder.

§4.3. Two Basic Simplifications

¿e analysis proceeds in lock step with the one we have given for the BEC. Most
fundamental properties have an analogue in this general setting, although in many
instance we have to be content with weaker statements. ¿is is due to our current
inability to prove the corresponding results and (presumably) not because these re-
sults are inherently not true.

As we have seen in the previous section, there is a large class of message-passing
algorithms. Some of the subsequent statements apply to all elements of this class.
Some other statements require an investigation of the speci�c message-passing al-
gorithm which was chosen. We show how to proceed for Gallager’s algorithm A as
well as the BP decoder. Gallager’s algorithm A is a simple example of a “quantized”
decoder. ¿e proofs for this algorithm are based on calculus. For the BP decoder
on the other hand we can o en make use of its “local” optimality and provide more
conceptual proofs. In practice one very o en deals with a “quantized” decoder with
a relatively large number of quantization steps so that the resulting decoder closely
mimics the BP decoder. In such a case one can either rely on the results for the
BP decoder or proceed in a fashion similar to our subsequent analysis of Gallager’s
algorithm A.
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§4.3.1. Restriction to the All-One Codeword

Lemma 4.92 (Conditional Independence of Error Probability). Let G be a
binary Tanner graph representing a binary linear code C. Suppose that C is used to
transmit over an BMS channel characterized by its L-density aBMSC and suppose
that the receiver performs message-passing decoding on G (we denote a generic
such decoder by MP). Let PMP(G,aBMSC, ℓ,x) denote the conditional (bit or block)
probability of error a er the ℓ-th decoding iteration, assuming that x was sent,
x > C. If the decoder ful�lls the symmetry conditions stated in De�nition 4.83, then
PMP(G,aBMSC, ℓ,x) = 1

SCS Pc>C P
MP(G,aBMSC, ℓ, c) = PMP(G,aBMSC, ℓ). ¿is means

that PMP(G,aBMSC, ℓ,x) is independent of the transmitted codeword.
Proof. Recall from page 184 that a BMS channel can be modeled multiplicatively as

(4.93) Yt = xtZt,

where �Zt�t is a sequence of iid random variables with density aBMSC. Let x > C
and let Y denote the corresponding channel output, Y = xZ (multiplication is
component-wise and all three quantities are vectors of length n.) Note that Z by
itself is equal to the observation assuming that the all-one codeword was transmit-
ted. We will now show that the messages sent during the decoding process for the
cases that the received word is either xZ or Z are in one-to-one correspondence.

Let i be an arbitrary variable node and let j be one of its neighboring check
nodes. Let µ(ℓ)i j (y) denote the message sent from i to j in iteration ℓ assuming that

the received value is y and let µ(ℓ)ji (y) denote the corresponding message sent from
j to i.

We have µ(0)i j (y)
(4.93)
= µ(0)i j (xz) = xiµ

(0)
i j (z), where the second step follows

from the variable node symmetry property stated in De�nition 4.83. Assume that
we have µ(ℓ)i j (y) = xiµ(ℓ)i j (z) for all (i, j) pairs and some ℓ C 0. Let ∂jdenote all
variable nodes which are connected to check node j. Since x is a codeword, we have
Lk>∂jxk = 1.3 From the check node symmetry condition stated in De�nition 4.83
we conclude that µ(ℓ+1)ji (y) = xiµ(ℓ+1)ji (z). Further, invoking oncemore the variable
node symmetry condition, it follows that µ(ℓ+1)i j (y) = xiµ(ℓ+1)i j (z) for all (i, j) pairs.
¿us, by induction, all messages to and from variable node i, when y is received, are
equal to the product of xi and the correspondingmessage when z is received. Hence,
both decoders proceed in lock step and commit exactly the same number of errors
(if any), which proves the claim.

3In the case of parallel edges, xk has to be counted according to the multiplicity of the edge.
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§4.3.2. Concentration

¿e second major simpli�cation comes from the fact that, rather than analyzing in-
dividual codes, it su�ces to assess the ensemble average performance. ¿is latter
task is accomplished much more easily. ¿is is true, since, as the next theorem as-
serts, the individual behavior of elements of an ensemble is with high probability
close to the ensemble average.
Theorem 4.94 (Concentration Around Ensemble Average). Let G, chosen
uniformly at random from LDPC (n, λ, ρ), be used for transmission over a BMS
channel characterized by its L-density aBMSC. Assume that the decoder performs ℓ
rounds of message-passing decoding and let PMP

b (G,aBMSC, ℓ) denote the resulting
bit error probability. ¿en, for any given δ A 0, there exists an α A 0, α = α(λ, ρ,δ),
such that

P�SPMP
b (G,aBMSC, ℓ) −ELDPC(n,λ,ρ) �PMP

b (G,aBMSC, ℓ)� S A δ� B e−αn.
In words, the theorem asserts that all except an exponentially (in the block-

length) small fraction of codes behave within an arbitrarily small δ from the en-
semble average. ¿erefore, assuming su�ciently large blocklengths, the ensemble
average is a good indicator for the individual behavior and it seems a reasonable
route to focus ones e�ort on the design and construction of ensembles whose aver-
age performance approaches the Shannon theoretic limit. ¿e proof of the theorem
is based on the so-called Hoe�ding-Azuma inequality and can be found on page
493.

§4.4. Tree Channel and Convergence to Tree Channel
§4.4.1. Tree Channel

Definition4.95 ((Tℓ,aBMSC)-TreeChannel). Given aBMSchannel characterized
by its L-density aBMSC and a tree ensemble Tℓ = Tℓ(λ, ρ), we de�ne the associated
(Tℓ,aBMSC)-tree channel. ¿e channel takes binary input X > ��1� with uniform
probability. ¿e output of the channel is constructed as follows. Given X, �rst pick
T from Tℓ uniformly at random. Next, pick a codeword from CX(T) uniformly at
random. Transmit this codeword over the BMS channel de�ned by aBMSC. Call the
output Y. ¿e receiver sees (T,Y) and estimates X.

Consider processing the tree by a MP decoder to form an estimate of X. Let
PMP
Tℓ (aBMSC) denote the resulting bit error probability.
As an important special case, consider BP decoding. Since we are operating on

a tree we know that the BP algorithm computes the log-likelihood ratio of the root
bit. More precisely, given (T,Y) the BP decoder computes

ln
p((T,Y) SX = 1)
p((T,Y) SX = −1) .
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¿e distribution of this quantity conditioned on X = 1 is the L-density.
As an aid to analysis, it is convenient to consider also the following generaliza-

tion. Assume that during transmission of the codeword all internal variable nodes
are transmitted through aBMS channel characterized by aBMSC but that all leaf nodes
are transmitted through a BMS channel characterized by bBMSC. We denote the cor-
responding tree channel by (Tℓ,aBMSC,bBMSC) and the corresponding error proba-
bility of an MP decoder by PMP

Tℓ (aBMSC,bBMSC). S

§4.4.2. Convergence to Tree Channel

Theorem 4.96 (Convergence to Tree Channel). For a given degree distribu-
tion pair (λ, ρ) consider the sequence of associated ensembles LDPC (n, λ, ρ) of
increasing blocklengths n under ℓ rounds of message-passing decoding. ¿en

lim
n�ª

ELDPC(n,λ,ρ)[PMP
b (G,aBMSC, ℓ)] = PMP

T̊ℓ
(aBMSC), PBP

Tℓ(aBMSC) = PMAP
Tℓ (aBMSC).

Proof. ¿e proof of the convergence to the tree channel performance is virtually
identical to the one for the BEC on page 95. Recall that the main idea of the proof is
that almost surely the computation graph of a �xed depth is a tree. ¿is gives us the
identity between the two sides.

Further, we already know from Chapter 2 that on a tree BP decoding is equiva-
lent to MAP decoding.

§4.5. Density Evolution
¿eorem 4.96 asserts that in the limit of large block lengths, the average perfor-
mance of an ensemble LDPC (n, λ, ρ) converges to the performance of the corre-
sponding tree channel. ¿e performance of the tree channel is relatively easy to as-
sess because of its recursive structure.

§4.5.1. Gallager Algorithm A

Theorem 4.97 (Performance of Tree Channel). Consider a degree distribution
pair (λ, ρ) ; (L,R) and transmission over the BSC(є). De�ne x0 = є and for ℓ C 1
let

(4.98) xℓ = є(1 − p+(xℓ−1)) + є̄p−(xℓ−1),
where

p+(x) = λ�1 + ρ(1 − 2x)
2

� , p−(x) = λ�1 − ρ(1 − 2x)
2

�.

¿en

PGal
ÑTℓ (є) = xℓ,
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PGal
T̊ℓ
(є) = є�1 − L�1 + ρ(1 − 2xℓ−1)

2
�� + є̄ L�1 − ρ(1 − 2xℓ−1)

2
�.

Proof. ConsiderPGal
ÑTℓ (є) for ℓ > N. By de�nition of the algorithm, the initial variable-

to-check message is equal to the received message which is in error with probability
є. It follows that PGal

ÑT0 (є) = є, as claimed. We proceed by induction. Assume that
PGal
ÑTℓ (є) = xℓ for some ℓ C 0. Let us derive the error probability of the check-to-

variable message in the (ℓ+ 1)-th iteration. Recall that a check-to-variable message
emitted by a check node of degree r along a particular edge is the product of all the
(r−1) incomingmessages along all other edges. By assumption, each suchmessage
is in error with probability xℓ and all messages are statistically independent. ¿e
outgoing message is in error if an odd number of incoming messages is in error.
¿is happens with probability (see Section D.3)

Q
k
� r − 1
2k − 1

�x2k−1ℓ (1 − xℓ)r−2k = 1 − (1 − 2xℓ)r−1
2

.

Since an edge chosen uniformly at random is connected to a check node of degree
r with probability ρr, it follows that the expected probability of error of a randomly
chosen check-to-variable message in the (ℓ+ 1)-th iteration is equal to

Q
r

ρr
1 − (1 − 2xℓ)r−1

2
=
1 − ρ(1 − 2xℓ)

2
.

Now let us derive PGal
ÑTℓ+1(є), the error probability of the variable-to-check message in

the (ℓ + 1)-th iteration. Consider an edge which is connected to a variable node of
degree l. ¿e outgoing variable-to-check message along this edge in the (ℓ + 1)-th
iteration is in error if either the received value is in error and at least one incoming
messages is in error or the received value is correct but all incoming messages are
in error. ¿e �rst event has probability

є�1 − �1 − 1 − ρ(1 − 2xℓ)
2

�l−1� = є�1 − �1 + ρ(1 − 2xℓ)
2

�l−1�.

¿e second event happens with probability

є̄�1 − ρ(1 − 2xℓ)
2

�l−1.

¿e claim now follows by averaging over the edge degree distribution λ(ċ).
¿e proof for PMP

T̊ℓ
(є) is very similar. It follows by performing the last step with

respect to the node degree distribution L(ċ) instead of the edge degree distribution
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λ(ċ). In the above derivation we assume the following decision rule: the bit value
is equal to the received value unless all internal incoming messages to the variable
node agree. In the latter case we set the bit value equal to this common value. Of
course, other decision rules are possible.

§4.5.2. Belief Propagation

Theorem 4.99 (Performance of Tree Channel). Consider a degree distribution
pair (λ, ρ) ; (L,R) and transmission over a BMS channel with associated L-density
aBMSC. De�ne a0 = aBMSC and for ℓ C 1 let

(4.100) aℓ = aBMSC e λ(ρ(aℓ−1)),
where for an L-density a

λ(a) =Q
i
λiae(i−1), ρ(a) =Q

i
ρi a�(i−1).

¿en aℓ is the L-density associated with the tree channel ( ÑTℓ,aBMSC) and aBMSC e

L(ρ(aℓ−1)) is the L-density associated with the tree channel (T̊ℓ,aBMSC). In partic-
ular,

PBP
ÑTℓ = E(aℓ), PBP

T̊ℓ
= E (aBMSC e L(ρ(aℓ−1))) .

Proof. Consider the distribution of the initial variable-to-check messages. By def-
inition of the algorithm, these messages are equal to the received messages which
have density aBMSC (under the still-running assumption that the all-one codeword
is transmitted). It follows that a0 = aBMSC, as claimed.We proceed by induction. As-
sume that that the density of the variable-to-check messages in the ℓ-th iteration is
aℓ as described in (4.100).

Consider a check node of degree r. By de�nition of the algorithm, the outgoing
message is the sum of the G-representations of (r − 1) independent messages (see
Example 4.88). It follows from the discussion on page 183 that the density of the
outgoing message is

a
�(r−1)
ℓ .

Averaging over the right edge-degree distribution therefore gives

bℓ+1 = ρ(aℓ) =Q
i
ρi aℓ�(i−1).

Consider next a variable node of degree l. By de�nition of the algorithm, the
variable-to-checkmessage is the sum (using L-representations) of the receivedmes-
sage, which has density aBMSC, and (l−1) check-to-variablemessages, each of which
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has density bℓ+1. Since all messages are statistically independent, it follows that the
density of the outgoingmessage is the convolution of the densities of the summands,
i.e.,

aBMSC e b
e(l−1)
ℓ+1 .

Averaging again over the edge degree distribution we see that the outgoing density
is equal to

aℓ+1 = aBMSC e λ(bℓ+1) = aBMSC e λ(ρ(aℓ)).
In the above theorem we have assumed that a0 = aBMSC but the recursions stay

valid if we start with a general initial density a0. In general, aℓ is the density associ-
ated with the tree channel ( ÑTℓ,aBMSC,a0).
Example 4.101 (Density Evolution for the BEC(є)). ¿e density evolution
equation for the BEC(є), which we previously derived in Chapter 3, is a particu-
lar case. Indeed, guided by Example 4.23 let us assume that for ℓ C 0, aℓ(y) has
the form aℓ(y) = xℓ∆0(y) + x̄ℓ∆+ª(y). ¿is is true for ℓ = 0 with x0 = є, since
the initial density is the one corresponding to the BEC(є). Consider the evolu-
tion of the densities at the check nodes. ¿e G-density corresponding to aℓ(y) =
xℓ∆0(y) + x̄ℓ∆+ª(y) is aℓ(�1, y), where aℓ(1, y) = x̄ℓ∆0(y) + xℓ

2 ∆+ª(y) and
aℓ(−1, y) = xℓ

2 ∆+ª(y). Assume that we convolve two densities of the above form.
More precisely, we have theG-density a(�1, y), where a(1, y) = ᾱ∆0(y)+ α2∆+ª(y)
and a(−1, y) = α

2∆+ª(y) and theG-density b(�1, y) which has the same form but
has parameter β. If we perform the convolution of these two G-densities, i.e., if we
compute a(�1, y)�b(�1, y) as de�ned on page 183, then we see that the result is the
G-density c(�1, y), where c(1, y) = γ̄∆0(y) + γ

2∆+ª(y) and c(−1, y) = γ
2∆+ª(y),

with γ̄ = ᾱβ̄. In words, convolution of such G-densities corresponds to a multipli-
cation of the “dual” parameters. If we now perform thisG-convolution according to
the degrees present in the graph and take the corresponding weighted average, and
�nally go back to L-densities, we see that at the input of the variable nodes we have
the density (1 − ρ(1 − xℓ))∆0(y) + ρ(1 − xℓ)∆+ª(y).

Assume that we have two L-densities of the form

α∆0(y) + ᾱ∆+ª(y) and β∆0(y) + β̄∆+ª(y),
and that we convolve them at a variable node. ¿e result is the L-density γ∆0(y) +
γ̄∆+ª(y), where γ = αγ. In words, convolution of such L-densities corresponds to
a multiplication of the parameters.

It follows that a er one full iterationwe go from the L-density aℓ(y) = xℓ∆0(y)+
x̄ℓ∆+ª(y) to the L-density aℓ+1(y) = xℓ+1∆0(y) + x̄ℓ+1∆+ª(y) = єλ(1 − ρ(1 −
xℓ))∆0(y) + (1 − єλ(1 − ρ(1 − xℓ)))∆+ª(y). In other words, we recover

nxℓ+1 = єλ(1 − ρ(1 − xℓ)).
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Example 4.102 (Density Evolution for the BAWGNC(σ)). Consider the den-
sity evolution process for theBAWGNC(σ) and the rate one-half degree distribution
pair

λ(x) = 0.212332x + 0.197596x2 + 0.0142733x4 + 0.0744898x5+
0.0379457x6 + 0.0693008x7 + 0.086264x8 + 0.00788586x10+

0.0168657x11 + 0.283047x30,

ρ(x) = x8.
From Example 4.25 we know that aBAWGNC(σ)(y) � N (2~σ2,4~σ2). Figure 4.103
shows the evolution of aℓ (the densities of messages emitted by the variable nodes
in iteration ℓ) and bℓ+1 (the densities emitted by the check nodes at the subsequent
iteration) for ℓ = 0, 5, 10, 50, and 140 for σ = 0.93. Note that the densities aℓ “move
to the right” as ℓ increases. Consequently, the error probability decreases with each
iteration. n

§4.6. Monotonicity
It is reasonable to expect that the performance of an iterative decoder improves with
improving channel or with increasing iterations, at least in the tree-like setting. For
belief propagation, which is optimal, this expectation is borne out. For message-
passing algorithms in general, however, this expectation is not always borne out nor
is it obvious that it should be. A good example is the min-sum decoder whose lack
of monotonicity is discussed in Problem 4.42.

§4.6.1. Gallager Algorithm A

Lemma4.104 (Monotonicityof f(ċ, ċ)). For a givendegree distribution pair (λ, ρ)
let f(x, y) = x(1− p+(y))+ x̄p−(y), where p+ and p− are de�ned in¿eorem 4.97.
¿en f(x, y) is increasing in both its arguments for x, y > [0, 12].
Proof. We start by showing that f(x, y) is an increasing function in x. Note that
p+(y)+p−(y) = λ(1−q(y))+λ(q(y)), where 0 < q(y) = 1−ρ(1−2y)

2 B
1
2 , for 0 < y B

1
2 . Since λ(1−z)+λ(z) is strictly decreasing in the range 0 B z B 1

2 (see Problem4.35)
and since λ(1) + λ(0) = 1 it follows that 1 − p+(y) − p−(y) A 0 for 0 < y B 1

2 . ¿e
claimnow follows by observing that f(x, y) = x(1−p+(y)−p−(y))+p−(y). Taking
the derivative of f(x, y) with respect to ywe get

∂f(x, y)
∂y

= �xλ′ �1 + ρ(1 − 2y)
2

� + (1 − x)λ′ �1 − ρ(1 − 2y)
2

�	 ρ′(1 − 2y).

If 0 < x, y B 1
2 then this expression is positive which proves that f is an increasing

function in its second argument as well.

Preliminary version – October 18, 2007



224 binary memoryless symmetric channels

0.05
0.10
0.15
0.20

-10 0 10 20 30 40

0.05
0.10
0.15
0.20

-10 0 10 20 30 40

0.05
0.10
0.15
0.20

-10 0 10 20 30 40

0.05
0.10
0.15
0.20

-10 0 10 20 30 40

0.05
0.10
0.15
0.20

-10 0 10 20 30 40

0.05
0.10
0.15
0.20

-10 0 10 20 30 40

0.05
0.10
0.15
0.20

-10 0 10 20 30 40

0.05
0.10
0.15
0.20

-10 0 10 20 30 40

0.05
0.10
0.15
0.20

-10 0 10 20 30 40

0.05
0.10
0.15
0.20

-10 0 10 20 30 40

aℓ bℓ+1

Figure 4.103: Evolution of aℓ (densities of messages emitted by variable nodes) and
bℓ+1 (densities of messages emitted from check nodes) for ℓ = 0, 5, 10, 50, and 140
for the BAWGNC(σ = 0.93) and the code given in Example 4.102. ¿e densities
“move to the right”, indicating that the error probability decreases as a function of
the number of iterations.
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Lemma 4.105 (MonotonicitywithRespect toChannel). Let (λ, ρ) be a degree
distribution pair and let є > [0, 12]. If 0 B є′ B є then PBP

Tℓ(є′) B PBP
Tℓ(є). In particular,

if PGal
Tℓ (є)

ℓ�ª
Ð� 0 then PGal

Tℓ (є′)
ℓ�ª
Ð� 0.

Proof. We prove the claim for PGal
ÑTℓ (є). ¿e corresponding claim for PGal

T̊ℓ
(є) can be

shown in a nearly identical manner. Let f(ċ, ċ) be de�ned as in Lemma 4.104. Recall
from¿eorem 4.97 that PGal

ÑTℓ (є) = xℓ(є), where x0(є) = є and xℓ(є) = f(є,xℓ−1(є)).
Since є′ B є it follows that x0(є′) = є′ B є = x0(є). Further, if for some ℓ C 0,
xℓ(є′) B xℓ(є) then

xℓ+1(є′) = f(є′,xℓ(є′))
Lem. 4.104
B f(є,xℓ(є)) = xℓ+1(є).

By induction, xℓ(є′) B xℓ(є) for ℓ C 0. So if xℓ(є) ℓ�ªÐ� 0, then xℓ(є′) ℓ�ªÐ� 0.

Lemma 4.106 (Monotonicity with Respect to Iteration). For a given degree
distribution pair (λ, ρ) de�ne f(ċ, ċ) as in Lemma 4.104. Let є,x0 > [0, 12]. For
ℓ = 1,2, ..., de�ne xℓ(x0) = f(є,xℓ−1(x0)). ¿en xℓ(x0) is a monotone sequence
converging to the nearest (in the direction of monotonicity) solution of the equa-
tion x = f(є,x), x > [0, 12].
Proof. If x0 = 0 then xℓ = 0 for ℓ C 1 and the �xed point is x = 0. If for some ℓ C 1,

xℓ C xℓ−1 then xℓ+1 = f(є,xℓ)
Lem. 4.104
C f(є,xℓ−1) = xℓ, and the corresponding

conclusion holds if xℓ B xℓ−1. ¿is shows that the sequence �xℓ� is monotone.
For є > [0, 12] we have 0 B f(є,x) B 1

2 for all x > [0, 12]. It follows that xℓ
converges to an element of [0, 12], call it xª. By the continuity of f we have xª =
f(є,xª). It remains to show that xª is the nearest (in the sense of monotonicity)
�xed point. Consider a �xed point z such that xℓ(x0) B z for some ℓ C 0. ¿en

xℓ+1(x0) = f(є,xℓ(x0))
Lem. 4.104
B f(є, z) = z, which shows that xª B z. Similarly, if

xℓ(x0) C z for some ℓ C 0 then xª C z. ¿is shows that xℓ cannot “jump” over any
�xed point and in fact converges to the nearest one.

§4.6.2. Belief Propagation

Lemma4.107 (Monotonicityof f(ċ, ċ)). For a givendegree distribution pair (λ, ρ)
de�ne the operator f(a,b) = a e λ(ρ(b)), where a and b are two symmetric L-
densities and where aeλ(ρ(b)) is de�ned as in¿eorem 4.99. If a′ _ a and b′ _ b
then f(a′,b′)_ f(a,b).
Proof. Looking back at De�nition 4.95 we see that the density f(a,b) is the density
associated with the tree channel ( ÑT1,a,b).¿at is, it is the distribution of the log-
likelihood ratio of X (the root bit) conditioned on X = 1.
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By Lemma 4.82 we know that APP processing preserves the order implied by
degradation, so that if we degrade the tree channel ( ÑT1,a′,b′) to the tree channel
( ÑT1,a,b) then the density emitted at the root bit is degraded as well.
Lemma4.108 (MonotonicitywithRespect toChannel). Let (λ, ρ) be a degree
distribution pair and consider two BMS channels characterized by their L-densities
a′BMSC and aBMSC, respectively. If a′BMSC _ aBMSC then PBP

Tℓ(a′BMSC) B PBP
Tℓ(aBMSC). In

particular, if PBP
Tℓ(aBMSC) ℓ�ªÐ� 0, then PBP

Tℓ(a′BMSC) ℓ�ªÐ� 0.

Proof. ¿e proof for PBP
Tℓ follows the same logic as the previous proof: degrade the

tree channel (Tℓ,a′BMSC) to the tree channel (Tℓ,aBMSC) and use the fact that APP
processing preserves the order imposed by degradation.

Lemma 4.109 (Monotonicity with Respect to Iteration). For a given degree
distribution pair (λ, ρ) de�ne the operator f(ċ, ċ) as in Lemma 4.107. Let aBMSC and
a0 denote two symmetric L-densities. For ℓ C 1 de�ne

aℓ = f(aBMSC,aℓ−1).
If for some ℓ′ C 0 and k C 1 we have aℓ′+k _ aℓ′ (aℓ′ ^ aℓ′+k) then for ℓ C 0 and
j > �0, ..., k − 1� the sequence aℓ′+j+kℓ is monotone (with respect to degradation),
and converges to a symmetric limit density. In particular, if a0 = aBMSC then aℓ is
monotonic (with respect to degradation) and converges to a symmetric limit aª _
aBMSC.

Proof. To be concrete, we prove the statement for sequences which are monoton-
ically upgraded. ¿e case of sequences which are monotonically degraded can be
handled in an identical fashion by reversing the direction of the arrows.

Assume that for some ℓ C 0, aℓ′+k(ℓ+1) _ aℓ′+kℓ so that the input to the tree
channel ( ÑTk,aBMSC,aℓ′+k(ℓ+1)) is upgraded with respect to the input to the tree
channel ( ÑTk,aBMSC,aℓ′+kℓ). By assumption, we know that this is true for ℓ = 0. ¿is
case serves as our anchor in the induction.

From Lemma 4.82 we know that APP processing preserves the order imposed
by degradation. Since the density associated to ( ÑTk,aBMSC,aℓ′+k(ℓ+1)) is aℓ′+k(ℓ+2),
whereas the density associated to ( ÑTk,aBMSC,aℓ′+kℓ) is aℓ′+k(ℓ+1), we conclude that
aℓ′+k(ℓ+2) _ aℓ′+k(ℓ+1). From¿eorem 4.77 we know that a sequence of symmetric
densities ordered by degradation converges to a symmetric limit density.

By monotonicity of f(ċ, ċ), if aℓ′+k _ aℓ′ then a(ℓ′+1)+k _ a(ℓ′+1) and, more
generally, a(ℓ′+j)+k _ a(ℓ′+j). By using the same argument as above with ℓ′ replaced
by (ℓ′ + j) we conclude the general case.

Finally, if a0 = aBMSC then we have a1 _ a0 = aBMSC.¿e statement follows from
the previous case if we set ℓ′ = 0 and k = 1.
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Although aℓ′+kℓ converges in ℓ for all ℓ′ we cannot conclude that aℓ converges.
In general, the sequence could converge to a limit cycle of length k. Such a limit cycle
has never been observed and we conjecture that aℓ in fact converges. For technical
reasons we will later need the following result, which substitutes for the conjecture.

Corollary 4.110 (Monotonicity with Respect to Iteration). If in addition
to the conditions of Lemma 4.109 we have aℓ′+k+1 _ aℓ′ (aℓ′+k+1 ^ aℓ′) then aℓ
converges to a limit density aª.

Proof. By Lemma 4.109 the sequence aℓ′+(k+1)ℓ converges in ℓ. Since this sequence
coincides with aℓ′+j+kℓ in�nitely o en the limits must be the same.

§4.7. Threshold
Definition 4.111 (Threshold of aDegreeDistribution Pair). Consider a fam-
ily of BMS channels �aBMSC(σ)�σσ. Assume that for a �xed message-passing decoder
MP

lim
ℓ�ª

PMP
Tℓ (aBMSC(σ)) = 0, but lim

ℓ�ª
PMP
Tℓ (aBMSC(σ)) A 0,

and that the decoder is monotone with respect to this channel family. ¿en there
exists a supremum of σ for which limℓ�ª PMP

Tℓ (aBMSC(σ)) = 0 so that for all smaller
channel parameters the error probability is 0 and for all larger channel parameters
the error probability is non-zero. ¿is supremum is called the threshold and it is
denoted by σMP,

SσMP(λ, ρ) = sup�σ > [σ,σ] � PMP
Tℓ (aBMSC(σ)) ℓ�ªÐ� 0�.

Example 4.112 (єGal(x2,x5)). We want to determine єGal(x2,x5), i.e., the thresh-
old of the degree distribution pair (x2,x5) for the family �BSC(є)� and Gallager’s
algorithm A. From Lemma 4.105 we know that this decoder is monotone with re-
spect to the family �BSC(є)�, so that the threshold is well de�ned. Figure 4.113
shows PGal

ÑTℓ (є) as a function of ℓ for various values of є. From this �gure we see
that єGal(3,6) � 0.03946365. n

Example 4.114 (σBP(3,6)). In the same manner, we determine σBPBAWGNC(3,6) for
the family �BAWGNC(σ)�. From Lemma 4.108 we know that the BP decoder is
monotone with respect to any channel family which is ordered by degradation, and
from the remarks following Example 4.73 we know that the family �BAWGNC(σ)�
is monotone. It follows that the threshold is well-de�ned. Figure 4.115 shows PBP

ÑTℓ(σ)
as a function of ℓ for various values of σ. From this �gure we see that σBP(3,6) �
0.881. n
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Figure 4.113: Evolution of PGal
ÑTℓ(x2,x5)(є) as a function of ℓ for various values of є.

For є = 0.03875,0.039375,0.0394531, and 0.039462 the error probability converges
to zero, whereas for є = 0.039465,0.0394922,0.0395313, and 0.0396875 the error
probability converges to a non-zero value. For є � 0.03946365 the error proba-
bility stays constant. We conclude that єGal(3,6) � 0.03946365. Note that above
єGal(3,6), PGal

ÑTℓ(x2,x5)(є) is an increasing function of ℓ, whereas below this threshold
it is a decreasing function. In either case, PGal

ÑTℓ(x2,x5)(є) is monotone as guaranteed by
Lemma 4.106.
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Figure 4.115: Evolution of PBP
ÑTℓ(x2,x5)(σ) as a function of the number of iterations

ℓ for various values of σ. For σ = 0.878,0.879.0.8795,0.8798, and 0.88 the error
probability converges to zero, whereas for σ = 0.9,1,1.2, and 2 the error probability
converges to a non-zero value.We see that σBP(3,6) � 0.881. Note that, as predicted
by Lemma 4.109, PBP

ÑTℓ(x2,x5)(σ) is a non-increasing function in ℓ.
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l r rate єGal єBP єSha σBP σSha

3 6 0.500 0.039 0.084 0.110 0.881 0.979
4 8 0.500 0.047 0.076 0.110 0.838 0.979
5 10 0.500 0.027 0.068 0.110 0.794 0.979
3 5 0.400 0.061 0.113 0.146 1.009 1.149
4 6 0.333 0.066 0.116 0.174 1.011 1.297
3 4 0.250 0.106 0.167 0.215 1.267 1.550

Table 4.116: ¿resholds for the family �BSC(є)� under Gallager’s algorithm A and
the BP algorithm as well as thresholds for the family �BAWGNC(σ)� under BP
decoding. Also listed are the threshold values corresponding to Shannon capacity.

§4.8. Fixed Point Characterization of Threshold
As was the case for the BEC, the threshold can in many cases be characterized in
terms of �xed points of the density evolution equation (but see Problem 4.39).

§4.8.1. Gallager Algorithm A

Theorem 4.117 (Fixed Point Characterization for Gallager A). For a given
degree distribution pair (λ, ρ) de�ne f(ċ, ċ) as in Lemma 4.104 so that density evo-
lution can be written as xℓ = f(є,xℓ−1), ℓ C 1, x0 = є.

[Convergence] For any є > [0, 12], xℓ(є) converges to a solution of x = f(є,x)
with x > [0, 12].

[Su�ciency] If єGal
A 0 and if x x f(є,x) for all x > (0,є], then xℓ(є) con-

verges to zero as ℓ tends to in�nity, hence, є B єGal.

[Necessity] If there exists an x, x > (0,є], such that x = f(є,x), then xℓ(є) C x
for all ℓ C 0, hence єGal

B є.

[Fixed Point Characterizations of the ¿reshold]

(i) єGal(λ, ρ) = sup�є > [0, 12] � x = f(є,x) has no solution in (0,є]�.
(ii) єGal(λ, ρ) = inf�є > [0, 12] � x = f(є,x) has a solution in (0,є]�.

Proof. We showed that xℓ(є) converges to a �xed point already in Lemma 4.106.
Let us show the su�ciency condition. We claim that under the stated assump-

tions x1 = f(є,є) < є. If we assume this for a moment then it follows by the
monotonicity of the sequence �xℓ� that limℓ�ª xℓ is a solution of x = f(є,x) with
x > [0,є]. By assumption the only such �xed-point is zero.
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It remains to verify that f(є,є) < є. Note that since we have no �xed points
of x = f(є,x) with x > (0,є] and since f is continuous it must be true that either
f(x,x)−x < 0 for all x > (0,є] or that f(x,x)−x A 0 for all x > (0,є]. If f(x,x)−x A
0 for all x > (0,є] then for 0 < є′ B є, xℓ(є) is monotone increasing. In other words,
єGal
= 0.
In order to show the necessity, assume that there exists a �xed point x > (0,є].

¿en x1 = f(є,є) C f(є,x) = x, and by induction, xℓ = f(є,xℓ−1) C f(є,x) =
x.

Example 4.118 (Fixed Point Characterization for Gallager A). Consider
the (3,3)-regular ensemble. Figure 4.119 shows f(є,x) − x as a function of x for
є = єGal

� 0.22305 (le picture). We see that the threshold is determined by a single
critical point. n
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Figure 4.119: Le : f(є,x) − x as a function of x for the (3,3)-regular ensemble and
є = єGal

� 0.22305. Right: f(є,x)−x as a function of x for the (3,6)-regular ensem-
ble and є = 0.037, є = єGal

� 0.394, and є = 0.042.

Example 4.120 (Fixed Point Characterization for Gallager A). Consider
the (3,6)-regular ensemble. In this case the threshold is determined by a �xed point
at the beginning of the decoding process. Figure 4.119 shows f(є,x)−x as a function
of x for є = 0.037, є = єGal

� 0.03946, and є = 0.042 (right picture). Also shown is
the corresponding starting point of the recursion x = є. If є is smaller than the �xed
point (crossing point with the horizontal axis) then the recursion converges to zero,
otherwise it converges to a non-zero value. ¿e threshold is characterized by the
value of є so that f(є,є) = є. n

§4.8.2. Belief Propagation Algorithm

Theorem 4.121 (Fixed Point Characterization for BP). Consider a given de-
gree distribution pair (λ, ρ) and assume that transmission takes place over a BMS
channel characterized by its L-density aBMSC. De�ne a−1 = ∆0 and for ℓ C 0

(4.122) aℓ = aBMSC e λ(ρ(aℓ−1)).
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[Convergence]¿e sequence of densities aℓ converges to a symmetric density
aª which is a �xed point solution to (4.122).

[Su�ciency] If there does not exist a symmetric density a x ∆+ª such that
a = aBMSC e λ(ρ(a)) then E(aℓ) converges to zero as ℓ tends to in�nity, or,
equivalently, aª = ∆+ª.

[Necessity] If there exists a symmetric density a x ∆+ª such that a = aBMSCe

λ(ρ(a)) thenE(aℓ) does not converge to zero as ℓ tends to in�nity, or, equiv-
alently, aª x ∆ª.

[Fixed Point Characterizations of the ¿reshold] Let �aBMSC(h)� be a family
of BMS channels ordered by degradation and parametrized by the real pa-
rameter h. ¿en

(i) hBP(λ, ρ) = sup�h � a = aBMSC(h) e λ(ρ(a)) has no solution a x ∆+ª. �
(ii) hBP(λ, ρ) = inf�h � a = aBMSC(h) e λ(ρ(a)) has a solution a x ∆+ª. �

Proof. Since a−1 = ∆0 and a0 = aBMSC, we know that a0 is upgraded with respect to
a−1. From Lemma 4.109 we conclude that aℓ is a monotone (with respect to degra-
dation) sequence that converges to a limit density aª.

¿e density aª is a �xed point of (4.122) since the update equations are con-
tinuous under our notion of convergence. More precisely: �aℓ� converges in ℓ to a
if the cumulative distributions converge at points of continuity of the cumulative
distribution of a.¿en, our assertion is simply that aBMSC e λ(ρ(aℓ)) converges in
ℓ to aBMSC e λ(ρ(a)) under the same notion of convergence.

If a x ∆+ª is a �xed point then the tree channel (Tℓ,aBMSC,a) has associated
density a. In particular PBP

Tℓ(aBMSC,a) = E(a). If we are below threshold then, for
ℓ su�ciently large, we have PBP

Tℓ(aBMSC, ∆0) < E(a). But, since a _ ∆0, this is a
contradiction. ¿us, below threshold there can be no �xed point other than ∆+ª.

Above threshold we have aª x ∆+ª as a �xed point.

Example 4.123 (Fixed Point Density). Figure 4.124 shows the �xed point density
for the (3,6)-regular ensemble and the BAWGNC(σ) with σ � 0.881. n

§4.9. Stability
From the above section we see that the behavior of a message-passing decoder is of-
ten determined by its �xed points. One �xed point which is virtually always present
is the one corresponding to perfect decoding (zero error rate). It is desirable that
this �xed point is stable. ¿at is, assuming the density has evolved to something
“close” to perfect decoding, it should converge to the perfect decoding �xed point.
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Figure 4.124: Progress per iteration (change of error probability) of density evolution
for the (3,6)-ensemble and the BAWGNC(σ) channel with σ � 0.881 as a function
of the bit error probability. In formulae: we plot E(aℓ) − E(aℓ−1) as a function of
Pb = E(aBAWGNC(σ) e L(ρ(aℓ−1))), where L(x) = x3 and ρ(x) = x5. For cosmetic
reasons this discrete set of points was interpolated to form a smooth curve. ¿e
initial error probability is equal to Q(1~0.881) � 0.12817. At the �xed point the
progress is zero. ¿e associated �xed point densities are a (emitted at the variable
nodes) and b (emitted at the check nodes).

One is also interested in the rate of convergence in this case. ¿is stability property
is amenable to analysis and this section is devoted to its study.

§4.9.1. Gallager Algorithm A

Let us look at the behavior of (4.98) in ¿eorem 4.97 for small values of xℓ. Some
calculus shows that

xℓ = (єλ′(1) − єλ′(0) + λ′(0))ρ′(1)xℓ−1 +O(x2ℓ−1).

Clearly, for su�ciently small xℓ−1 the convergence behavior is determined by the
term linear in xℓ−1. More precisely, the convergence depends on whether (єλ′(1)−
єλ′(0)+ λ′(0))ρ′(1) is smaller or larger than one.¿e precise statement is given in
the following theorem.
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Theorem 4.125 (Stability Condition for Gallager Algorithm A). Assume
that we are given a degree distribution pair (λ, ρ) and a real number є, є > [0, 12].
De�ne f(ċ, ċ) as in Lemma 4.104 and let xℓ(є) = f(є,xℓ−1), ℓ C 1, x0(є) = є.

[Necessity] If є A 1−λ′(0)ρ′(1)
λ′(1)ρ′(1)−λ′(0)ρ′(1) , then there exists a strictly positive con-

stant ξ = ξ(λ, ρ,є) such that for all ℓ > N, xℓ(є) A ξ.

[Su�ciency] If є < 1−λ′(0)ρ′(1)
λ′(1)ρ′(1)−λ′(0)ρ′(1) , then there exists a strictly positive con-

stant ξ = ξ(λ, ρ,є) such that if, for some ℓ > N, xℓ(є) B ξ, then xℓ(є) con-
verges to zero as ℓ tends to in�nity.

As an immediate consequence we get the upper bound on the threshold

єGal
B

1 − λ′(0)ρ′(1)
λ′(1)ρ′(1) − λ′(0)ρ′(1) .(4.126)

As discussed in Problem 4.56, this simple bound is o en tight.

§4.9.2. Belief Propagation

Under BP decoding the parameter which characterizes the channel with respect to
the stability of the system is the Bhattacharyya constantB(ċ) introduced in De�ni-
tion 4.62.

Theorem 4.127 (Stability Condition for Belief Propagation). Assume we
are given a degree distribution pair (λ, ρ) and that transmission takes place over
a BMS channel characterized by its L-density aBMSC with Bhattacharyya constant
B(aBMSC). For ℓ C 1 de�ne aℓ(a0) = aℓ = aBMSC e λ(ρ(aℓ−1)) with a0 an arbitrary
symmetric density.

[Necessity] If B(aBMSC)λ′(0)ρ′(1) A 1, then there exists a strictly positive
constant ξ = ξ(λ, ρ,aBMSC) such that lim inf ℓ�ªE(aℓ) C ξ for all a0 x ∆+ª.
[Su�ciency] If B(aBMSC)λ′(0)ρ′(1) < 1, then there exists a strictly positive
constant ξ = ξ(λ, ρ,aBMSC) such that if, for some ℓ > N, E(aℓ) B ξ, then aℓ
converges to ∆+ª.

Example 4.128 (Stability Condition for BEC(є)). We have

B(aBEC(є)) = S [є∆0 + є̄∆+ª] e−x~2dx = є .

¿erefore, the stability condition reads єλ′(0)ρ′(1) < 1, which agrees with the result
of Section 3.13. Equivalently, we get єBP(λ, ρ) B 1

λ′(0)ρ′(1) . n

Preliminary version – October 18, 2007



234 binary memoryless symmetric channels

Example 4.129 (Stability Condition for BSC(є)). We have

B(aBSC(є)) = S [є∆− ln є̄
є
+ є̄∆ln є̄

є
] e−x~2dx = 2ºєє̄ .

¿e stability condition for the BSC(є) is therefore 2ºєє̄λ′(0)ρ′(1) < 1. Formulated
as an upper bound, єBP(λ, ρ) B 1

2 �1 −
¼

1 − 1
(λ′(0)ρ′(1))2�. n

Example 4.130 (Stability Condition for BAWGNC(σ)). We have

B(aBAWGNC(σ)) = S
¾

σ2

8π
e−

(x− 2
σ2
)2σ2

8 e−x~2dx = e−
1

2σ2 .

¿us, the stability condition reduces to e−
1

2σ2 λ′(0)ρ′(1) < 1. ¿is gives rise to
σBP(λ, ρ) B 1»

2 ln(λ′(0)ρ′(1)) . n

¿e proof of¿eorem 4.127 is lengthy and so we break it up into twomore man-
ageable pieces.

Proof of Necessity in ¿eorem 4.127. ¿eproof is based on (the Erasure Decomposi-
tion) Lemma 4.80. Recall that for the BECwe observed that zero was a �xed point of
the density evolution equation. By linearizing the recursion around this �xed point
we were able to analyze its stability. For the general case we proceed along the same
lines. Note that ∆+ª is the unique symmetric density a so that E(a) = 0. Since
aBMSC e λ(ρ(∆+ª)) = ∆+ª, we see that ∆+ª is a �xed point of density evolution.
To analyze local convergence we consider a linearization of the density evolution
equation about this �xed point.

To that end, consider the (BEC) density b0 = b0(є) = 2є∆0 + (1− 2є)∆+ª.¿is
density is symmetric and E(2є∆0 + (1 − 2є)∆+ª) = є. A er a complete iteration of
density evolution, this density evolves to

b1 = 2єλ′(0)ρ′(1)aBMSC + (1 − 2єλ′(0)ρ′(1))∆+ª +O(є2) .

More generally, if we consider n iterations of density evolution we see that the den-
sity b0 evolves to

bn = 2є(λ′(0)ρ′(1))naenBMSC + (1 − 2є(λ′(0)ρ′(1))n)∆+ª +O(є2) .

We are interested in the error probability associated with bn, i.e., we are interested
in E(bn). Recall from Section 4.1.9, Lemma 4.67, that limn�ª

1
n logE(aenBMSC) =

log(B(aBMSC)). ¿erefore, if we assume that B(aBMSC)λ′(0)ρ′(1) A 1, then there
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exists an integer N such that (λ′(0)ρ′(1))nE(aenBMSC) A 1 for n C N.We can then
write

E(bn) = 2є(λ′(0)ρ′(1))nE(aenBMSC) +O(є2) A 2є+O(є2) A є if є B ξ,

for n C N where ξ is a strictly positive constant depending only on (λ, ρ) and aBMSC.
By the (Erasure Decomposition) Lemma 4.80 we see that if є B ξ then bN and bN+1
are degraded with respect to b0. It follows from Corollary 4.110 that bn converges to
a �xed point bª = bª(є) that is degraded with respect to b0(є) and that satis�es
E(bª(є)) A є.

Now let a0 satisfy E(a0) = є > (0, ξ].Again by Lemma 4.80, a0 is degraded with
respect to b0(є). It follows by induction on monotonicity, Lemma 4.107, that an is
degraded with respect to bn(є) and hence lim infn�ªE(an) C E(bª(є)) A є. Per-
haps a little surprising, we can now conclude that bª(є) = bª(ξ) for all є > (0, ξ].
Indeed, we must have E(bª(є)) A ξ or by the above it cannot be a �xed point.
But this means that bª(є) is degraded with respect to b0(ξ). Since it is a �xed
point (think of initiating density evolution with bª(є)) it follows frommonotonic-
ity, Lemma 4.107, that bª(є)must be degraded with respect to bn(ξ) for all n and
hence also with respect to bª(ξ). Since bª(ξ) is also degraded with respect to
bª(є) they must in fact be equal.

Now, if E(a0) = є > (0, ξ] then a0 it is degraded with respect to b0(є) and
so lim infn�ªE(an) C E(bª(є)) A ξ. If E(a0) A ξ then by Lemma 4.80, a0 is
degraded with respect to b0(ξ) and the same conclusion follows.
Proof of Su�ciency in ¿eorem 4.127. We give two proofs. ¿e �rst proof is based
on the idea of extremes of information combining (see Section 4.10.2). Let a0 be
a symmetric L-density at the output of the variable nodes. Consider density evo-
lution, where aℓ denotes the densities at the output of the variable nodes and bℓ
denotes the densities at the output of the check nodes. De�ne xℓ = B(aℓ) and
yℓ = B(bℓ). By the multiplicativity of the Bhattacharyya constant at the variable
nodes (Lemma 4.64) and the extremality property (iv) discussed in Problem 4.62
we have for ℓ C 1

yℓ B 1 − ρ(1 − xℓ−1), xℓ =B(aBMSC)λ(yℓ),
so that xℓ BB(aBMSC)λ(1− ρ(1− xℓ−1)). If we expand this inequality around zero,
this implies that xℓ BB(aBMSC)λ′(0)ρ′(1)xℓ−1 +O(x2ℓ−1). Since

B(aBMSC)λ′(0)ρ′(1) < 1,
we can �nd η A 0 so that B(aBMSC)λ′(0)ρ′(1) + η < 1. For a su�ciently small
constant κ, xℓ−1 B κ implies xℓ B (B(aBMSC)λ′(0)ρ′(1) + η)xℓ−1 < xℓ−1. It follows
that if for some ℓ > N, xℓ B κ then xℓ � 0.
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Let ξ = κ2~4. ¿en it follows by the right side of (4.66) that if E(aℓ) B ξ then
xℓ =B(aℓ) B κ. Hence, xℓ =B(aℓ)� 0. ¿is in turn implies that aℓ � ∆+ª.

¿e second proof uses the idea of minimal codewords in a tree. You can �nd it
in Appendix E.

§4.10. EXIT Charts
In the case of the BEC we saw that the EXIT chart was a useful and intuitive tool to
visualize the density evolution process. Let us therefore discuss how to de�ne EXIT
functions and EXIT charts for general BMS channels.

Definition 4.131 (EXIT Function for BMS Channels). Let X be a vector of
length n chosen with probability pX(x) from a binary code C. Assume that trans-
mission takes place over the family �BMSC(h)�. ¿en

hi(h) = H(Xi SY�i(h)),

h(h) = 1
n

n
Q
i=1
H(Xi SY�i(h)) = 1

n

n
Q
i=1
hi(h).

Lemma 4.132 (EXIT Function for Linear Codes via EXIT Functional). Let X
be a vector of length n chosen uniformly at random from a proper binary linear code
C and assume that transmission takes place over the family �BMSC(h)�. De�ne the
extrinsic (i.e., based only on Y�i and not on the whole vector Y) MAP estimator of
Xi,

ϕi(y�i) = ln
pXi SY�i(+1 S y�i)
pXi SY�i(−1 S y�i)

,(4.133)

and Φi = ϕi(Y�i). Let ai denote the density of Φi, assuming that the all-one code-
word was transmitted, and let a = 1

n P
n
i=1 ai, where for simplicity of notation we

have suppressed the dependency of ai and a on the channel parameter h. ¿en

hi(h) = H(ai), h(h) = H(a).

Proof. From¿eorem 4.30 we know that Φi constitutes a su�cient statistic for Xi
given Y�i. According to our discussion on page 29, this implies that H(Xi SY�i) =
H(Xi SΦi). Further, since the codeC is proper and pX(x) is uniform,we know from
¿eorem 4.30 that the channel pΦi SXi(ϕi S xi) is symmetric, that there is a uniform
distribution on Xi, and that ϕi is in fact a log-likelihood ratio. We can therefore
compute the entropy H(Xi SΦi) by applying the entropy operator to the distribu-
tion ofΦi conditioned on Xi = 1. Since, again by¿eorem 4.30, this distribution is
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the same as the distribution ofΦi conditioned that the all-one codeword was trans-
mitted and this distribution is denoted by ai, the claim that H(Xi SY�i) = H(ai)
follows.

Example 4.134 ([n,1,n]RepetitionCode). Assume that transmission takes place
over a family of BMS channels characterized by their L-densities �aBMSC(h)�. By
symmetry, h(h) = hi(h), i > [n], and

h(h) = H(ae(n−1)BMSC(h)).

If we specialize to the family �BSC(h)� we get

h(h) =
n−1
Q
i=0
�n − 1

i
�єiє̄n−1−ih2� єSn−1−2iS

єSn−1−2iS + є̄Sn−1−2iS
�,

where є = h−12 (h). For the Gaussian case we can express h(h) in parametric form as

(H(aBAWGNC(σ)),H(aBAWGNC(σ~ºn−1))).

¿e two terms can be evaluated as discussed in Example 4.39. n

Example 4.135 ([n,n−1,2] Parity-Check Code – �BSC(h)�). Again by symme-
try, h(h) = hi(h), i > [n], and

h(h) = H(a�(n−1)
BSC(є) ) = H(aBSC( 1−(1−2є)n−12 )) = h2 �

1 − (1 − 2є)n−1
2

� ,

where є = h−12 (h). n

Example 4.136 ([n,n − 1,2] Parity-Check Code – �BAWGNC(h)�). Formally,
we have

h(h) = H(a�(n−1)
BAWGNC(h)).

Unfortunately, there is no elementary way to express the result of this convolution.
For practical matters the following accurate approximation is available. Let ψ(m)
denote the function which gives the entropy of a symmetric Gaussian of mean m.
We can computeψ(m) as discussed in Example 4.39 using the simple additional re-
lationship σ =

»
2~m.¿e EXIT function according to the proposed approximation

is

h(h) = 1 −ψ�(n − 1)ψ−1(1 − h)�.
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¿e idea of this approximation is the following: we have seen in ¿eorem 3.78 that
for the BEC we have the duality relationship: h(є) = 1 − hÙ(є̄). In words, to com-
pute the EXIT function for a particular parameter є and code C we can instead
compute the EXIT function for the “dual” parameter є̄ and the dual code CÙ. ¿is
statement is easily generalized. In Problem 4.43 we discuss the Hartmann-Rudolph
decoding rule. It states that an equivalent way of performing MAP decoding on a
linear code is to use the dual code and to “dualize” the input to the code by tak-
ing the Fourier transform. ¿is means that instead of operating with probabilities
(p(x = 1 S y), p(x = −1 S y)) we operate with the tuple (p(x = 1 S y) − p(x =
−1 S y), p(x = 1 S y)+p(x = −1 S y)) = (p(x = 1 S y)−p(x = −1 S y),1). Alternatively,
this means that instead of working with L-densities we work with D-densities. For
the BAWGNC(h) unfortunately the dual channel is not again a BAWGNC. Never-
theless, it has been observed that we get an accurate approximation if we perform
the calculation on the dual code with input chosen from the BAWGNC(hÙ = 1−h).
To get the above approximation proceed as follows. First compute the dual parame-
ter 1 − h. Next determine the corresponding mean by computing ψ−1(1 − h). Since
the means at a repetition code (the dual of the parity-check code) add, multiply the
result by (n − 1). Finally, bring the resulting mean back to an entropy by applying
ψ(ċ) and compute the dual parameter. n

Figure 3.75 shows the EXIT curves for the repetition as well as for the parity-
check code for the families �BEC(h)�, �BSC(h)�, and also �BAWGNC(h)�. ¿e
EXIT curves for the various channel families are very similar. ¿is observation is at
the heart of the EXIT chartmethod for general channels. But note also that the EXIT
function corresponding to the repetition code for the BEC is strictly smaller than
the corresponding EXIT function for the BSC. ¿is implies that the area theorem
cannot be ful�lled in the general case. We will see in Section 4.12 how to remedy
this situation.

§4.10.1. Thresholds and Optimization via EXIT Charts

Consider the density evolution process for BP stated in¿eorem 4.99.We start with
a0 = aBMSC, and for ℓ C 1, aℓ = aBMSC e λ(ρ(aℓ−1)). In general the “intermediate”
densities aℓ do not have simple descriptions. ¿is makes density evolution di�cult
to handle analytically.

If at each iteration ℓwe replace the intermediate density aℓ in the density evolu-
tion process with an “equivalent” density chosen from some suitable family of den-
sities then we get the EXIT chart method. ¿e most “faithful” equivalence rule is to
choose the element of the channel family which has equal entropy.

Definition 4.138 (EXIT Chart Method). Consider a degree distribution pair
(λ, ρ) and assume that transmission takes place over a BMS channel with L-density
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Figure 4.137: EXIT function of the [3,1,3] repetition code and the [6,5,2] parity-
check code for the BEC (solid curve), the BSC (dashed curve), and also the
BAWGNC (dotted curve).

aBMSC. Let �bh� and �ah� denote two families of symmetric L-densities. Let hc,ℓ
(hv,ℓ) denote the entropy of the density emitted at the check nodes (variables nodes)
at the ℓ-th iteration according to the EXIT chart method with respect to these chan-
nel families. More precisely, let these densities be bhc,ℓ and ahv,ℓ , respectively. ¿en
hv,0 = H(aBMSC) and for ℓ C 1

hc,ℓ = H(ρ(ahv,ℓ−1)), hv,ℓ = H(aBMSC e λ(bhc,ℓ)),

where λ(a) = Pi λiae(i−1) and ρ(a) = Pi ρia�(i−1). We then say that hv,ℓ is the
entropy emitted by the variable nodes in the ℓ-th iteration according to the EXIT
chart method.

Discussion: If the chosen families �bh� and �ah� contain the actual densities
encountered when computing density evolution then the EXIT chart method with
respect to these channel families is exact. But of course we do not know these inter-
mediate densities a priori so that we typically pick some “universal” family.

Example 4.139 (EXITChartMethodWithRespect To �aBAWGNC(h)�). ¿epre-
ferred choice for both families of “intermediate” densities is �aBAWGNC(h)�. Let us
explicitly write down the density evolution equation for this case according to the
EXIT chart method stated in De�nition 4.138, assuming that transmission takes
place over the BAWGNC(ĥ).

In the sequel we use the function ψ(m) which we introduced in Example 4.136.
Let h denote the entropy entering a variable or check node. De�ne the two functions

vĥ(h) =Q
i
λiψ�(i − 1)ψ−1(h) +ψ−1(ĥ)�,

c(h) = 1 −Q
i
ρiψ�(i − 1)ψ−1(1 − h)�.
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As their names suggest, v~c describes the output entropy at a variable/check node
as a function of the input entropy. We have encountered the function c(h) (for
the regular case) already in Example 4.136 as the (approximate) EXIT function of
a parity-check code. In the current setting we consider irregular ensembles, which
explains the extra averaging over the check-node degree distribution. ¿at we have
used an approximation of the output entropy rather than an exact expression does
little harm. ¿e approximation is very accurate and the EXIT chart method is an
approximate method to start. ¿e small additional error incurred by using the dual
approximation is therefore easily outweighed by the advantage of being able to write
down a simple analytic expression.

¿e expression for the variable node side is easy to explain as well. We assume
that the incoming internal messages have a symmetric Gaussian distribution with
entropy h. ¿erefore ψ−1(h) gives the corresponding mean. ¿e means of the in-
puts at a variable node add, whereby ψ−1(ĥ) accounts for the mean of the received
distribution.

Let hv,ℓ denote the entropy at the output of the variable nodes at the end of the
ℓ-th iteration. ¿en hv,0 = ĥ, and for ℓ C 1, hv,ℓ = vĥ(c(hv,ℓ−1)). n

Example 4.140 (EXIT Chart Analysis for (3,6)-Regular Ensemble). Assume
that transmission takes place over the BAWGN(ĥ). Figure 4.141 shows the den-
sity evolution process according to the EXIT chart method for the two parame-
ters ĥ � 0.3765 (σ � 0.816) and ĥ � 0.427 (σ � 0.878) and the (3,6)-regular
ensemble. To construct this graph, plot c(h) which describes the evolution at the
check nodes and v−1

ĥ
(h) (for the chosen channel parameter ĥ) which describes the

process at the variable nodes. Rather than computing v−1
ĥ
(h), plot vĥ(h) but ex-

change the horizontal with the vertical axis. ¿e density evolution progress is now
easily read o� from this picture by constructing a “staircase” function in the same
manner as we have done this for the case of transmission over the BEC in Fig-
ure 3.70. To recall: the initial entropy entering the check nodes is ĥ. Let us consider
the case where ĥ � 0.3765. According to the EXIT chart method the entropy at
the output of the check nodes is then c(0.3765) � 0.8835. We can construct this
value graphically if we look for the intersection of the vertical line located at 0.3765
with the graph c(h). ¿is entropy now enters the variable nodes and according to
the EXIT chart method the entropy at the output of the variable nodes is equal to
vĥ(c(0.3765)) = vĥ(0.8835) � 0.3045. Since we have plotted the function v−1

ĥ
(h)

we can graphically construct this value by looking for the intersection of the hori-
zontal line at height 0.8835with the function v−1

ĥ
(h). If we continue in this fashion,

the corner points of the resulting staircase function describe the progress of density
evolution according to the EXIT chart method.

We see from this �gure that for ĥ � 0.3765 the staircase function eventually
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reaches the point (0,0), corresponding to successful decoding. On the other hand,
for the value ĥ � 0.427 the functions c(h) and v−1

ĥ
(h) touch at some point (black

dot in �gure) and the staircase function converges to a non-zero �xed point. We
conclude that the critical parameter according to the EXIT chart method is ĥ �
0.427. ¿is parameter di�ers only slightly form the true threshold value computed
according to density evolution. In Table 6.24 we �nd the threshold listed as σBP �
0.88 (whereas ĥ � 0.427 corresponds to σ � 0.878). n
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Figure 4.141: EXIT function of the (3,6)-regular ensemble on the BAWGN channel.
In the le �gure the parameter is ĥ � 0.3765 (σ � 0.816), whereas in the right �gure
we chose ĥ � 0.427 (σ = 0.878).

Example 4.142 (Optimization for the Gaussian Channel via EXIT Charts).
From Example 4.139 we know that if the entropy at the output of the variable nodes
is h then, a er one further iteration, it becomes

h( vĥ(c(h)) =Q
i
λiψ�(i − 1)ψ−1(c(h)) +ψ−1(ĥ)�.

¿e condition for progress at each iteration is vĥ(c(h)) B h. ¿is formulation is
linear in the variable edge degree fractions λi. If we �x ρ, we can therefore optimize
λ by linear programming techniques in the samemanner as we have done this in the
case of the BEC (see Section 3.18). To give an example, if we assume that the channel
parameter ĥ is �xed and we take as objective function the rate of the code, then the
corresponding (in�nite) linear program reads

max
λ
�Q
iC2
λi~i S λi C 0;Q

iC2
λi = 1;Q

iC2
λiψ�(i−1)ψ−1(c(h))+ψ−1(ĥ)� B h;h > [0,1]�.

Further, the roles of λ and ρ can be interchanged. If h is the entropy entering a
variable node then a er one iteration this entropy has evolved to

h( c(vĥ(h)) = 1 −Q
i
ρiψ�(i − 1)ψ−1(1 − vĥ(h))�.
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¿is formulation is now linear in ρ and so we can �x λ and optimize over ρ. Again,
if our objective function is the rate of the code, we get the (in�nite) linear program

min
ρ
�Q
iC1
ρi~i S ρi C 0;Q

iC2
ρi = 1;Q

i
ρiψ�(i − 1)ψ−1(1 − vĥ(h))� C 1 − h;h > [0,1]�.

Starting with a �xed pair (λ, ρ), an alternating application of the two above linear
programs quickly leads to very good degree distributions.

¿e approximation underlying this optimization technique can be improved:
in Example 4.140 we assumed that all intermediate densities are from the family
�aBAWGNC(h)�. But, as discussed in De�nition 4.138, exactly the same procedure can
be used with respect to any (complete) family of BMS densities. Further, we can use
distinct families to represent the densities entering the variable and the check nodes
respectively. For alternative choices of the family of “interpolating” distributions we
typically do not have succinct analytic characterizations of vĥ(h) and c(h). But we
can compute these functions numerically once the intermediate channel families
are speci�ed.

Imagine now that for a given degree distribution pair (λ, ρ) we were able to
“guess” the true intermediate densities which appear in the density evolution pro-
cess and that out of this discrete set of densities we construct two complete channel
families (e.g., by interpolating between successive elements of this sequence). If we
were to apply the EXIT chart method with respect to these families of intermediate
densities then the result would be exact. ¿e idea of an improved approximation is
to recursively try to �nd better and better guesses for these intermediate densities.

More precisely, start with some degree distribution pair (λ, ρ). Run density evo-
lution, using the degree distribution pair (λ, ρ), and collect the sequence of actual
intermediate densities. Construct out of this sequence of densities two complete
channel families (one associated to the input at variable nodes and one associated
to the input at check nodes). Next, employ the EXIT chart method and optimization
technique outlined abovewith respect to this constructed family of densities. If the re-
sulting optimized degree distribution pair di�ers only slightly from the original one,
then there is good reason to believe that the true (according to the density evolution
progress with respect to the new degree distribution pair) intermediate densities are
“close” to the assumed such densities and that, therefore, the EXIT chart approxi-
mation is close to the true density evolution process.¿e procedure can be repeated
a su�cient number of times until all quantities have (hopefully) converged.

¿is procedure was applied to �nd a rate one-half code for the BAWGNC chan-
nel with maximum le degree equal to 100. ¿e result of this optimization is

λ(x) =0.169010x + 0.161244x2 + 0.005938x4 + 0.016799x5 + 0.186455x6+
0.006864x13 + 0.025890x16 + 0.096393x18 + 0.010531x26+
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0.004678x27 + 0.079616x28 + 0.011885x38 + 0.224691x99

ρ(x) =x10.
¿e average right degree is 11. ¿e threshold is hBP � 0.4982 (σBP � 0.976), which
corresponds to a gap to capacity of 0.02370dB. n

§4.10.2. Universal Lower Bound on Threshold

So far EXIT curves appeared as approximations to the true density evolution pro-
cess. Surprisingly, they can be used to give strict bounds. ¿e basis for such bounds
is the following lemma.

Theorem 4.143 (Extremes of Information Combining). Let a and b represent
two BMS channels and �x H(b) = h, h C 0. ¿en

H(a)h³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
H(ae bBEC(h)) B H(ae b) B H(ae bBSC(h)),repetition code
H(a � bBSC(h)) B H(a � b) B H(a � bBEC(h))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1−(1−H(a))(1−h)

.parity-check code

Discussion: Recall that a e b is the output density at a variable node of degree
three assuming that the two input densities are a and b, respectively. Consider the
following experiment. We �x one input density a and a parameter h, h > [0,1]. For
all input densities b with entropy h we compute the entropy of the output density
a e b. ¿e lemma asserts that the input densities which minimize/maximize the
entropy of the output (and have themselves entropy h) are bBEC(h) and bBSC(h), re-
spectively. ¿ese densities are sometimes called themost and least informative den-
sities.¿e second assertion concerns the equivalent statement at a check node, since
if a and b are the input densities at the input of a check node of degree three then
a�b is the corresponding output density. Again bBEC(h) and bBSC(h) are the extremal
densities but now the roles are reversed. Note that a can itself be the convolution (at
either check or variable node) of any number of BMS channels so that the statement
extends to the convolution of any number of densities. In particular the statement
implies that any time we substitute at a variable node an input density with a density
from the family �aBEC(h)� (�aBSC(h)�) of equal entropy then the entropy of the out-
put is decreased (increased). ¿e reverse statements hold at a check node. Since the
entropy operator is linear, it follows that if we take a symmetric density and “move
it closer” to a BEC density (by taking the convex combination) then the entropy
of the resulting output density at a variable node decreases. Problem 4.62 discusses
several other settings in which the densities �bBSC(h)� and �bBEC(h)� can be shown
to be extremal.
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Proof of ¿eorem 4.143. If you believe one of the two claims there is an easy way
to convince you of the other one: from Lemma 4.42 we know that H(a � b), the
entropy at the output of a check node, whose inputs have symmetric densities a
and b respectively, is H(a) +H(b) −H(ae b). ¿erefore, for �xed entropies H(a)
and H(b), the entropy of a � b is minimized/maximized if the entropy of a e b
is maximized/minimized. In other words, the extremality for L-densities follows
directly from the extremality for G-densities and vice versa.

We prove the extremality for check nodes. Consider a check node of degree
three with two designated inputs and one designated output. Assume that the inputs
experience the symmetricG-densities a and b, respectively. We are interested in the
resulting output density. ¿is density is given by a� b. ¿e corresponding entropy
is H(a� b).

To start assume that both input densities are from the BSC family. For the proof
it is more convenient to parametrize the BSC channel in terms of the cross-over
probability є rather than the entropy h. Let a = aBSC(єa) and b = bBSC(єb). ¿eir
associated entropies are h2(єa) and h2(єb), respectively.¿e resulting density at the
output corresponds also to a BSC and it has parameter єaє̄b+єbє̄a. ¿is is true since
the output is wrong if exactly one of the two inputs is wrong.¿e associated entropy
is therefore h2(єaє̄b + єbє̄a). ¿is is important: we can think of any BMS channel
as the weighted sum (convex combination) of BSCs. More precisely, we have two
density functions wa(h) and wb(h) so that

a(y) = S
1

0
wa(h)aBSC(h−12 (h))(y)dh, b(y) = S

1

0
wb(h)aBSC(h−12 (h))(y)dh.

We can think of w(h) as yet another density (beside L, D, and G densities) which
characterizes the channel. Since the operatorH(ċ) is linear we can computeH(a�b)
by �rst conditioning on the “entropy” of each channel and then taking the expecta-
tion. We therefore get the representation

H(a� b) = S
1

0
S

1

0
wa(ha)wb(hb)h2�єaє̄b + є̄aєb�dhadhb

= S
1

0
wa(ha)�S

1

0
wb(hb)h2�єb(1 − 2єa) + єa�dhb�dha,(4.144)

where єa~b = h−12 (ha~b).We claim that for �xedv > [0, 12] the function h2�h−12 (u)(1−
2v) + v� is non-decreasing and convex-8 in u, u > [0,1] (see the le picture of Fig-
ure 4.145). To see that the function is non-decreasing note that h−12 (u)(1−2v)+v is
a non-decreasing function of u, u > [0,1], for any v > [0, 12] and that it takes values
in [0, 12]. Further, h2(ċ) is an increasing function of its argument in this range. Let us
postpone the proof of the convexity for a moment and consider directly its implica-
tion. Recall that by assumption R 1

0 wb(hb)hbdhb = h. Combined with the convexity
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Figure 4.145: Le : For v > [0, 12] the function h2�h−12 (u)(1 − 2v) + v� is non-
decreasing and convex-8 in u, u > [0,1]. Right: Universal bound applied to the
(3,6)-regular ensemble.

this implies that R wb(hb)h2�єb(1−2єa)+єa�dhb C h2�h−12 (h)(1−2єa)+єa�. If we
insert this into (4.144) we get H(a � b) C H(a � bBSC(h−12 (h))). On the other hand,
since h2�єb(1 − 2єa) + єb� is convex-8 in hb and non-decreasing it follows that it is
upper bounded by the straight line joining its two boundary values. For hb = 0 the
function takes on the value ha, whereas for hb = 1 it takes on the value 1. ¿erefore
we get the upper bound

h2�єb(1 − 2єa) + єa� B ha(1 − hb) + hb = 1 − (1 − ha)(1 − hb).

If we insert this bound into (4.144) we get H(a � b) B 1 − (1 − H(a))(1 − h) =
H(a� bBEC(h)).

De�ne f(u,v) = h2�h−12 (u)(1− 2v)+v�. It remains to show that for a �xed v >
[0, 12], f(u,v) is convex-8 in u for u > [0,1]. ¿is requires to show that ∂

2 f(u,v)
∂u2 C 0

for u > [0,1] and v > [0, 12]. A tedious computation shows that

∂2 f(u,v)
∂u2

=

(1 − 2v)�z(1 − z) log( 1−zz ) − (1 − 2v)y(1 − y) log( 1−yy )�
log( 1−yy )3

,

where y = h−12 (u), y > [0, 12], and z = v(1 − y) + y(1 − v). For the range of interest,
this expression is non-negative if and only if the term between the square brack-
ets is non-negative. If we take the derivative of that term with respect to y we get
(1 − 2v) log� 1−zz � − log� 1−yy �. Since y B z and 1 − 2v B 1, it follows that ∂

2 f(u,v)
∂u2 is

decreasing as a function of y. Since for y = 1
2 a direct check shows that

∂2 f(u,v)
∂u2 = 0,

it follows that ∂
2 f(u,v)
∂u2 C 0 in the range of interest.
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Extremal densities are useful in deriving universal bounds on thresholds. To
be concrete, consider the (3,6)-regular ensemble. ¿e same idea applies to general
ensembles as well. Assume that transmission takes place over a BMS channel with
entropy ĥ. What is the largest such entropy under which we can guarantee that BP
decoding is successful (in the asymptotic limit), regardless of the distribution of the
BMS channel? We proceed as follows. We employ the EXIT chart methodology but
to get a bound we assume that the intermediate densities are the least informative
ones.¿ismeans that we assume that the input densities to check nodes are elements
of �aBEC(h)� and that the input densities at variable nodes (including the received
one) are from the family �aBSC(h)�. Consider Figure 4.145. ¿e lower curve corre-
sponds to the EXIT curve for the [6,5,2] single parity-check code with respect the
channel family �aBEC(h)�. In formulae it is given by 1− (1−h)5. ¿is represents the
extremal EXIT curve of the check node side. ¿e upper curve corresponds to the
EXIT curve of a repetition code of length four assuming that one of the four inputs
has density aBSC(ĥ) (the channel) and that the remaining inputs are from the family
�aBSC(h)� (representing the internal messages). ¿is is a slight generalization of the
case discussed in Example 4.134. Explicitly the curve is given by

H(ae2BSC(h) e aBSC(ĥ)).
¿is represents the extremal EXIT curve at the variable node side.

¿e largest value of ĥ was chosen so that the two curves do not overlap and
the critical parameter is ĥ � 0.3643 (which corresponds to an error probability of
0.06957 for the BSC channel). We conclude that if we use the (3,6)-regular en-
semble and BP decoding then we can transmit reliably over any BMS channel with
entropy 0.3643 bits per channel use or less (this corresponds to a capacity of 0.6357
bits per channel use or more). Many variants of this idea are possible and useful.
Instead of taking the least informative intermediate densities we can take the most
informative ones.¿is gives a lower bound on the required entropy to transmit reli-
ably using a particular ensembles andBPdecoding (see Problem4.57). Alternatively,
we can use the method to derive a bound on the critical parameters for a particular
family of input densities by only replacing the intermediate densities but by explic-
itly dealing with the speci�c input density. ¿is is discussed in Problem 4.58.

§4.11. Gallager’s Lower Bound on Density
Assuming that transmission takes place over the BEC, ¿eorem 3.94 states a lower
bound on the gap to capacity as a function of the density of the parity-check matrix.
¿is lower bound can be generalized to BMS channels.

Theorem 4.146 (Gallager’s Inequality). Consider transmission over a BMS
channel with L-density aBMSC. De�ne CBMSC = C(aBMSC). Assume that a proper
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binary linear code C of length n and dimension k is used and de�ne r = k~n. Let
H denote any full-rank parity-check matrix representing C and let R(x) denote the
normalized check-node degree distribution so that n(1 − r)Ri equals the number
of check nodes of H of degree i. If X denotes the transmitted codeword, where we
assume a uniform prior on X, and if Y denotes the received word, then

H(X SY)
n

C r −CBMSC +
1 − r
2 ln(2)

ª

Q
k=1

R(D2k(aBMSC))
k(2k − 1) ,(4.147)

whereDk(aBMSC) is the D− k-moment introduced in De�nition 4.57 and where we
measure the entropy in bits.

Remark: Since every term in the sum on the right hand side of (4.147) is non-
negative we are free to replace the in�nite sum with a �nite one. Any such choice
gives a lower bound on the conditional entropy.

Proof. Start by expanding the mutual information I(X;Y) as H(X) −H(X SY) as
well asH(Y)−H(Y SX). Equating the two expressions and rearranging terms yields

H(X SY) = H(X) −H(Y) +H(Y SX).(4.148)

Since the prior on X is uniformwe know thatH(X) = nr. Further, since the channel
is memoryless,

H(Y SX) =
n
Q
i=1
H(Yi SXi) =

n
Q
i=1
H(Yi) −

n
Q
i=1
I(Xi;Yi) C

n
Q
i=1
H(Yi) − nCBMSC.

If we plug these two (in)equalities into (4.148) then we getH(X SY) C nr−H(Y)+
Pni=1H(Yi) − nCBMSC.

Recall from page 184 that we can describe the channel output Y equivalently
as (SYS,S): SYS denotes the vector consisting of the reliability values (magnitudes),
and S denotes the vector of signs. For our current purpose it is useful to let the
sign take values in �0,1� instead of the usual ��1�. Now, H(Yi) = H(SYiS,Si) =
H(SYiS) + H(Si S SYiS) = H(SYiS) + 1. To see the last step, note that the code is as-
sumed to be proper and that the distribution of X is the uniform one so that Xi has
uniform distribution as well. Since the channel is symmetric, this implies that Yi
has a symmetric distribution around zero so that the sign has a uniform distribu-
tion conditioned on SYiS.

It remains to bound H(Y). We have

H(Y) =H(SYS,S) = H(SYS) +H(S S SYS) B
n
Q
i=1
H(SYiS) +H(S S SYS).
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Pick an information set of the code, call it I . More precisely, I is a subset of [n] of
cardinality k (the dimension of the code) so that each codeword takes on distinct
values on I and that, conversely, every assignment to the positions of I corresponds
to a valid codeword. For a given sign vector s, let sI denote the sub-vector of s re-
stricted to the components indexed by I . Note that sI > Fk2 . Further, introduce the
syndrome ŝ = HsT . Since H is by assumption a full-rank matrix and the code has
length n and dimension k we have ŝ > Fn−k2 . We claim that there is a one-to-one
correspondence between sign vectors s and (ŝ, sI). Clearly, both s and (ŝ, sI) can
take on 2n distinct values. Further, every element of s gives rise to a distinct tuple
(ŝ, sI): two s which belong to distinct cosets of C map into di�erent tuples (ŝ, sI)
since their syndromes di�er, and for each element s of the same coset there is exactly
one which corresponds to a given sI . ¿erefore,

H(S S SYS) = H(Ŝ,SI S SYS) B H(SI S SYS) +H(Ŝ S SYS) B nr +
n(1−r)
Q
j=1

H(Ŝj S SYS).

If we summarize our results so far we get

H(X SY)
n

C 1 − CBMSC −
1
n

n(1−r)
Q
j=1

H(Ŝj S SYS).(4.149)

Now note that Ŝj is a Bernoulli random variable. Consider a check node of degree
r. ¿en

P�Ŝj = 1 S SYS = SyS� = 1
2
�1 −

r

M
j=1
�1 − 2e−SyjS

1 + e−SyjS
��.(4.150)

To see this, recall from page 184 that the probability that bit jwas transmitted in
error, call it pj, given its reliability SyjS equals e−SyjS~(1+ e−SyjS). Some thought then
shows that the probability that the sum of r independent bits is in error (that the
bits are independent follows from the fact that the channel is memoryless), call it p,
is given by (1 − 2p) =Lr

j=1(1 − 2pj), which leads to (4.150).
If we average the entropy of this Bernoulli random variable over SYS we get

H(Ŝj S SYS) = S h2�12�1 −
r

M
j=1
�1 − 2e−SyjS

1 + e−SyjS
���

r

M
j=1
SaBMSCS(yj)dyj

= S h2�12�1 −
r

M
j=1

tanh(SyjS~2)��
r

M
j=1
SaBMSCS(yj)dyj

= 1 −
1

2 ln(2)
ª

Q
k=1

1
k(2k − 1) �S

+ª

0
SaBMSCS(y) tanh2k(y~2)dy�

r
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= 1 −
1

2 ln(2)
ª

Q
k=1

1
k(2k − 1) �S

+ª

−ª

aBMSC(y) tanh2k(y~2)dy�
r

= 1 −
1

2 ln(2)
ª

Q
k=1

(D2k(aBMSC))r
k(2k − 1) .

In the one before last step we have used for 0 B x B 1 the series expansion

h2(x) = 1 − 1
2 ln(2)

ª

Q
k=1

(1 − 2x)2k
k(2k − 1) ,(4.151)

which allows us to break the r-dimensional integral into a product of r independent
integrals. ¿is in�nite series consists of non-negative terms so that we are justi�ed
to exchange the summation with the integral. ¿e claim now follows by averaging
over the degree distribution and by substituting this expression into (4.149).

Theorem4.152 (LowerBoundonParity-CheckDensity). Assumewe are given
a BMS channel with capacity CBMSC and SLS-density SaBMSCS. Let �CN� be a sequence
of proper binary linear codes achieving a fraction (1 − δ) of CBMSC with vanishing
bit error probability. Let �∆N� be the corresponding sequence of densities for an
arbitrary representation of the binary linear block codes by full-rank parity-check
matrices. ¿en

lim inf
N�ª

∆N C
K1 + K2 ln 1

δ
1 − δ

,

where

K1 =K2 ln
ξ(1 −CBMSC)

CBMSC
, K2 =

1 −CBMSC

CBMSC ln � 1
D2(aBMSC)�

, ξ =
¢̈̈
¦̈̈
¤
1, BEC,

1
2 ln(2) , otherwise.

Proof. Using Jensens’ inequality we have

1
2 ln(2)

ª

Q
k=1

R(D2k(aBMSC))
k(2k − 1) C

1
2 ln(2)

ª

Q
k=1

D2k(aBMSC)ravg
k(2k − 1) C

1
2 ln(2) D2(aBMSC)ravg ,

where the second step is true since all terms are non-negative. We therefore can
replace (4.147) with the slightly weaker but easier to handle inequality

H(X SY)
n

C r −CBMSC +
1 − r
2 ln(2) D2(aBMSC)ravg ,(4.153)
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where are all rates and entropies are measured in bits. By assumption the sequence
�CN� achieves a fraction 1−δ of capacity with vanishing bit error probability.¿ere-
fore, by Fano’s inequality the sequence of normalized conditional entropies must
converge to zero. ¿is means that

lim inf
N�ª

rN −CBMSC +
1 − rN
2 ln(2) D2(aBMSC)ravgN B 0.

We know that the rate is asymptotically at least equal to (1 − δ)CBMSC. If we solve
the resulting equation for ravgN we get

lim inf
N�ª

ravgN C
log( 1

2 ln(2)(1 + 1−CBMSC
δCBMSC

))
log( 1

D2(aBMSC))
.

Finally, if we drop the 1 inside the log and recall that the density of the matrix is
related to the average right degree bymultiplyingwith r~(1−r), the result for generic
BMS channels follows.

Using a similar technique as before we can also show that (see Problem 4.54)

1
2 ln(2)

ª

Q
k=1

R(D2k(aBMSC))
k(2k − 1) C Cravg

BMSC.

We can therefore replace the 1
2 ln(2) D2(aBMSC)ravg in the bound above with Cravg

BMSC.
In particular, for the BEC we haveD2(aBMSC) = CBEC. ¿is yields the tighter bound
in this case. Since CBEC = 1 − є, this bound is identical to the bound stated in¿eo-
rem 4.146.

§4.12. GEXIT Function and MAP Performance
In the previous section we have seen several useful applications of EXIT functions
in the context of general BMS channels. But EXIT functions are not without their
shortcomings – most notably they do not ful�ll the area theorem in the general
setting. If we look back at De�nition 4.131, we see that our generalization of EXIT
functions is based onDe�nition 3.71. But aswe have seen in Lemma 3.76, EXIT func-
tions have several alternative characterizations. ¿ese characterization are equiva-
lent only in the setting of transmission over the BEC. We next introduce GEXIT
functions which are the natural extension of characterization (iii) in Lemma 3.76.

Definition 4.154 (GEXIT Function). Let X be a binary vector of length n chosen
with probability pX(x) from a code C of length n. Assume that transmission takes
place over the smooth family �BMSC(h)�. ¿en

g(h) = dH(X SY(h))
ndh

.(4.155)
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More generally, assume that the channel from X to Y is memoryless and that the
i-th bit is transmitted over the smooth family �BMSC(hi)�. ¿en

gi(h1,� ,hn) = ∂H(X SY(h1,� ,hn))
∂hi

.

If all these channels are parameterized in a smooth way by a common parameter є,
i.e., hi = hi(є), then

g(є) = 1
n

n
Q
i=1
gi(h1,� ,hn)∂hi(є)∂є

.(4.156)

Discussion: We see from this de�nition that the GEXIT function g(h) mea-
sures the change of the conditional entropy as a function of a change in the channel
entropy. If we only tweak the i-th channel parameter then we get the i-th GEXIT
function gi(h1,� ,hn). Consider the case where all channel families �BMSC(hi)�
are identical and where h1(є) = � = hn(є) = є, so that ∂hi(є)∂є = 1, i = 1,� ,n. ¿en,

g(є = h) (4.156)= 1
n P

n
i=1

∂H(X SY(h1,�,hn))
∂hi

=
dH(X SY(h))

ndh
(4.155)
= g(h). We conclude that

characterization (4.155) is consistent with, and indeed a special case of, character-
ization (4.156). With some abuse of notation we write in the sequel gi(є) to mean
gi(h1,� ,hn) in the case where all channels are parameterized by the common pa-
rameter є.

An immediate consequence of De�nition 4.154 is the General Area ¿eorem
(GAT), which states that if we integrate the GEXIT function along a smooth path
then the integral equals the di�erence of the conditional entropy at the two end
points.

Corollary 4.157 (GEXIT Functions and the General Area Theorem). Let X
be chosen with probability pX(x) from some codeC. Assume that the channel from
X to Y is memoryless and that the i-th bit is transmitted over the smooth family
�BMSC(hi)�, where hi = hi(є), i > [n], є > I, i.e., all channels are parameterized by
the common parameter є in a smooth way. ¿en for є,є > I,

S
є

є
g(є)dє = 1

n
(H(X SY(h1(є),� ,hn(є)) −H(X SY(h1(є),� ,hn(є))).

¿e form of the GEXIT function as speci�ed in De�nition 4.154 is typically not
convenient for computations. ¿e following alternative characterization is much
closer in spirit to the EXIT function and it is easier to handle.
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Lemma 4.158 (Local Characterization of GEXIT Function). Under the con-
ditions of De�nition 4.154

g(є) = 1
n

n
Q
i=1

∂H(Xi SY(є))
∂hi´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
gi(є)

∂hi(є)
∂є

.(4.159)

Proof. For i > [n], the entropy rule gives H(X SY) = H(Xi SY) + H(X�i SXi,Y).
Since the channel is memoryless this is equal to H(Xi SY) + H(X�i SXi,Y�i). ¿e
term H(X�i SXi,Y�i) does not depend on the channel parameter hi. ¿erefore,

gi(є) =
∂H(X SY(є))

∂hi
=
∂H(Xi SY(є))

∂hi
.

Lemma 4.160 (GEXIT Function for Proper Linear Codes). Let X be chosen
uniformly at random from a binary linear code whose i-th position is proper and
assume that the channel from X to Y is memoryless, where the i-th bit is transmit-
ted over a smooth BMS channel family characterized by its L-density �aBMSC(hi)�.
De�ne the extrinsicMAP estimator of Xi,

ϕi(y�i) = ln
pXi SY�i(+1 S y�i)
pXi SY�i(−1 S y�i)

,(4.161)

and Φi = ϕi(Y�i). Let ai denote the density of Φi, assuming that the all-one code-
word was transmitted. ¿en

gi(h1,� ,hn) =
∂H(aBMSC(hi) e ai)

∂hi
= G(aBMSC(hi),ai) = S ai(y)laBMSC(hi)(y)dy,

where laBMSC(h)(y) is the GEXIT kernel introduced in De�nition 4.44 and given by

laBMSC(h)(y) = S
daBMSC(h)(z)

dh
log2(1 + e−z−y)dz.(4.162)

Proof. We know from ¿eorem 4.30 that Li + Φi constitutes a su�cient statistic
for Xi given Y. It follows that H(Xi SY) = H(Xi SLi +Φi). Further, again by ¿e-
orem 4.30, the prior on Xi is the uniform one, the channel pΦi SXi(ϕi S xi) is sym-
metric, and the distribution of Φi for Xi = 1 is the same as the distribution of Φi
under the all-one codeword assumption. Let this (common) density be denoted by
ai so that the density of Li +Φi under the all-one codeword assumption is given by
aBMSC(hi)eai. We conclude thatH(Xi SLi,Φi) = H(aBMSC(hi)eai), fromwhich the
result follows if we di�erentiate with respect to the i-th channel parameter hi.
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Example 4.163 ([n,1,n]RepetitionCode). Let �aBMSC(h)� characterize a smooth
family of BMS channels and assume that all bits are transmitted over the same chan-
nel. If we use De�nition 4.154 we see that the GEXIT function for the [n,1,n]
repetition code is given by g(h) = 1

n
d
dhH(aenBMSC(h)). As a �rst example, we get

gBEC(h) = hn−1 = hBEC(h). Further, gBSC is given in parametric form by

�h2(є),
Pj=�1 jPni=1 �ni�єiєn−i log�1 + (є~є)n−2i−j�

n log (є~є) �,

with є = 1 − є. From this representation it is not immediately obvious that for the
[n,1,n] repetition code the area under g(h) equals 1~n, but the GAT asserts that
this is indeed true. n

Example 4.164 ([n,n − 1,2] Parity-Check Code). Some calculations show that
gBSC is given in parametric form by

�h2(є),1 − (1 − 2є)n−1
log� 1+(1−2є)n1−(1−2є)n�

log� 1−єє �
�. n

No simple analytic expressions are known for the case of transmission over the
BAWGNC. Figure 4.165 compares the EXIT to the GEXIT function for some repe-
tition and some single parity-check codes.
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Figure 4.165: EXIT (solid) and GEXIT (dashed) function of the [n,1,n] repetition
code and the [n,n− 1,2] parity-check code assuming that transmission takes place
over the BSC(h) (le picture) or the BAWGNC(h) (right picture), n > �2,3,4,5,6�.

Our aim is it to derive an easy to compute (hopefully tight) upper bound on
the MAP threshold by mimicking the steps which we have applied in the case of
transmission over the BEC. As a �rst ingredient we introduce the easy to compute
BP GEXIT function.
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Definition 4.166 (BP GEXIT Function for Linear Codes). Let X be chosen
uniformly at random from a proper binary linear code and assume that the channel
from X to Y is memoryless, where the i-th bit is transmitted over the smooth fam-
ily �BMSC(hi)�. Let ϕBP,ℓ

i (y�i) denote the extrinsic BP estimator of Xi, where the
number of iterations ℓ and the schedule have been �xed. ¿en

gBP,ℓi (є) =
∂H(Xi SYi,ϕBP,ℓ

i (Y�i))
∂hi

∂hi(є)
∂є

.

Discussion: If we compare this to Lemma 4.158 and in light of Lemma 4.160,
we see that the only di�erence to the GEXIT function is that we have replaced the
MAP estimate ϕi(Y�i)with the corresponding BP estimate ϕBP,ℓ

i (Y�i).With respect
to the actual computation of ϕBP,ℓ

i the same remark as in the BEC case applies: to
compute ϕBP,ℓ

i we input to the decoder the vector Y�i, i.e., we erase the position Yi.
¿is ensures that ϕBP,ℓ

i is only a function of y�i.
As a second ingredient we need to show that the BPGEXIT function is an upper

bound on the GEXIT function. For the case of transmission over the BEC this was
easily accomplished by using the data processing theorem. Surprisingly a very sim-
ilar technique still works in this more general setting.We �rst show, more generally,
that the GEXIT function preserves the order imposed by degradation. We state the
result for BMS channels, since this is the context of interest, but the result remains
valid as long as the channel is memoryless.

Lemma 4.167 (GEXIT Functions Preserve Degradation). Let X be chosen uni-
formly at random from a codeC of length n. Let the channel from X toY bememo-
ryless, where Yi is the result of passing Xi through the smooth family �BMSC(hi)�,
hi > Ii (some interval contained in [0,1]), which is ordered by degradation. If
Xi � Y�i � Φi forms a Markov chain then

∂H(Xi SY)
∂hi

B
∂H(Xi SYi,Φi)

∂hi
.(4.168)

We relegated the proof toAppendix E since it is primarily an exercise in applying
information theoretic inequalities.

Recall that ΦBP,ℓ
i = ϕBP,ℓ

i (Y�i), i.e., it is a function of Y�i, so that trivially Xi �
Y�i � Φi. ¿is gives us the following immediate consequence.

Corollary 4.169 (GEXIT Versus BP GEXIT). Let X be chosen uniformly at ran-
dom from a proper binary linear code C. Let the channel from X to Y be memo-
ryless, where Yi is the result of passing Xi through a smooth family �BMSC(hi)�,
hi > [0,1], ordered by degradation. Assume that all individual channels are param-
eterized in a smooth (di�erentiable) way by a common parameter є, i.e., hi = hi(є),
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i > [n]. Let gi(є) and gBP,ℓi (є) be as de�ned in De�nitions 4.154 and 4.166. ¿en

gi(є) B gBP,ℓi (є).

So far all our statements concerned �nite-length codes. Let us now consider the
limit of large blocklengths.

Definition 4.170 (Asymptotic BP GEXIT Function). Consider a degree distri-
bution pair (λ, ρ) and the corresponding sequence of ensembles LDPC (n, λ, ρ).
Further, consider a smooth family �BMSC(h)�. Assume that all bits of X are sent
through the channel BMSC(h). For G > LDPC (n, λ, ρ) and i > [n], let gi(G,є) and
gBP,ℓi (G,є) denote the i-thMAP and BP GEXIT function associated to code G. With
some abuse of notation, de�ne the asymptotic (and average) quantities

g(h) = lim sup
n�ª

EG� 1n Qi>[n]
gi(G,h)�,

gBP,ℓ(h) = lim
n�ª

EG� 1n Qi>[n]
gBP,ℓi (G,h)�,

gBP(h) = lim
ℓ�ª

gBP,ℓ(h).

Discussion: For notational simplicity we suppress the dependence of the above
quantities on the degree distribution pair and the channel family.Weused the lim sup
to de�ne the asymptotic GEXIT function since it is di�cult to assert the existence
of the ordinary limit. On the contrary, the limit of the BP GEXIT functions is not
only easy to assert but also easy to compute.

Lemma 4.171 (Asymptotic BP GEXIT Function via GEXIT Functional). Con-
sider a degree distribution pair (λ, ρ) and the corresponding sequence of ensem-
bles LDPC (n, λ, ρ). Assume that for a �xed ℓ the expected fraction of computa-
tion graphs of height ℓ that are not proper is on(1). Assume further that transmis-
sion takes place over the smooth family of BMS channels characterized by their
L-densities �aBMSC(h)�. Let a0 = aBMSC(h) and for ℓ C 1, aℓ = aBMSC(h)e λ(ρ(aℓ−1)).
Finally, let aª denote the �xed point density to which density evolution converges.
¿en

gBP,ℓ(h) = G(aBMSC(h),L(ρ(aℓ−1))),
gBP(h) = G(aBMSC(h),L(ρ(aª))).

Proof. By assumption, if we �x ℓ and let n tend to in�nity then most computation
graphs are proper. ¿is means that they are trees and that the set of codewords
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that are compatible with the local constrainst is equal to the set of projections of
the global codewords onto the computation tree. For such computation trees the
BP GEXIT function is equal to the regular GEXIT function (on the tree) and is
equal to G(aBMSC(h),L(ρ(aℓ−1))). ¿e claim now follows since GEXIT functions
are bounded so that the vanishing fraction of non-proper computation graphs only
has a vanishing in�uence on the result.

Discussion: FromLemma 3.47we know that for regular ensembles the condition
on the fraction of computation graphs which are non-proper is ful�lled.

In Figure 4.172 we plot the BP GEXIT function gBP(h) for a few regular LDPC
ensembles.
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Figure 4.172: BP GEXIT curve for several regular LDPC ensembles for the BSC (le 
picture) and the BAWGNC (right picture).

Definition 4.173 (MAP Threshold). Consider a degree distribution pair (λ, ρ)
and the smooth family �BMSC(h)� which is ordered by degradation. ¿e MAP
threshold hMAP is de�ned as

hMAP
= inf�h > [0,1] � lim inf

n�ª
EG[H(X SY(h))]~n A 0�.

Discussion: Let us consider the operational meaning of the above de�nition.
Let h < hMAP. ¿en by de�nition of the threshold, there exists a sequence of block-
lengths n1,n2,n3,� , so that the normalized (divided by the blocklength n) average
conditional entropy converges to zero. Althoughwe have not stated the correspond-
ing (concentration) theorem, it is possible to show that this implies thatmost of the
codes in the corresponding ensembles have a normalized conditional entropy less
than any �xed constant. For su�ciently large blocklengths, a conditional entropy
which grows sublinearly implies that the receiver can limit the set of hypothesis to
a subexponential list which with high probability contains the correct codeword.
¿erefore, in this sense reliable communication is possible.
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On the other hand, assume that h A hMAP. In this case the normalized condi-
tional entropy stays bounded away from zero by a strictly positive constant for all
su�ciently large blocklengths. Again, by the omitted concentration theorem, this
is not only true for the average over the ensemble but for most elements from the
ensemble. It follows that with most elements from the ensemble reliable communi-
cation is not possible.

Theorem 4.174 (Upper Bound on MAP Threshold). Consider a degree distri-
bution pair (λ, ρ) whose asymptotic rate converges to the design rate r(λ, ρ) (see
Lemma 3.22) and which ful�lls the conditions of Lemma 4.171. Assume further that
transmission takes place over a smooth family �BMSC(h)� which is ordered by
degradation. Let gBP(h) denote the associated BP GEXIT function. ¿en

lim inf
n�ª

EG[H(X SY(h))]~n C r(λ, ρ) − S
1

h
gBP(h′) dh′ .(4.175)

In particular, if h denotes the largest positive number so that

S
1

h
gBP(h) dh = r(λ, ρ),

then hMAP
B h.

Proof. Let G be chosen uniformly at random from the ensemble LDPC (n, λ, ρ).
Since by assumption the rate of the ensemble converges to the design rate we have

r(λ, ρ) − lim inf
n�ª

EG[H(X SY(h))]~n

= lim sup
n�ª

1
n

EG[H(X SY(1)) −H(X SY(h))]

= lim sup
n�ª

EG�S
1

h
g(G,h′) dh′�¿eorem 4.157

= lim sup
n�ª

S
1

h
EG�g(G,h′) dh′�Fubini

B S
1

h
lim sup
n�ª

EG�g(G,h′) dh′�Fatou-Lebesgue

B S
1

h
lim sup
n�ª

EG�gBP,ℓ(G,h′) dh′�Corollary 4.169

= S
1

h
gBP,ℓ(h′) dh′.De�nition 4.170

Since this is true for any ℓ > Z, we get

lim inf
n�ª

EG[H(X SY(h))]~n C r(λ, ρ) −S
1

h
gBP(h′) dh′ .
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Now note that the right hand side of (4.175) is increasing in h. ¿erefore,

lim sup
n�ª

EG[H(X SY(h))]~n

is bounded away from 0 for any h A h and the thesis follows from the de�nition of
hMAP given in De�nition 4.173.

Figure 4.176 shows the simple geometric interpretation for the construction of
the upper bound for the (3,6)-regular ensemble: integrate the BP GEXIT curve
from right to le until the area under the curve equals the design rate. ¿is point is
an upper bound on the MAP threshold.
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Figure 4.176: Le : BPGEXIT function gBP(h) for the (3,6)-regular ensemble; Right:
Corresponding upper bound on GEXIT function g(h) constructed according to
¿eorem 4.174.

Example 4.177. ¿e following table presents the upper bounds on theMAP thresh-
old for transmission over the BSC(h) as derived from¿eorem 4.174 for a few reg-
ular ensembles.

l r hBP h h̃ hSha

3 4 0.6507(5) 0.7417(1) 0.743231 3~4
3 5 0.5113(5) 0.5800(3) 0.583578 3~5
3 6 0.4160(5) 0.4721(5) 0.476728 1~2
4 6 0.5203(5) 0.6636(2) 0.663679 2~3

Also shown is the result of an information theoretic upper bound which is based
on Gallager’s inequality discussed in ¿eorem 4.152 (see Problem 4.51). ¿is upper
bound is denoted by h̃. For the speci�c case of (l,r)-regular codes and transmission
over the BSC the bound is given by h̃ = h2(є̃), where є̃ is the unique positive root of
the equation rh2(є) = lh2((1− (1− 2є)r)~2) . We see that for the considered cases
h̃ and h are close. n
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For the case of transmission over the BEC this simple upper bound was only
the starting point. We could prove via a counting argument that in many instances
this bound is tight. Finally, we could give an alternative graphical construction of
the MAP threshold via the so-called Maxwell construction and then show that the
Maxwell construction had an operational interpretation.¿e general case is techni-
cally more challenging and, although it is conjectured that the same picture remains
valid, currently no proofs for the general case are known.

§4.13. Finite-Length Scaling
Empirically, the contribution to the error probability due to “large” error events fol-
lows a scaling law very similar to what we discussed for the BEC, but no proofs are
known. Let us discuss the general scaling conjecture. In principle any (function of
the) channel parameter can be used for stating the scaling law, however we make
this choice slightly less arbitrary by using the entropy.

Conjecture 4.178 (General Scaling Law). Consider transmission over the fam-
ily �BMSC(h)� using random elements from an ensemble LDPC (n, λ, ρ) which
has a single non-zero critical point under the message-passing decoder MP. Let
hMP
= hMP(λ, ρ) denote the threshold and let νMP denote the expected asymptotic

bit error probability at the threshold. Let Pb,γ(n, λ, ρ,h) and PB,γ(n, λ, ρ,h) denote
the expected bit/block error probability due to errors of size at least γνMP, where
γ > (0,1). Fix z to be z =ºn(hMP

− βn−
2
3 − h). ¿en as n tends to in�nity,

PB,γ(n, λ, ρ,h) = Q (z~α) �1 +O�n−1~3��,
Pb,γ(n, λ, ρ,h) = νMPQ (z~α) �1 +O�n−1~3��,

where α = α(λ, ρ,BMSC,MP) and β = β(λ, ρ,BMSC,MP) are constants which
depend on the ensemble, the channel BMS, as well as the decoder MP.

We have already seen this scaling law in Figures 4.85, 4.87, and 4.91 applied to
three di�erent message-passing decoders (Gallager A, decoder with erasures, and
BP decoder). In all three cases we saw a good match of the predicted performance
to the actual performance as measured by simulations. Let us give one further ex-
ample. Figure 4.179 shows ELDPC(n,x2,x5)[PB(G,h)], the average block error proba-
bility for the (3,6)-regular ensemble, assuming that transmission takes place over
the BAWGNC(h) and that we are using a (quantized) BP decoder. ¿e elements
of the ensemble were expurgated to ensure that indeed only large error events were
counted.¿e two parameters α and βwere �tted to the numerical data.We see again
a good agreement of the empirical curves with the scaling laws. From an engineer-
ing point of view scaling laws can be used to quickly gage what impact an increase

Preliminary version – October 18, 2007



260 binary memoryless symmetric channels

1.0 1.2 1.4 1.6 1.8 2.0 2.2

10-4

10-3

10-2

10-1

(Eb~N0)dB

PB

(E
b~N

0)� dB
�
1.
19
65
8

Figure 4.179: Scaling of ELDPC(n,x2,x5)[PB(G,h)] for transmission over the
BAWGNC(h) and a quantized version of belief propagation decoding implemented
in hardware.¿e threshold for this combination is (Eb~N0)�dB � 1.19658.¿e block-
lengths n are n = 1000, 2000, 4000, 8000, 16000, and 32000, respectively. ¿e solid
curves represent the simulated ensemble averages.¿e dashed curves are computed
according to the scaling law of Conjecture 4.178 with scaling parameters α = 0.8694
and β = 5.884. ¿ese parameters were �tted to the empirical data.

of the blocklength would have on an existing system without having to simulate it
again. More importantly, if it is possible to quickly compute the scaling parameters,
scaling laws can be used to perform an e�cient �nite-length optimization.

§4.14. Error Floor under MAP Decoding
¿eerror �oor underMAPdecoding is relatively straightforward to determine using
the results of Section 3.23. Let us phrase the result for the speci�c case of transmis-
sion over the BAWGNC(h). Transmission over other BMS channels can be handled
in a similar manner.

Lemma 4.180 (Asymptotic Error Floor for LDPC (n, λ, ρ)). Consider the en-
semble LDPC (n, λ, ρ) of rate r. Let s denote the expurgation parameter introduced
in De�nition 3.144. De�ne µ = λ′(0)ρ′(1) and

P̂s(x) = Q
wCs

(µx)w
2w

, P̂b,s(x) = 1
2 QwCs
(µx)w.

Assume that transmission takes place over the channel family BAWGNC(Eb~N0).
¿en for Eb~N0 A (Eb~N0)BP

lim
n�ª

EELDPC(n,s,λ,ρ)[PMAP
B (G,Eb~N0)] = 1 − e

−
1
π R

π
2

0 P̂s�e−
rEb~N0
sin2(θ) �dθ

,(4.181)

lim
n�ª

nEELDPC(n,s,λ,ρ)[PMAP
b (G,Eb~N0)] = 1

π S
π
2

0
P̂b,s�e−

rEb~N0
sin2(θ) �dθ.(4.182)
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Discussion: As in Lemma 3.167 we state the error �oor only for channel parame-
ters below the BP threshold but it is conjectured to be true for all channel parameters
up to the MAP threshold.

Proof. ¿e proof follows the same path as the proof of Lemma 3.167 which gives the
corresponding expression for transmission over the BEC(є). We are therefore brief
and concentrate on the new elements of the proof.

We start with the bit error probability.We know from (D.37) (see also discussion
in Lemma 3.165) that the expected number of minimal codewords of weight w in
the limit as n � ª is µw

2w . ¿erefore, P̂b,s(x) is the generating function counting
the expected number of minimal codewords of size at least s in the limit as n �
ª, where the term corresponding to codewords of weight w is multiplied by w (to
account for the number of wrong bits caused by such a codeword). By the same
reasoning as in the proof of Lemma 3.167 a simple union bound is asymptotically
tight. Consider �rst codewords of weight up toW.¿eir contribution to the bit error
probability (multiplied by n) converges to

W
Q
w=s

coef�P̂b,s(x),xw�Q�
»
2rwEb~N0�.(4.183)

Arguing as in the proof of Lemma 3.167, one can show that for Eb~N0 A (Eb~N0)BP
the contribution of largeweight codewords to the error probability vanishes: by den-
sity evolution the bit error probability is less than any constant. ¿is excludes linear
sized codewords starting from any desired strictly positive fractional size. Further,
using (D.36) and the fact that the growth rate G(ω) is negative for ω su�ciently
small combined with a standard union bound, we can bound the contribution due
to codewords of size W + 1 up to some small linear size and show that this con-
tribution decreases exponentially inW. Hence, in (4.183) we can take the limit of
W tending to in�nity. ¿at this limiting expression is equal to (4.182) follows by an
application of Craig’s formula discussed in Problem 4.63.

Let us now consider the block error probability. First restrict the attention to
the contribution of the block error probability due to codewords which are entirely
composed of minimal codewords of individual weight at most W, where W is a
�xed integer. ¿e number of such codewords and their composition is given by a
Poisson distribution. We make a mistake if we make a mistake in at least one of the
components. ¿e corresponding expression is

1 − Q
as,�,aW

W
M
w=s

µaww e−µw

aw!
(1 −Q�

»
2rwEb~N0�)aw

=1 − e−P
W
w=s µwQ�»2rwEb~N0�

= 1 − e−P
W
w=s

µw

2w Q�
»
2rwEb~N0�.
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¿e claim now follows by lettingW tend to in�nity and by applying Craig’s formula.

Discussion: Similar expressions can also be derived for transmission over other
channels by replacing the Q(ċ) function with the appropriate function which ex-
presses the pairwise error probability as a function of the Hamming distance.

In general, the error �oor under message-passing decoding is higher than the
one under MAP decoding. Similar to the case of transmission over the BEC, there
are so called pseudo codewordswhich are not necessarily codewords andwhich cause
the decoder to make erroneous decisions because of the sub-optimality of the de-
coder. For some decoders (e.g., the linear programming decoder which we do not
discuss in these notes, and to some extent also the min-sum message-passing de-
coder of Section 2.5.4) the set of pseudo-codewords is well understood. Much less
is known, however, about the nature of pseudo codewords under general message-
passing decoding.

Notes
Gallager introduced iterative decoding in his seminal thesis [27]. With two notable
exceptions, iterative decoding was all but forgotten for a period of roughly thirty
years. ¿e �rst exception concerns the papers by Pinsker and Zyablov [101, 102]
which contain an analysis of iterative decoding over the erasure channel and an
analysis of the so-called �ipping algorithm (see Chapter 8), respectively. ¿e sec-
ond important exception is Tanner [82] who generalized Gallager’s construction by
introducing more complex subcodes (not only single parity-check nodes) and by
systematically exploiting the graphical representation (Tanner graphs) of codes in
terms of bipartite graphs.

Iterative coding experienced a spectacular renaissance with the introduction of
turbo codes by Berrou, Glavieux, and¿itimajshima [11]. ¿e turbo code construc-
tion and the associated decoding algorithm were not inspired by the work of Gal-
lager (which at that point was basically forgotten) but by the idea of a mechanical
machine (turbo engine) in which partial output of the decoder is used to “boost”
the decoding performance further. In the paper, which was presented at the ICC’93
in Geneva, the authors showed a practical (in terms of complexity) coding scheme
which was capable of approaching capacity within less than 1dB at a bit error prob-
ability of 10−6, a sensational jump forward in the practice of coding. Initial disbelief
quickly changed to astonishment. ¿e signi�cance of this contribution cannot be
overstated.

Much credit should also be given to Lodge, Young, Hoeher, and Hagenauer [45]
who introduced a very similar iterative decoding technique. As fate would have it,
the two papers appeared at the same conference. Lodge and his co-authors con-
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sidered a less powerful class of codes and concentrated on shorter blocklengths.
¿erefore the �nal coding gains were slightly less impressive.

¿e story does not stop here.¿e concept of iterative decoding and the principle
of sparse graph codesmust have been in the air around the early 1990’s. Several other
groups, working in entirely di�erent communities and unaware of each others work,
converged to very similar concepts. Let us trace their stories here.

In 1989 Sourlas published a paper inwhich he observed that codes can be phrased
in the language of spin systems [78]. If the graphical model describing this spin sys-
tem is taken to be sparse, then one can use the methods of statistical physics to ana-
lyze the resulting codes. Sourlas considered what now would be called low-density
generator-matrix (LDGM) codes. He observed that such codes show a large error
�oor. He therefore concluded that such sparse codes are not very useful and did
not pursue them further. Although Sourlas was not performing iterative decoding,
a standardmethod of analysis for such dilute (sparse) spin systems is to consider the
so called Bethe free energy. ¿is is an approximation of the free energy introduced
by Bethe in the 1930s. It is much easier to compute than the free energy itself. To
compute the Bethe free energy one has to �nd the stationary points of a system of
equations. Here is the connection to iterative decoding: Yedidia, Weiss, and Free-
man showed that these stationary points are �xed points of density evolution for
the BP algorithm [100, 99].

At around the same time turbo codes were introduced, and completely indepen-
dent from the previous work, MacKay started his exploration of iterative decoding
techniques inspired by papers by Meier and Sta�elbach [62] as well as Mihaljević
and Golić [65] and initiated by questions from Anderson. It is interesting to note
that all of the above papers deals with questions of cryptography and not commu-
nications. His initial explorations led him to construct LDGM codes and to use an
iterative decoder inspired by a variational approach [50]. MacKay and Neal then
introduced MN codes (see Chapter 7) and rediscovered Gallager’s class of LPDC
codes. Also, they implemented a BP decoder and found that it had superior per-
formance [53, 54, 52, 55, 51]. ¿e resulting codes showed very good performance,
even outperforming turbo codes in some cases. A collaboration with McEliece and
Cheng then let to [59], which describes the turbo decoding algorithm as an instance
of BP.

Starting in the fall of 1993, Sipser and Spielman set out to �nd constructions
for probabilistically-checkable proofs (a complexity class even more powerful than
NP). One construction they consideredwas based on expanders. Although this con-
structions turned out to be not useful in the original context, Spielman realized that
it gave rise to error correcting codes. While looking for prior art, Spielman found
Gallager’s book “Low-Density Parity-Check Codes” in the MIT library. During the
summer of 1994, Spielmanmet Luby at Bell Labs and �rst discussions concerning er-
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ror correction for the erasure channel started.¿is gives the connection to a further
independent threat that started with the work of Alon and Luby who were inter-
ested in the transmission of video over the internet.¿eir original construction was
based on Reed-Solomon codes [1]. Since for video transmission the blocklength can
be very large, the complexity of Reed-Solomon decoding can become a bottleneck.
¿e question was therefore if it was possible to construct codes that allow trans-
mission over the internet (the erasure channel) at rates close to capacity but that
have amuch lower complexity. At Berkeley, Luby,Mitzenmacher, Shokrollahi, Spiel-
man, and Stemann started to collaborate on the problem in the period of 1995-1996.
As was mentioned in the notes of Chapter 3 starting on page 157, while studying
iterative decoding for transmission over the BEC, the above group introduced in
[49, 46, 47, 48] a variety of new tools and concepts. Many of the results for general
channels are directly inspired by these papers.

In the period from 1994-1996 two further developments took place that had a
strong subsequent impact.

Wiberg, working with Loeliger and Kötter at Linköping University, showed in
his thesis that the turbo decoding algorithm and the standard iterative algorithm
used by Gallager can both be seen as an instance of the “sum-product” algorithm
applied to a graphical model [95, 94]. ¿is was an important conceptual step for-
ward. He also systematically developed the use of graphical models, echoeing Tan-
ner’s work from his 1981 paper [82], which he only discovered late into his thesis
work.

¿e second development concernsweight distributions. It is di�cult to compute
the weight distribution of an individual turbo code. But Benedetto and Montorsi
realized that it is easy to comptue the average weight distribution of an ensemble,
where the ensemble is de�ned by taking a uniform probability distribution over the
set of all permutations. ¿is led to the notion of an “uniform interleaver” [8, 10, 9].
Most results to date concern ensemble averages.

¿e above description traces the general developments until early 1997. Most
of the groups mentioned above worked essentially in isolation and these and other
threats continued to stay independent for some time. Let us now come back to the
speci�c material contained in this chapter.

¿e various representations of BMS channels and their associated distributions
(Sections 4.1.1-4.1.4) were introduced by Richardson, and Urbanke [72]. In the same
paper the authors introduced the class of message-passing decoders which we have
considered (Section 4.2), they discussed the simpli�cations which arise when re-
stricting ones attention to this class of message-passing decoders (Section 4.3), they
extended the concentration theorem to general channels (Section 4.3.2), they intro-
duced the notion of density evolution for general channels (Section 4.5), the notion
of degradation and monotonicity of channel families (Sections 4.1.11 and 4.6), and
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the notion of a threshold (Section 4.7).
¿e symmetry of distributions for BMS channels (De�nition 4.11), (the Channel

Equivalence) Lemma 4.29, the stability condition (Section 4.9), a partial �xed point
characterization of the threshold (Section 4.8) and some optimization techniques
are due to Richardson, Shokrollahi, and Urbanke [71]. ¿e full proof of the stabil-
ity condition and a complete description of the �xed point characterization can be
found in the paper by Richardson and Urbanke [73]. ¿is paper also contains the
bounds on the Bhattacharyya constants stated in Lemmas 4.65 and 4.67. ¿e short
proof of the su�ciency of the stability condition which we present on page 235 is
due to Khandekar and McEliece [42]. One can think of this proof as an instance
of the “extremes of information combining” approach applied to the Bhattacharyya
constant.

From a historical perspective it is interesting to note that Elias proposed in the
mid 1950s the following coding scheme. Inmodern language, he proposed a product
code with simple single-error correcting components in each row. ¿e proposed
decoder was a one-pass decoding procedure (i.e., the decoder would process each
component in a predetermined order as in the iterative decoding procedure but only
in a single pass). He showed that for a proper choice of block sizes such a scheme
can provide arbitrarily high reliability at a positive rate.

¿e density evolution equations (¿eorem 4.97) as well as some thresholds for
theGallager algorithmA are already contained inGallager’s thesis [27].¿ematerial
relating to monotonicity (Lemma 4.104), stability (¿eorem 4.125), the �xed-point
characterization (Section 4.8), and the optimization of this algorithm are due to
Bazzi, Richardson, and Urbanke [7].

¿e idea that the performance of a sparse graph code can be upper bounded
in terms of its degrees (Section 4.11) is due to Gallager. In his thesis Gallager states
such a bound for the BSC [26]. ¿is idea was �rst extended by Burshtein, Kriv-
elevich, Litsyn, and Miller to general channels [13] by quantizing a general BMS
channel to a BSC with the same error probability. ¿eorem 4.152 in Section 4.11 is a
strengthened version and it is due to Sason andWiechmann [96].We decided to de-
note this more general result still as Gallager’s inequality.¿e remaining material in
Section 4.11 and Problem 4.53 relating to the trade-o� between complexity and gap
to capacity is originally due to Sason and Urbanke [75] and the strengthened form
we present is due to Sason and Wiechman [96, 97, 76]. In the case of transmission
over the BEC we saw that the implied bounds are tight by constructing an iterative
decodable ensemble (the check-concentrated ensemble) which achieved the upper
bound. For general BMS channels no capacity-achieving ensembles are known, but
it is tempting to conjecture that such ensembles exist and that the best achievable
trade-o� follows again the information-theoretic upper bound.

EXIT charts (Section 4.10) were pioneered by ten Brinkwho initially introduced
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them in the context of choosing a suitable mapper and a suitable constellation in
an iterative de-mapping and decoding scheme [83, 84]. Soon therea er he applied
the same technique to the analysis of turbo codes [85, 86]. A Gaussian approxima-
tion as a one-dimensional approximation to density-evolution for LDPC codes was
suggested by Chung, Richardson, and Urbanke [19, 20]. At the same conference El
Gamal and Hammons introduced an equivalent concept for turbo codes [21].¿ese
Gaussian approximations di�ered from the EXIT chart method in the choice of the
one-dimensional parameter which is used to characterize the density. Experiments
have shown that the entropy criterion used by EXIT charts is indeed the most faith-
ful parameter and it has long been the preferred choice.

¿e optimization technique presented in Section 4.10.1 is very similar to the
one introduced by Chung in his thesis [17] (see also [20] and the paper by Chung,
Forney, Richardson, andUrbanke [18]).¿emain di�erence is that Chungmatched
themean of theGaussian instead of its entropy and that the presentedmethod allows
for general interpolating channel families to improve the approximation.¿is form
of the optimization was introduced in the thesis [2] of Amraoui for the optimization
of point-to-point channels, and it was also employed by Amraoui, and Dusad, and
Urbanke in [3] to optimize degree distributions formultiple-access channels. A very
readable description of optimization techniques applied to RA codes was given by
Roumy, Guemghar and Caire and Verdú [74].

Chung conjectured in his thesis various forms of extremality of the BEC and
the BSC in the setting of iterative decoding [17]. ¿e notion of “extremals for infor-
mation combining” was coined by Huettinger and Hueber in [35, 36]. ¿e proof of
¿eorem 4.143 follows the one given by Land, Hoeher, Huettinger, and Huber [44],
as well as Sutskover, Shamai, and Ziv [79, 80]. ¿e main step in the proof, namely
that f(u,v) is convex-8 in u, is identical to the the main step in the proof of the
so-called “Mrs. Gerber’s Lemma” due to Wyner and Ziv [98]. An alternative proof
using Tchebyche� system theory was proposed by Jiang, Ashikhmin, Kötter, and
Singer [37].

¿ere are other ways of bounding the performance of iterative decoding sys-
tems. A previous such bound was derived by Burshtein and Miller [14], except that
this bound was derived by propagating the mean of the distributions and not the
corresponding entropy. And the inequalities of Khandekar and McEliece [42] for
the Bhattacharyya constant can also be seen as early instances of this approach.

¿e material on GEXIT functions which we present in Section 4.12 is due to
Méasson, Montanari, Richardson, and Urbanke [60]. In many ways GEXIT charts
are the natural extension of EXIT charts to general channels. In particular they ful-
�ll the so called Area ¿eorem (¿eorem 4.157). ¿is conservation law allows one
to give upper bounds on the MAP threshold of iterative decoding systems. In the
BEC case we were able to show that the implied bounds are in fact tight. ¿e same
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result is conjectured to be true in the general case. An entirely di�erent (but in
terms of the result equivalent) approach was introduced by Montanari [68]. (See
also the extension by Macris, Korada, and Kudekar [58, 57].)¿is approach is based
on Guerra’s interpolation technique [28] (see also the paper by S. Franz, M. Leone,
and Toninelli [25]). Yet another approach of proving bounds on the GEXIT func-
tion using correlation inequalities was pointed out by Macris [56]. ¿e observation
that the GEXIT functional preserves the partial ordering implied by degradation
(Lemma 4.79) is due to Méasson, Montanari, and Urbanke [61]. ¿e same bounds
on theMAP threshold were �rst computed using the (non-rigorous) replicamethod
from statistical physics [66]. In [68], theywere shown to be upper bounds for r even,
using an interpolation technique.¿e present proof applies also to the case of odd r.
It can be proved that the three characterizations of the threshold are indeed equiv-
alent, i.e., they give exactly the same value. If one computes the GEXIT function
for a [2,1,2] repetition code in Gaussian noise one recovers a beautiful connection
between the derivative of the conditional entropy and the MMSE detector which
was found before the introduction of GEXIT functions by Guo, Shamai, and Verdú
[29, 30]. Based on this observation, anMSE-based EXIT chart analysis was proposed
by Bhattad and Narayanan in [12].

¿e �nite-length scaling conjecture presented in Section 4.13 is due to Amraoui,
Montanari, Richardson, and Urbanke [4]. It is the natural extension of the scaling
law which we presented for the BEC in Section 3.23. Scaling laws for LDPC ensem-
bles decoded with the Gallager algorithm A were considered by Ezri, Montanari,
and Urbanke [22].

In our exposition we consider ensembles, not individual codes. ¿is makes an
analysis possible. We have seen that there is a strong concentration of individual
instances with respect to the performance in the waterfall region. But the error
�oor does not concentrate and signi�cant di�erences can arise among the individual
members of an ensemble. It is therefore important to be able to construct or identify
“good” elements of an ensemble. Let us give here a few references to the literature
concerning this topic.¿e progressive edge growth (PEG)method was proposed by
Hu, Ele heriou, and Arnold [33] to generate graphs which do not contain small cy-
cles. ¿e ACE algorithm, which has a similar goal, is due to Tian, Jones, Villasenor,
andWesel [87]. Halford andChugg present in [31]methods to e�ciently count short
cycles in a bipartite graph. A method to compute the minimum distance was pre-
sented by Hu, Fossorier, and Ele heriou [34]. Methods to reduce the complexity of
the decoding were discussed in Chen, Dholakia, Ele heriou, Fossorier, and Hu [15].
¿eminimumdistance or the size of the smallest cyle are unfortunately only proxies
for the error �oor performance under iterative decoding. In the case of transmission
over the BEC we were able to give a tight characterization of the contribution to the
erasure probability that stems from small weaknesses in the graph, both under iter-
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ative as well as underMAP decoding. In particular, we saw that stopping sets played
under iterative decoding the same role that codewords do under MAP decoding.
For general channels a complete such characterization is currently still open. A very
promising avenue is the theory of pseudo codewords. ¿is was initially discussed by
Wiberg in his thesis [94]. An exact characterization can be given in the setting of the
linear-programming decoder. ¿is was done by Feldman in his thesis [23]. Further
results can be found in the work of Vontobel and Kötter [43, 92].

¿ere is also a considerable body of literature on the connection of coding and
statistical physics. As mentioned before, this connection is based on the observa-
tion by Sourlas that codes can be phrased in the language of spin systems [78]. For
references regarding the weight distribution problem see the Notes in Chapter 3.
References concerning turbo codes are given in the Notes in Chapter 6. Let us men-
tion the papers by Kanter and Saad [41], Murayama, Kabashima, Saad, and Vicente
[69], Kabashima, Murayama, and Saad, [38], Montanari [66, 67, 68], Franz, Leone,
Montanari, and Ricci-Tersenghi [24], Saad, and Kabashima [88], Vicente, Saad [91],
and Kabashima, Sazuka, Nakamura, and Saad [40]. ¿e books by Nishimori [70],
Mézard, Parisi, and Virasoro [64], Talagrand [81], as well as Mézard andMontanari
[63] and the review paper by Kabashima and Saad [39] are good starting points.

If you compare our exposition for BMS channels to the one for the BEC you will
notice that the broad outline is very much the same but that on several occasions
we had to be content with weaker statements (or no statement at all). Let us review
some of the biggest open questions.

In Section 3.19 we saw that for the BEC no matter in what order we increase
the number of iterations and the blocklength, as long as both tend to in�nity, we
always get the same threshold. ¿e same statement is conjectured to be true for
BMS channels. ¿e theory becomes easy if we �rst let n tend to in�nity and then
increase ℓ a erwards. ¿is is how we proceeded. In practice, we proceed closer the
the converse: for a given blocklength we typically iterate until no further progress is
achieved andwe are interested in the behavior of the performance as the blocklength
increases. Empirically, we observe the same threshold that we found analytically also
for this limit. It would be nice to be able to formulate a proof of this important fact.

Although we have shown several bounds on thresholds, these bounds are too
loose to prove that there are capacity-achieving ensembles. By optimizing degree
distributions numerically and computing their threshold we can seemingly get ar-
bitrarily close to capacity. But neither does this constitute a proof that capacity-
achieving degree distributions exist, nor does it give much insight into their struc-
ture.

¿e connection between the BP decoder and the MAP decoder make for an-
other interesting topic. For the BEC the set of �xed-points of density evolution forms
a smooth one-dimensional manifold which we called the EBP curve and this curve
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encodes both the performance of the BP decoder as well as the one of the MAP de-
coder via the Maxwell construction. Experimentally the same holds for the general
case but no formal justi�cation is known.

For practical purposes the �nite-length performance of codes is of crucial im-
portance. To this end, we would like to justify the scaling approach which we in-
troduced in Section 4.13 and �nd ways of computing the scaling parameters in an
e�cient manner. Equally important, we need to �nd ways of determining the error
�oor of either ensembles or of �xed codes.

Problems
4.1 (SymmetricDistributions –Montanari [68]). Let abe a symmetricL-density
and let X have density a. Show that

E[tanh2i−1(X~2)] = E[tanh2i(X~2)] = E[ tanh2i(X~2)
1 + tanh(X~2)], i C 1,

E[ln(1 + tanh(X~2))] =
ª

Q
i=1
� 1
2i − 1

−

1
2i
�E[tanh2i(X~2)].

Hint: Recall that since a is symmetric, E[f(X)] = E[f(X) + f(−X)e−X]~2 for
any function f(ċ) for which the expectations exist. Choose f1(x) = tanh2i−1(x~2)
and f2(x) = tanh2i(x~2), respectively, and compare the results.
4.2 (Symmetry in D andG representation). Show that the symmetry condition
in the D representation reads as stated in (4.13) and that the symmetry in the G
representation is indeed the one stated in (4.21).

4.3 (Symmetry forDensities). ¿eaimof this problem is to verify the equivalence
of conditions stated in De�nition 4.11.

Show that if a is an L-density with a(x) = exa(−x) for x > R then

S f(x)dA(x) = S e−x f(−x)dA(x)
for all bounded continuous functions f(x) so that f(−x)e−x is bounded.

Conversely, show that if for an L-density a we have

S f(x)a(x)dx = S e−x f(−x)a(x)dx
for all bounded continuous functions f(x) so that f(−x)e−x is bounded then

S (a(x) − a(−x)ex)2dx = 0.
If a is continuous then it is meaningful to talk about the value of a(x) at the point
x and the above assertion implies a(x) = exa(−x) for x > R.
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4.4 (L(Y) for Cauchy and Laplace Channel). ¿ebinary Cauchy (BC) and the
binary Laplace (BL) channel are de�ned by Yt = Xt + Zt, where �Zt�t is a sequence
of iid random variables with density pBCC(λ)(z) = λ~(π(λ2 + z2)) and pBLC(λ)(z) =
e−SzS~λ~(2λ), respectively. Determine the L-densities aBCC(λ)(y) and aBLC(λ)(y) and
verify that they are symmetric.

4.5 (Channel Equivalence for BAWGN(σ)). Let a denote the L-density associ-
ated to the channel BAWGNC(σ), conditioned that X = 1. Show by explicit com-
putation that the symmetric channel with transition probability p(y S x = 1) = a(y)
has L-density equal to a.

4.6 (Stronger Version of Symmetry under MAP Decoding). Show that ¿e-
orem 4.30 stays correct under the weaker assumption that transmission does not
necessarily take place over a BMS channel but that only

(4.184) pY�i SX(y�i Sw) = pY�i SX(w�iy�i S 1)

for all w > C.

4.7 (Alternative Proof of Symmetry Under BP Decoding). Consider the rep-
etition code C[n,1,n] and transmission over a BMS channel with L density a. Ex-
press the L-density under MAP bit decoding in terms of a and show directly that it
is symmetric. Repeat the same steps for the parity-check code C[n,n − 1,2].

Next show that the mixture (convex combination) of symmetric densities is
symmetric. Now argue that the above results give an (alternative) proof that all den-
sities encountered in the iterative decoding of a tree channel are symmetric.

4.8 (Symmetry and Channel Capacity). Show that the optimal input distribu-
tion for a BMS channel is the uniform one.

4.9 (ErrorProbability Functional). Apply the error probability functionalE(ċ)
to the densities aBBC(λ) and aBLC(λ).

4.10 (Error Probability Functional in D-Domain). Let a be a symmetric L-
density and a be the correspondingD-density. Show that in theD-domain the error
probability functional E(ċ) has the following alternative characterizations:

E(a) = S
1

0
a(z)1 − z

1 + z
dz =

1
2
−

1
2 S

1

0
SaS(z)zdz = 1

2
−

1
2 S

1

−1
a(z)SzSdz.

4.11 (Series Expansion for Capacity of BAWGNC). Derive the series expansion
for the capacity of the BAWGNC given in Example 4.39.
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Hint: Represent the range (−ª,+ª) as (−ª,0) 8 [0,+ª) and consider both
parts separately. For e.g., x C 0, use

ln(1 + e−x) = −Q
iC1

(−1)ie−ix
i

.

4.12 (Asymptotic Expansion of Capacity of BAWGNC). Letm = 2
σ2 . Show that

CBAWGNC(m) = ln(2) − 1
2
º
πm S

e−
(z−m)2

4m ln (1 + e−z)dz nats

= ln(2) −
½ π
m
e−

m
4

ª

Q
k=0

(−1)kck
mk nats

where
ck =

1
22k+1π(k!) S z2ke

z
2 ln (1 + e−z)dz.

We have c0 = 1, c1 = 8+π2
4 , c2 = 384+48π2+5π4

32 , and so on. We conclude that

CBAWGNC(m) = ln(2) −
º
πe−

m
4 �m− 1

2 −
8 + π2

4
m−

3
2 +O(m− 5

2 )� nats,

which is a good approximation for large values of m. On the other hand, for small
m expand the function ln(1+ e−z) around zero and show that you get the approxi-
mation

CBAWGNC(m) = m4 −
m2

16
+

m3

48
+O(m4) nats.

4.13 (Capacity of BCC(λ)). Determine the capacity of the BCC(λ), call it CBCC(λ).
(see Problem 4.4).

4.14 (Capacity of BLC(λ)). Show that the capacity of the BLC(λ) (see Prob-
lem 4.4) is given by

CBLC(λ) =
−π + 4 arctan(e−1~λ)

2e1~λ ln(2) − log2�(1 + e−2~λ)~2� bits per channel use.

4.15 (Threshold Values for Rate One-Half Codes). Determine the critical
value, call it єSha, so that CBEC(єSha) = 1~2. Repeat the equivalent calculation for
the BSC(є), the BAWGNC(σ), and the AWGNC(σ).
4.16 (GEXITKernel for BEC). Consider the family �BEC(h)�with the associated
family of L-densities �aBEC(h)�. Show that the GEXIT kernel in the SDS-domain is
SdSaBEC(h)(z) = h2((1 + z)~2).
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4.17 (GEXIT Kernel for BSC). Consider the family �BSC(h)�with the associated
family of L-densities �aBSC(h)�. Show that the GEXIT kernel in the SDS-domain is
given by

SdSaBSC(h)(z) = 1 + z
log(є̄~є) log�

1 + 2єz − z
1 − 2єz + z

� ,

where є = h−12 (h). Give the limits for h� 1 and h� 0.

4.18 (GEXIT Kernel for BAWGNC). Consider the family �BAWGNC(h)� with
the associated family of L-densities aBAWGNC(h). De�ne σ explicitly by h = h(σ). Use
Example (4.48) and (4.50) to write the kernel in the SDS-domain as

SdScBAWGNC(h)(z) = Q
i>�−1,+1�

R (1−z
2)e−

(w−σ2)2
4σ2

(1+iz)+(1−iz)ewdw

R 2e
−
(w−σ2)2

4σ2

1+ew dw
.

Give the limits for h� 1 and h� 0.

4.19 (Alternative Representation of GEXIT Kernel for BAWGNC). Con-
sider the family BAWGNC(h = h(σ))modeled as Y = X+ Z, where X takes values
in �−1,+1� and Z is Gaussian with zero mean and variance σ2. We will derive sev-
eral di�erent equivalent expressions for the GEXIT kernel in the L-domain.

(a) What is the L-density a(w) associated with BAWGNC(σ)? Using the param-
eter m = 2

σ2 , express
∂a(w)
∂m in terms of ∂

ia(w)
∂wi , i = 1,2. Start with (4.45) and

use integrations by parts twice to show that the GEXIT kernel is given by

laBAWGNC(h)(z) = ��e
−zS e

−
(wσ2−2)2

8σ2

(cosh(w−z2 ))2 dw
�
��
�
�S

e
−
(wσ2−2)2

8σ2

(cosh(w2 ))2
dw
�
�.

In the remainder of this exercise,Φdenotes a further observation of X conditionally
independent of Y: It is the result of passing X through a symmetric channel, and
is assumed to be in log-likelihood ratio form (if we use coding, Φ represents the
extrinsic estimate of X).

(b) Show that tanh(w+z2 ) = E[X S 2Yσ2 = w,Φ = z].
(c) Show that, if f(y) is even, then E[f(Y)] = E[f(Y) SX = +1].
(d) Use (b), (c) andExample 4.49 to show that the following expression represents

an equivalent kernel

l
′cBAWGNC(h)(z) = 1 −E[E[X SY,Φ = z]2]

1 −E[E[X SY]2] .
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(e) Problem 4.1 shows that E[tanh(Y~(σ2)) SX = +1] = E[tanh2(Y~(σ2)) SX =
+1]. Can you �nd this result directly using the de�nition of the conditional
expectation (which gives E[XE[X SY]] = E[E[X SY]2])?

(f) Starting with (d), use (e) and Example 4.49 to prove that

l
′′cBAWGNC(h)(z) = 1 −E[E[X SY,Φ = z] SX = 1]

1 −E[E[X SY]X = 1]
is an equivalent kernel.

4.20 (BhattacharyyaConstantDirectlyFrom pY SX(y S x)). StartingwithDef-
inition 4.62, show that the Bhattacharyya constant associated to a BMS channel
characterized by its transition probability pY SX(y S x) can also be computed as

S
¼
pY SX(y S + 1)pY SX(y S − 1)dy.

4.21 (BhattacharyyaConstantVersus Error Probability). Show that the le 
inequality in (4.66) is tight for the BEC and that the right inequality is tight for the
BSC.

4.22 (UniformBoundonE(aen)). Let adenote a symmetricL-densitywith strictly
positive Bhattacharyya constant B(a). Show that for any 0 < B′ < B(a) we have
the uniform (in n bound)

α(B′)n B E(aen) BB(a)n,

where α is a strictly positive constant. Show that a valid choice for α is

α =
(B(a)e) 32

¼
2 ln B(a)

B′

9π
.

Hint: Start with Lemma 4.67.

4.23 (Alternative Derivation of Bhattacharyya Constant). Let a denote a
symmetric L-density and consider the sum Pni=1 Yi, where the Yi are iid samples
distributed according to a. Recall from the discussion of Bernstein’s inequality in
Section C.2 that for any s A 0

1
n
logE�aen� B 1

n
logP�

n
Q
i=1
Yi B 0� B 1

n
logE[e−sPn

i=1 Yi] = logS a(y)e−sydy.
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Justify the following steps.

inf
sA0 S a(x) e−sxdx = inf

sA0

1
2 S a(x) e−x~2[e−x(−s+1~2) + ex(−s+1~2)]dx

= inf
sA0 S a(x) e−x~2 cosh�(−s + 1~2)x�dx

= S a(x)e−x~2dx =B(a).

¿is shows that E�aen� B B(a)n. We have already seen in Lemma 4.67 and in
Problem 4.22 that this bound is essentially tight.

4.24 (Alternative Derivation of B(aBEC(є))). Derive the Bhattacharyya con-
stantB(aBEC(є)) by explicitly computing aenBEC(є) and then applying the error prob-
ability functional E(ċ).

4.25 (Alternative Derivation of B(aBSC(є))). Derive the Bhattacharyya con-
stant B(aBSC(є)) by explicitly computing aenBSC(є) and then applying the error prob-
ability functional E(ċ).

4.26 (Alternative Derivation of B(aBAWGNC(σ))). Derive the Bhattacharyya
constantB(aBAWGNC(σ)) by explicitly computing aenBAWGNC(σ) and then applying the
error probability functional E(ċ).

Hint: It might be helpful in this respect to recall that if X is a Gaussian random
variable with mean µ and variance σ2 then P�X C α� = Q((α − µ)~σ), where Q(ċ)
is the so-calledQ-function. One hasQ(x) = 1−Q(−x) and for x tending to in�nity
Q(x) � e−x2~2~(º2πx).

4.27 (Degradation of �BCC(λ)�). Prove that the channel family �BCC(λ)� (see
Problem 4.4) is ordered by degradation.

Hint: Show that the concatenation of a BCC(λ1) with a channel whose additive
noise has Cauchy distribution with parameter λ2 is equal to the channel BCC(λ1 +
λ2). It is helpful to know that the Fourier transform of the function 1~(a2 + t2) is
πe−aSfS~a for all a with positive real part.

4.28 (Degradation of �BLC(λ)�). Prove that the channel family �BLC(λ)� (see
Problem 4.4) is ordered by degradation.

Hint: Let λ′ A λ and look at the concatenation of the BLC(λ) with an additive
memoryless channel whose noise distribution has the density

p(z) = (λ~λ′)2∆(z)(1 − (λ~λ′)2)~(2λ′)e−SzS~λ′ .

Preliminary version – October 18, 2007



problems 275

4.29 (Degradation via Symmetric Channel). In Lemma 4.75 it is claimed that if
p_ q and both pand q are memoryless symmetric then there exists a memoryless
symmetric degrading channel r. Prove this claim by showing that if r is a degrading
channel then the symmetrized version

1
2
�rY SY′(ySy′) + rY SY′(−yS − y′)�,

is also a degrading channel.

4.30 (Degradation of Two Mixture Channels). Consider the two BMS chan-
nels characterized by their L-densities

a = αaBSC(є1) + ᾱaBSC(є3), b = βaBSC(є2) + β̄aBSC(є4),

with 0 B є1 < є2 < є3 < є4 B 1
2 .

(i) Draw SAS and SBS assuming that β̄ C ᾱ.

(ii) Show that in this case a _ b.

(iii) Explicitly construct the degrading channel for this case.

(iv) We have seen in (ii) that β̄ C ᾱ is a su�cient condition for a _ b. Is it also
necessary?

4.31 (Kernels That Reverse the Partial Order). Consider the L-domain ker-
nels yi, i > N. Show that they reverse the partial order implied by degradation. Con-
sider next the L-domain kernels tanh(y~2)i, i > N. Show that the SDS-domain kernel
corresponding to even i, i = 2j, equals the one for odd i, i = 2j− 1, and is given by
w2j (see Problem 4.1). Show that these kernels reverse the partial order implied by
degradation.

4.32 (GEXIT Kernels Preserve Ordering). Show that the SDS-domain GEXIT
kernel for a family of BMS channels given by their SDS-densities �SaSBMSC(h)� can be
written as

S
1

0

dSaBMSC(h)S(z)
dh

� Q
i,j=�1

(1 + iz)(1 + jw)
4

log2�1 +
1 − iz
1 + iz

1 − jw
1 + jw

��dz.

Use this representation and¿eorem 4.76 to prove Lemma 4.79.
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4.33 (Alternative Proof of Erasure Decomposition Lemma). Let pbe a BMS
channel characterized by its L-density a. Lemma 4.80 shows that p is degraded with
respect to BEC(2E(a)). In this problem we are interest in an explicit construction
of the degrading channel.

Construct a ternary-input memoryless output-symmetric channel, q say, such
that p can be represented as the concatenation of BEC(2E(a)) and q.

Hint: Let q denote a channel whose input alphabet is �−1, ?,1�. Further, let
q have real output y and set qY SX(y S ?) = 1

2єe
−SySa(SyS), qY SX(y S 1) = 1

1−2є(1 −
e−y)1�yC0�a(y), and qY SX(y S − 1) = 1

1−2є(1 − ey)1�yB0�a(−y).

4.34 (Equivalence of Convergence). Let a characterize a BMS channel and con-
sider iterative decoding using a message-passing decoder. Show that PMP

ÑTℓ (a)
ℓ�ª
Ð� 0

if and only if PMP
T̊ℓ
(a) ℓ�ªÐ� 0.

4.35 (λ(z)+λ(1−z) is Decreasing). Show that λ(x)+λ(1−x) is strictly decreasing
on x > [0, 12] for any degree distribution λ(x).

4.36 (Gallager AlgorithmA). Determine the threshold of the (4,5)-regular de-
gree distribution pair for the Gallager decoding algorithm A.

4.37 (Confidence Interval). In Figure 4.85 you see 95% con�dence intervals indi-
cated. Here is how they are computed. Consider a sequence of iid random variables
�Xi�. Assume that we know that they have a Gaussian distribution but that we nei-
ther know their mean µ nor their variance σ2. We form the estimate of the mean
X̄ = 1

n P
n
i=1 Xi, which is itself a random variable. We want to determine an interval

so that

P�µ > [X̄ − δ(X1,� ,Xn), X̄ + δ(X1,� ,Xn)]� C 0.95.

¿e interval itself is a function of the data X1,� ,Xn and the randomness resides
in the realization of this data and not in µ which is considered �xed. De�ne S2 =
1
n−1 P

n
i=1(Xi − X̄)2. De�ne Tn−1 = X̄−µ

S~ºn . Show that regardless of the values of µ and
σ2 the distribution of Tn−1 is equal to the distribution of

1
n P

n
i=1 Yi¼

1
n−1 P

n
j=1(Yj− 1

n P
n
i=1 Yi)2

,

where the Yi are iid Gaussian with zero mean and unit variance. ¿is is the key
reason why Tn−1 can be used to derive con�dence intervals.

Preliminary version – October 18, 2007



problems 277

¿is distribution is called the Student’s t-distribution with n−1 degrees of free-
dom. ¿e associated density is

fn−1(t) =
Γ(n2 )»

(n − 1)πΓ(n−12 )
(1 + t2~(n − 1))−n~2.

¿e exact density of Tn−1 is cumbersome to deal with. But for n su�ciently large
(n C 61) we have

P�−2 B Tn−1 B 2� C 0.95.(4.185)

Argue that this implies that we can choose δ = δ = 2S~ºn.
For our application the Xi are typical not Gaussian. For the block error prob-

ability the Xi are zero-one valued. Nevertheless, for n su�ciently large the stated
formula gives a good approximation to the exact con�dence interval.

4.38 (Decoder With Erasures). Consider the decoder with erasures introduced
in Example 4.86. Derive the density evolution equations for this decoder. For the
simple degree distribution pair (x2,x5) write down the �xed point equation. Show
that there is no �xed point of this system of equations for є B 0.0708, but that for
є exceeding this value there is at least one such �xed point. Check, by running the
density evolution recursions with the �xed weight sequence wℓ = 1 that indeed
єDE
� 0.0708.

4.39 (DecoderWith Erasures – Threshold versus Fixed Points). ¿is prob-
lem shows that the relationship between threshold and �xed points of density evo-
lution can be complex. Consider the (4,6) regular ensemble, transmission over the
BSC(є = 0.087), and decoding using the decoder with erasures introduced in Ex-
ample 4.86.

(i) Assume we initialize density evolution with the probabilities µ(−1), µ(0),
and µ(1), where the individual terms are non-negative and sum up to 1. Fix
theweight sequence towℓ = 1. Check empirically forwhich pairs (µ(0), µ(1))
the error probability converges to zero. You should get the gray area indicated
in Figure 4.186.¿is gray area does not include the “natural” starting point for
this channel which is (µ(0) = 0, µ(1) = 1 − є = 0.913).

(ii) Run density evolution for the weight sequence wℓ = 3,1,1,1,�, ℓ C 1. You
should get the sequence of circles indicated in Figure 4.186.¿e sequence con-
verges to a �xed point but this is not the desired �xed point. ¿is shows that
for є = 0.087 a non-trivial �xed point exists.
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(iii) Run density evolution for the weight sequence wℓ = 3,2,2,2,2,2,1,1,�, ℓ C
1. You should get the sequence of points shown as squares in Figure 4.186.
For this weight sequence the densities eventually reach the gray area, and so
density evolution subsequently converges with the weight set to 1.

0.0 0.05 0.10 0.15 0.20

0.80

0.85

0.90

0.95

µ(0)

µ(
1)

Figure 4.186: Region of convergence for the all-one weight sequence (indicated in
gray).

We conclude that the existence of a non-trivial �xed point does not necessarily imply
that density evolution converges to this point. Some �xed points are only reachable
with a particular choice of the weight sequence and some �xed points cannot be
reached at all.

4.40 (Density Evolution forMin-SumDecoder – Chung [17], Anastasopou-
los [5], Wei andAkansu [93], andChenandFossorier [16] ). Consider a degree
distribution pair (λ, ρ) and a BMS channel given in terms of its L-density aBMSC.
Show that the density evolution equations under min-sum decoding are

a0(y) =aBMSC(y),
aℓ(y) =aBMSC(y)e λ(bℓ(y)), ℓ C 1,
bℓ(y) =Q

i
ρi
i − 1
2
�(aℓ−1(y) + aℓ−1(−y))�S

+ª

SyS
(aℓ−1(x) + aℓ−1(−x))dx�

i−2
+

(aℓ−1(y) − aℓ−1(−y))�S
+ª

SyS
(aℓ−1(x) − aℓ−1(−x))dx�

i−2
�, ℓ C 1.

4.41 (Threshold for Min-Sum Decoder). Show that density evolution for min-
sum decoding has a threshold for the channel family �BSC(є)�.

Hint: Good luck with this one. We do not know of a proof ourselves.
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4.42 (Min-SumDecoder is notMonotoneWithRespectto Iteration–Rathi).
Consider the degree-distribution pair (λ(x) = 1

10x+
9
10x

2, ρ(x) = x5) and transmis-
sion over the BSC(є = 2

10). Explicitly perform density evolution for the �rst few iter-
ations undermin-sumdecoding and determine the corresponding error probability.
Show that the error probability takes on the values 0.2,0.3139,0.3374,0.2818,0.2646,�.
¿is shows that the min-sum decoder is in general notmonotone with respect to it-
erations.

4.43 (MAPDecoding viaDual Code –Hartmann and Rudolph [32] (see also
Battail, Decouvelaere, and Godlewski [6])). Consider a binary linear code
C[n, k,d] with components in ��1� and a uniform prior on the set of codewords.
De�ne the multivariate polynomial

PC(z1, . . . , zn) = Q
x>C

n
M
i=1
z(1−xi)~2i .

Consider transmission over a BMS channel given in terms of its transition proba-
bility p(y S x). De�ne the likelihood ratio ri = pYi S Xi(y1 S−1)

pYi S Xi(yi S 1)
. Show that

x̂MAP
i (r) =

¢̈̈
¦̈̈
¤
1, if PC(r1, . . . , ri−1,−ri,� , rn) A 0,
−1, otherwise.

Let CÙ be the dual code. In Problem 1.20 we discussed the MacWilliams identities
which relate the weight distribution of a code to the weight distribution of the dual
code. By a slight extension of these identities we have

PC(z1,� , zn) = 1
SCÙSPCÙ �

1 − z1
1 + z1

, . . . ,
1 − zn
1 + zn

�
n
M
i=1
(1 + zi).

De�ne r̂i =
pYi S Xi(yi S 1)−pYi S Xi(yi S−1)
pYi S Xi(yi S 1)+pYi S Xi(yi S−1)

=
1−ri
1+ri

. Now show that, equivalently, one can
decode via the dual code by using the decoding rule

x̂MAP
i (r̂) =

¢̈̈
¦̈̈
¤
1, if r̂iPCÙ(r̂1, . . . , r̂i−1,1~r̂i,� , r̂n) < 0,
−1, otherwise.

4.44 (Isotropic Codes – Boutros and Vialle [90, 89]). Call a linear binary
code C isotropic if the density of Φi, the extrinsic information de�ned in (4.31),
is independent of the position i, assuming that the all-one codeword is transmitted
through a �xed BMS channel. Show that (i) repetition codes, (ii) single-parity check
codes, (iii) Hamming codes, and (iv) binary BCH codes are isotropic.
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Hint: Express the extrinsic output as a function obtained from the weight enu-
merators of the subcode associated with i. Show that, if an isotropic code has as
many codewords of weight 2w with 1 at a given position as it has codewords of
weight 2w − 1 with 0 at the same position, then the extended code is also isotropic
(v).¿is property can be used to show that the extension of a binary primitive BCH
code is isotropic.

4.45 (Stability Condition for Gallager A). Explicitly determine the stability
condition for the (3,4) as well as the (4,6) ensemble under decoding with Gallager
A. How does the critical noise value given by the stability condition compare to the
threshold?

4.46 (Geometric Convergence Close to Fixed Point). Consider a degree dis-
tribution pair (λ, ρ), transmission over the BSC(є), and decoding via the Gallager
algorithm A. Assume that є < єGal(λ, ρ). Show that PGal

ÑTℓ+1(є)~P
Gal
ÑTℓ (є) converges to

(єλ′(1) + (1 − є)λ′(0))ρ′(1) as ℓ tends to in�nity.
What would you expect the equivalent statement to be for the BP decoder?

4.47 (Stability Condition for BLC(λ)). Determine the stability condition for
�BLC(λ)� (see Problem 4.4).

Hint: ComputeB according to the characterization given in Problem 4.20.

4.48 (Stability Condition for BCC(λ)). Determine the stability condition for
�BCC(λ)� (see Problem 4.4).

4.49 (GaussianApproximation– Stability). Consider the BAWGNC(σ2). Show
that the stability condition implied by the Gaussian approximation discussed in Ex-
ample 4.142 coincides with the stability condition under BP decoding, i.e., it reads
λ′(0)ρ′(1)e−1~(2σ2) < 1.

Hint: Use the two expansions of the capacity function (and therefore also of the
function ψ(m)) discussed in Problem 4.12.

4.50 (Gaussian Approximation – Optimization). Use the Gaussian approxima-
tion to �nd a degree distribution pair (λ(x), ρ(x)) of rate one-half and maximum
degree ten with as large a threshold for the BAWGNC(σ) as possible.
4.51 (Upper Bound On MAP Threshold via Gallager’s Bound). Consider
(l,r)-regular codes. Starting with Gallager’s inequality given in ¿eorem 4.146,
show that for transmission over the BEC(є) the MAP threshold for the (l,r)-
regular ensemble is upper bounded by the unique positive solution of the equation
l−rє = l(1−є)r. How does this compare to the result that you get if you start with
(3.96)?
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In the same manner show that for transmission over the BSC(є), Gallager’s in-
equality implies the upper bound on theMAP thresholdwhich is the unique positive
solution of the equation rh2(є) = lh2((1 − (1 − 2є)r)~2).

Hint: Explicitly evaluateD2k in both cases and then evaluate (4.147) using (4.151).

4.52 (Bad News about Cycle-Free Codes). Let C be a binary linear code of rate
r which admits a binary Tanner graph which is a tree. Assume we use this code
for transmission over a BMS channel characterized by its L-density a. Let PMAP

b (C)
denote the bit error probability of this code under MAP decoding. Prove that

PMAP
b C (2r − 1)E�ae a�.(4.187)

4.53 (Bad News About Codes With Few Cycles). ¿e bound stated in Prob-
lem 4.52 is non-trivial only for rates above one-half. Let us discuss a general infor-
mation theoretic bound which is non-trivial for all rates and which applies more
generally to the case of codes with cycles.

Recall fromDe�nition 3.92 the notion of the density of a parity-checkmatrixH.
Consider a parity checkmatrixHwhose Tanner graph is a tree. Asmentioned in the
above proof, if the code has length n and rate r then there are (2− r)n−1 < (2− r)n
edges in the graph. From this follows that the density of the graph is (at most) 2−r

r .
Denote this particular density corresponding to a tree by∆�. LetC be a binary linear
code of rate r which admits a binary Tanner graph of density ∆. Assume that the
codewords of C are used equally likely and that transmission takes place over a BMS
channel with capacity CBMSC and L-density a.

Prove that, under any decoding algorithm, the bit error probability Pb satis�es
the lower bound

h2(Pb) C r −CBMSC +
1 − r
2 ln(2) D

∆
∆�

2−r
1−r

2 ,

whereD2 =D2(aBMSC).
4.54 (Inequality on Moments of L-Density). Show the inequality

1
2 ln(2)

ª

Q
k=1

R(D2k)
k(2k − 1) C C

ravg
BMSC,

which is used in the proof of ¿eorem 4.152. Follow your own path or justify the
following steps

1
2 ln(2)

ª

Q
k=1

D
ravg
2k

k(2k − 1)
(i)
=

1
2 ln(2)

ª

Q
k=1

1
k(2k − 1) �S

+ª

0
aBMSC(y)(1 + e−y) tanh2k(y~2)dy�

ravg
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(ii)
C �S

+ª

0
aBMSC(y)(1 + e−y)

ª

Q
k=1

1
2 ln(2)

1
k(2k − 1) tanh

2k(y~2)dy�
ravg

(iii)
= �S

+ª

0
aBMSC(y)(1 + e−y)�1 − h2�12(1 − tanh(y~2))��dy�

ravg

(iv)
= �S

+ª

0
aBMSC(y)(1 + e−y)[1 − h2( 1

1 + ey
)]dy�

ravg

(v)
=Cravg

BMSC.

4.55 (Upper Bound on the Decoding Error Probability of BP). Consider
transmission over a BMS channel. Assume that we perform a hard decision at the
receiver. ¿is means that we map the observation Y taking on real values to the set
��1� according to the sign of Y. ¿e channel seen by the decoder therefore corre-
sponds to a BSC(є).

In the case of a BAWGN channel with variance σ2, what is the corresponding
cross-over probability є a er hard decision? Show that the channel a er hard deci-
sion is a degraded version of the original channel.

4.56 (Upper Bound on Threshold for Gallager Algorithm A). For a given
degree distribution pair (λ, ρ), let τ denote the smallest positive real root of the
polynomial p(x) = xp+(x) + (x − 1)p−(x). Show that

єGal(λ, ρ) B min� 1 − λ2ρ′(1)
λ′(1)ρ′(1) − λ2ρ′(1) , τ�.

4.57 (Universal Lower Bound on Capacity for Reliable Transmission). In
Section 4.10.2 we have used the least informative intermediate densities in the EXIT
chart methodology to derive an upper bound on the required capacity for reliable
transmission under BP decoding. Now use instead the most informative interme-
diate densities to derive in this way a lower bound. For the (3,6)-regular ensemble
what is the required capacity? Is this bound useful for this concrete example?

4.58 (LowerBoundonCapacity forReliableTransmission). In Section 4.10.2
we have used the least informative densities in the EXIT chart methodology not
only for the intermediate densities but also for the input density. ¿is gives rise to
an universal bound on the threshold which only depends on the capacity of the in-
put distribution (and the degree distribution of course). We get tighter bounds if
we take into account the speci�c input distribution. Consider transmission over the
channel BAWGNC(σ). Replace the intermediate densities by their least informa-
tive counterparts but explicitly compute the e�ect of the input density. What is the
lower bound on the critical noise value σBP according to this method when using
the (3,6)-regular ensemble?
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4.59 (Alternative Representation of Common Functionals). Show that the
functionals H(ċ), E(ċ), and B(ċ) can be expressed in terms of the SDS-density SaS
and in terms of the densities wa(x) discussed in the proof of ¿eorem 4.143 as

B(SaS) = S
1

0
SaS(w)

º
1 −w2dw =S

1

0
wa(x)2

¼
h−12 (x)(1 − h−12 (x))dx,

E(SaS) = S
1

0
SaS(w)1

2
(1 −w)dw =S

1

0
wa(x)h−12 (x)dx,

H(SaS) = S
1

0
SaS(w)h2�1 −w2 �dw =S

1

0
wa(x)xdx.

Use the above expressions to re-derive (4.66).

4.60 (Extremal Densities of Fixed H(ċ)). Let a denote a symmetric L-density.
Show that for a �xedH(a) the symmetric densitywhichminimizes/maximizesE(a)
(maximize/minimize)B(a)) is from the family �BSC(є)�/�BEC(є)�.

Hint: Use the (right) representation of the functionals H(ċ), E(ċ), and B(ċ)
given in Problem 4.59.

4.61 (Extremal Densities of Fixed E(ċ)). Let a denote a symmetric L-density.
Show that for a �xedE(a) the symmetric densitywhichminimizes/maximizesH(a)
(maximize/minimize)B(a)) is from the family �BSC(є)�/�BEC(є)�.

Hint: Use the (le ) representation of the functionals H(ċ), E(ċ), andB(ċ) given
in Problem 4.59.

Conclude from this and Problem 4.60 that for a �xedB(a) the symmetric den-
sitywhichminimizes/maximizesH(a) (maximize/minimizeE(a)) is from the fam-
ily �BSC(є)�/�BEC(є)�.

4.62 (More on Extremal Densities). In the following we write a e b to denote
the convolution of two symmetric L-densities (variable node) and a � b to denote
the convolution of two symmetric G-densities (check node).

(i) Let a and b denote two symmetric L-densities and assume each of the follow-
ing three cases: E(a) = єa and E(b) = єb or B(a) = βa and B(b) = βb or
H(a) = ha and H(b) = hb. Determine for each case bounds onB(aeb) and
the corresponding extremal densities.

(ii) Let a and b denote two symmetric G-densities and assume each of the fol-
lowing three cases: E(a) = єa and E(b) = єb or H(a) = ha and H(b) = hb or
B(a) = βa andB(b) = βb. Determine for each case bounds on E(a�b) and
the corresponding extremal densities.
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(iii) Let a and b denote two symmetric L-densities with E(a) = єa and E(b) = єb.
Show that

єaєb B E(ae b) B min�єa,єb�

and determine the corresponding extremal densities.

Hint: Start by showing that if a and b are from the family �BSC(є)� then

E(ae b) = min�єa,єb�,

and that this function, for a �xed єb, is convex-9 and non-decreasing in єa.

(iv) Let a and b denote two symmetric G-densities with B(a) = βa and B(b) =
βb. Show that

¼
β2a + β2b − β

2
aβ2b BB(a� b) B βa + βb − βaβb,

and determine the corresponding extremal densities. More generally, show
that if ρ is the edge-perspective degree distribution at the check nodes and if
a is a symmetric G-density thenB(ρ(a)) B 1 − ρ(1 −B(a)).
Hint: Start by showing that if a and b are from the family �BSC(є)� then

B(a� b) =
¼
β2a + β2b − β

2
aβ2b,

and that this function, for a �xed βb, is convex-8 and increasing in βa.

(v) Let a and bdenote two symmetric L-densitieswithD(a) = da andD(b) = db.
Show that

da + db − 2dadb B
da + db − 2dadb

1 − dadb
BD(ae b) B da + db − dadb

and determine the corresponding extremal densities.

4.63 (Craig’s Formula – Simon and Divsalar [77]). Show that for x C 0

Q(x) = 1
π S

π
2

0
e
−

x2

2 sin2(θ)dθ, Q2(x) = 1
π S

π
4

0
e
−

x2

2 sin2(θ)dθ.

Hint: Let X and Y be two independent Gaussian random variables distributed
according toN (0,1) and compute P�X C 0,Y C y� = Q(0)Q(y). Explicitly evalu-
ate the le hand side using polar coordinates. ¿e second identity can be proved in
a similar way.
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Chapter 5

G E N E R A L C H A N N E L S

We now look at a select list of applications beyond the simple model of binary mem-
oryless symmetric channels. We formalize each problem and point out how the sys-
tem can be analyzed. Rather than discussing applications in their full generality,
we limit ourselves to interesting special cases. In the same spirit, we do not present
highly tuned solutions but explain how each system can be optimized.¿is keeps the
exposition simple. ¿e generalizations are quite routine. Since the FSFG of a large
system is the composition of the individual FSFGs of its components, it su�ces for
the most part to study those components in isolation. Real transmission scenarios
typically involve combinations of the various components discussed below.

Each example introduces one new ingredient. A simple model of a fading chan-
nel is discussed in Section 5.1. We next discuss the prototypical asymmetric channel
(the so-calledZ channel) in Section 5.2.We then turn in Section 5.3 to an information-
theoretic application of factor graphs – computing information rates of channels
with memory. We also discuss how to code over channels with memory. In Sec-
tion 5.4 we see how to construct systems with high spectral e�ciency from simple
binary ones. Very similar in spirit is the discussion on multiple-access channels in
Section 5.5.

§5.1. Fading Channel

Consider the following simple model of a fading channel. We have

Yt = AtXt + Zt,

where Xt > ��1�, Zt � N (0,σ2), and At is Rayleigh, i.e., pA(a) = 2ae−a2 . We fur-
ther assume that both �At� and �Zt� are iid and that they are jointly independent.
We refer to this model as the binary Rayleigh fading (BRAYF) channel.

¿ere are two interesting scenarios: we can assume that the fading coe�cients
are known or that they are unknown at the receiver. In both cases they are unknown
at the transmitter. In the �rst case we talk about the known side information case
(KSI) and the channel output at time t is (Yt,At), whereas in the second case we
say we have unknown side information (USI), and the channel output at time t is
Yt. Note that the channel in the case of USI is degraded with respect to the KSI case
since part of the output is erased. In both cases the uniform input distribution is
capacity-achieving.

293
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Consider �rst the KSI case. ¿e log-likelihood ratio function is

l(y,a) = ln pY,ASX(y,a S 1)
pY,ASX(y,a S − 1)

=
2ay
σ2

.

It follows that conditioned on A = a and X = 1, the L-density is N � 2a2σ2 , 4a
2

σ2 �. ¿e
L-density conditioned only on X = 1 is therefore

aKSIBRAYFC(σ)(y) = S
ª

0
2ae−a

2

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
pA(a)

σº
8πa2

e
−
(y−2a2~σ2)2

8a2~σ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�N� 2a2

σ2
, 4a2
σ2
�

da =
σ2

2
º
1 + 2σ2

e−SyS
»

1+2σ2
2 ey~2.

¿e symmetry of this density is apparent from this last expression (see the factor
ey~2) but it also follows from the fact that aKSIBRAYFC(σ)(y) is the weighted sum of sym-
metric densities. From this expression we can compute the Bhattacharyya constant
according to (4.63) and the stability condition according to¿eorem 4.127. We have

B(aKSIBRAYFC(σ)) = S aKSIBRAYFC(σ)(y)e−y~2dy=
2σ2

1 + 2σ2
stability
< 1~(λ′(0)ρ′(1)).(5.1)

Consider next the USI case. If X = �1 then Y = �A+ Z, so that the density
of Y is the convolution of a (possibly negated) Rayleigh with a Gaussian with vari-
ance σ2. Since the density of Z is symmetric, it follows from this representation that
pY SX(y S 1) = pY SX(−y S − 1), i.e., the channel is symmetric. A er a tedious calcu-
lation we get

pY SX(y S 1) = SR
2ae−a

2

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
pA(a)

1º
2πσ2

e−
(y−a)2
2σ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�N (a,σ2)

da

=

º
2e−

y2

1+2σ2º
π(1 + 2σ2)�σe

−
y2

2σ2(1+2σ2) +

º
2πyº

1 + 2σ2
Q�−y~(σ2(1 + 2σ2))��,

where Q(x) = 1º
2π R

ª

x e−
z2
2 dz, the standard Q-function. ¿e density aUSI

BRAYFC(σ)
can be expressed in parametric form in terms of pY SX(y S 1) as

�
�ln

pY SX(y S 1)
pY SX(−y S 1)

,
pY SX(y S 1)

T p
′

Y S X(y S 1)
pY S X(y S 1) +

p′Y S X(−y S 1)
pY S X(−y S 1) T

�
�.

Figure 5.2 shows aKSIBRAYFC(σ) and aUSI
BRAYFC(σ) for σ = 1. ¿e stability condition can be
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Figure 5.2: L-densities aKSIBRAYFC(σ) (solid curve) and aUSI
BRAYFC(σ) (dashed curve) for

σ = 1.

evaluated (at least numerically) according to¿eorem4.127 or using the formulation
of Problem 4.20. Figure 5.3 compares 1~B, the upper bound on λ′(0)ρ′(1), for the
two cases. Not surprisingly, the KSI case can tolerate a higher value of λ′(0)ρ′(1)
than the USI case for a �xed σ. In fact, since the USI case is degraded with respect
to the KSI case we know from our discussion on page 208 that this must be the case.
A plot of the corresponding capacities CKSI

BRAYFC(σ) and CUSI
BRAYFC(σ), both computed

0.5 1 1.5 2 2.5

1
2
3

0 σ

1
B

Figure 5.3: Upper bound on λ′(0)ρ′(1), i.e., 1~B, for the KSI case (solid curve),
computed according to (5.1), and for the USI case (dashed curve).

via the general expression given in Lemma 4.36, is shown in Figure 5.4.
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Figure 5.4: Capacities CKSI
BRAYFC(σ) (solid curve) and CUSI

BRAYFC(σ) (dashed curve) as a
function of σmeasured in bits.
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Example 5.5 (Threshold for (3,6)-Regular Ensemble). Since in both cases
the channel is symmetric, we can use the standard density evolution approach to
determine the threshold of a given ensemble. For the (3,6)-regular ensemble we
get σBPKSI � 0.7016, whereas the Shannon threshold (for a rate one-half code) is σShaKSI �

0.81. In the same manner we get σBPUSI � 0.6368, whereas the Shannon threshold is
σShaUSI � 0.74366. n

Example 5.6 (Optimization ofDegreeDistributions). As usual, better thresh-
olds can be achieved by allowing irregular degree distributions. To give just one ex-
ample, the following rate one-half ensemble has σBPKSI � 0.8028, which is quite close to
the Shannon threshold σShaKSI � 0.81.¿e corresponding degree distribution is λ(x) =
0.194x+0.207x2+0.092x6+0.112x7+0.014x8+0.114x14+0.004x48+0.263x49 and
ρ(x) = 0.347x8 +0.645x9 +0.008x10. Figure 5.7 shows ELDPC(n,λ,ρ)[Pb(G,Eb~N0)].

n

1.6 1.8 2.0 2.2 2.4

10-4

10-3

10-2

10-1

�Eb~N0�dB

Pb

(E
b~N

0)B
P dB

Figure 5.7: ELDPC(n,λ,ρ)[Pb(G,Eb~N0)] for the optimized ensemble stated in Exam-
ple 5.6 and transmission over the BRAYF(Eb~N0) with KSI and belief-propagation
decoding. As stated in Example 5.6, the threshold for this combination is σBPKSI �
0.8028 which corresponds to �Eb~N0�dB � 1.90785. ¿e blocklengths/expurgation
parameters n~s are n = 8192~10, 16384~10, 32768~10, respectively.

§5.2. Z Channel

Consider the channel depicted in Figure 5.8. For obvious reasons it is called the
Z channel (ZC). ¿is channel has binary input and it is memoryless but it is not
symmetric. Nevertheless, the analysis we performed in Chapter 4 can still be applied
to this case. Symmetry is therefore a nice property to have but it is not essential. Let
us start by writing down the L-densities. Due to the lack of symmetry we are no
longer able to make the all-one codeword assumption and, therefore, we need the
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Figure 5.8: Z channel with parameter є.

L-density for both X = 1 and X = −1. We have

¢̈̈
¦̈̈
¤
a+ZC(є)(y) = є∆ln(є)(y) + є̄∆ª(y), X = 1,
a−ZC(є)(y) = ∆ln(є)(y), X = −1.

Consider the capacity of this channel. Assuming that we use the input distribution
pX(1) = α, the output distribution satis�es

(pY SX(1 S 1), pY SX(−1 S 1)) = (є̄,є),
(pY SX(1 S − 1), pY SX(−1 S − 1)) = (0,1),

(pY(1), pY(−1)) = (αє̄,1 − αє̄),

so that the information rate Iα(X;Y) = I(X;Y) S pX(1)=α for a �xed α equals

(5.9) Iα(X;Y) = H(Y) −H(Y SX) = h(αє̄) − αh(є).

Some calculus reveals (see Problem 5.1) that the optimal choice for α is

(5.10) α(є) = єє~є̄

1 + є̄єє~є̄
,

so that
CZC(є) = h(α(є)є̄) − α(є)h(є) = log(1 + є̄є

є
є̄ ),

where the last step requires several lines of calculus. Figure 5.11 compares CZC(є)
with Iα= 1

2
(X;Y). ¿is is the highest rate that can be achieved with a uniform in-

put distribution. Only little is lost by insisting on the uniform input distribution.
As discussed in more detail in Problem 5.2, the rate which is achievable by using a
uniform input distribution is at least a fraction 1

2e ln(2) � 0.942 of capacity over
the entire range of є (with equality when є approaches one): from this perspective
the Z channel is the extremal case – the information rate of any binary-input mem-
oryless channel when the input distribution is the uniform one is at least a fraction
1
2e ln(2) of its capacity. From the above discussion we conclude that, when dealing
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Figure 5.11: Comparison of CZC(є) (solid curve) with Iα= 1
2
(X;Y) (dashed curve),

both measured in bits.

with asymmetric channels, not much is lost if we use a binary linear coding scheme
(inducing a uniform input distribution).

Consider the density evolution analysis. It seems at �rst that we have to analyze
the behavior of the decoder with respect to each codeword. Fortunately this is not
necessary. First note that, because we consider an ensemble average, only the "type"
of the codeword matters. More precisely, let us say that a codeword has type τ if the
fraction of zeros and ones is τ and τ̄, respectively. For x > C, let τ(x) be its type. Let
us assume that we use an LDPC ensemble whose dominant type is one-half. ¿is
means that “most” codewords contain roughly as many zeros as one. Although it is
possible to construct degree-distributions which violate this constraint, most degree
distributions that we encounter do ful�ll it (see proof of Lemma 3.22). Under this
assumption there exists some strictly positive constant γ such that

(5.12) P�τ(X) ~> [1~2 − δ~ºn,1~2 + δ~ºn]� B e−δ2γ.
We can therefore analyze the performance of such a system in the following way:
determine the error probability assuming that the type of the transmitted codeword
is “close” to the typical one. Since sublinear changes in the type do not �gure in the
density analysis, this task can be accomplished by a straightforward density evolu-
tion analysis. Now add to this the probability that the type of a random codeword
deviates signi�cantly from the typical one.¿e second term can be made arbitrarily
small (see right hand side of (5.12)) by choosing δ su�ciently large.

Consider therefore the density evolution with respect to the typical type. ¿is
means that half the nodes have initial density a+ZC(є)(y) and the remaining nodes
have initial density a−ZC(є)(y). Proceed with a density evolution analysis which has
two types of messages (namely those that are connected to a variable node with
transmitted value +1 and those that are connected to a variable node with trans-
mitted value −1). Fortunately we can do even better. We can “factor out” the sign
of the received message. More precisely, assume that for all nodes with associated
value −1, call them “minus nodes”, we �ip the sign of the receivedmessage. By using
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the symmetry of the processing rules as discussed in Section 4.1.6, one can check
that the signs of all those messages which enter or exit minus nodes are �ipped as
well (with respect to the identical decoder which is fed with the original input) but
that their magnitude is identical. Further, for this modi�ed decoder the message
densities �owing into the variable nodes are the same regardless of the sign of the
variable node. In short, density evolution for an asymmetric channel with respect to
the typical type is equivalent to density evolution with respect to the “symmetrized”
channel

(a+ZC(є)(y) + a−ZC(є)(−y))~2.
¿at this density is indeed symmetric is quickly checked by direct computations.
More generally, as discussed in Problem 5.3, this is the case for any binary-input
memoryless channel.

From this observation the derivation of the stability condition as well as the
methods of optimization follow in a straightforward fashion. It is the goal of Prob-
lem 5.4 to show that (under the uniform input distribution) the Bhattacharyya con-
stant associated with this channel isB(aZC(є)) =

º
є, so that the stability condition

for this channel reads
λ′(0)ρ′(1) < 1~ºє.

As a �nal remark: if it is crucial to approach capacity very closely, so that a uniform
input distribution is not su�cient, one can combine the linear code with a non-
linear mapper in order to induce a non-uniform input distribution.

§5.3. Channels with Memory
Consider an instance in which the factor graph methodology can help in answer-
ing an information theoretic question. We want to compute the information rate
(maximal rate at which information can be transmitted reliably for a given input
distribution) of a channel with memory. Assuming that the memory has a Markov
structure, this problem can be solved in a computationally e�cient manner using
the factor graph framework. ¿is is of interest in itself, but it also forms the start-
ing point in our investigation of low-complexity coding schemes for channels with
memory. More precisely, assume we are interested in computing the information
rate

lim
n�ª

I(Xn1 ;Yn1 )~n,

between the input process �Xt�tC1 and the output process �Yt�tC1. Let us write Xn1
as a shorthand for the set of random variables X1,� ,Xn. We assume that the input
process takes values in a �nite alphabet and that there exists a state sequence �Σt�tC0,
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taking values in a �nite alphabet, such that the joint probability distribution factors
in the form

(5.13) pXn
1 ,Y

n
1 ,Σ

n
0
(xn1 , yn1 ,σn0 ) = pΣ0(σ0)

n
M
i=1

pXiYi,Σi SΣi−1(xi, yi,σi S σi−1).

We also assume that the state sequence �Σt�tC0 is ergodic. ¿is means that if pΣ(σ)
is the stationary distribution on the state and if f is bounded then for any initial
distribution on the state

lim
T�ª

1
T

T
Q
t=1

f(Σt) almost surely= Q
σ
f(σ)pΣ(σ).

In words, the time average is almost surely equal to the ensemble average. For our
purpose it su�ces to know the following fact: (since we assumed that the state space
is �nite) the state sequence is ergodic if and only if from any state σi we can go to
any other state σj in a �nite number of steps with strictly positive probability. ¿e
FSFG that corresponds to (5.13) is shown in Figure 5.14.

Σ0 Σ1 Σ2 Σ3 Σn−1 Σn

X1 X2 X3 Xn

p(σ0)
p(x1, y1,σ1 S σ0)

p(x2, y2,σ2 S σ1)
p(x3, y3,σ3 S σ2)

p(xn, yn,σn S σn−1)

Figure 5.14: FSFG corresponding to (5.13).

Example 5.15 (Intersymbol Interference Channel (IIC) ). ¿e (IIC) is de�ned
by

(5.16) Yt =
d
Q
k=0

hkXt−k + Zt,

where �Zt� is an iid sequence of zero-mean Gaussian random variables with vari-
ance σ2 and �ht�dt=0 represents the channel response. We assume that the channel
response is causal and of �nite length and that it is known at the receiver. Although
more general cases can be dealt with in the same framework, assume that the input
sequence �Xt�tC1 is iid, taking values in ��1� with uniform probability. De�ne the
state Σt, t C 0, as Σt = (Xt−1,� ,Xt−d), where Xt is de�ned as zero for t B 0. We
see that pXn

1 ,Y
n
1 ,Σ

n
0
(xn1 , yn1 ,σn0 ) factors in the form (5.13). Also, the state takes values

in a �nite alphabet and the state sequence is ergodic: we can go from any state to
any other state in at most d steps and since the Xt are iid these steps have a positive
probability. n
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Example 5.17 (Gilbert-Elliott Channel). In Section 5.1 we discussed a model
of a simple fading channel. In this discussion we assumed that the fading coe�-
cients are independent. In order to arrive at a more realistic fading model we have
to consider correlations between subsequent fading coe�cients. A possible avenue
is to assume that the channel can be in one of several states, each state being asso-
ciated with a channel of a particular quality. In the simplest case there are exactly
two states as shown in Figure 5.18.¿is is the original Gilbert-Elliott channel (GEC)
model. Assume that �Xt�tC1 is iid, taking values in ��1� with uniform probability.
¿e channel is either in a good state, denote it by G, or in a bad state, call it B. In

G B

g

ḡ

b
b̄

Figure 5.18: Gilbert-Elliott channel with two states.

either state the channel is a BSC. Let the crossover probability in the good state be
єG and in the bad state be єB, with 0 B єG < єB B 1~2. Let P be the 2 � 2matrix

P = � g b̄
ḡ b �

which encodes the transition probabilities between states (columns correspond to
the present state and rows indicate the next state). De�ne the steady state probability
vector p = (pG, pB), i.e., the vector which ful�lls PpT = pT . ¿is means that in
steady state the system spends a fraction pG of the time in state G and a fraction pB
of the time in state B. If we consider, e.g., the state G then in steady-state it must be
true that pG ḡ = pBb̄. From this we get p= (b̄~(ḡ+ b̄), ḡ~(ḡ+ b̄)).

More generally, let us assume that we have s states, s > N, and that the channel in
state i, i > [s], is the BSC(єi). Let P be the s� smatrix encoding the transition prob-
abilities between these states. Let pdenote the steady-state probability distribution
vector. Assuming that (I − PT + E) is invertible, we claim that p= e(I − PT + E)−1,
where e is the all-one vector of length s, I is the s � s identity matrix and E is the
s � s all-one matrix. To see this, note that p = e(I − PT + E)−1 is equivalent to
p(I−PT +E) = e. Expanding and canceling common terms we get p− pPT = 0, the
steady state equation.

Note that also in this case the state sequence is ergodic as long as the Markov
chain is recurrent, i.e., as long as there is a path of strictly positive probability from
any state to any other state. An equivalent condition is that the steady-state proba-
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bility distribution must exist. In the original Gilbert-Elliot model this is true as long
as 0 < g,b < 1. n

Consider the computation of the information rate. For sake of de�niteness let us
assume that the output Y takes values inR and has a density. In this case the mutual
information is the di�erence of two di�erential entropies. (In the case of probability
mass functions, replace the two di�erential entropies with two regular entropy ex-
pressions.) In order to keep the notational burden to a minimum we maintain this
notation even for the GEC where the output is discrete. We then have

I(Xn1 ;Yn1 ) = h(Yn1 ) − h(Yn1 SXn1 ).

As shown in the next example, the term h(Yn1 SXn1 ) can be computed analytically
for the IIC.

Example 5.19 (Computation of h(Yn1 SXn1 ): IIC). Note that for each realization
of Xn1 > ��1�n the mean of Yn1 is �xed and that the randomness in Yn1 is exclusively
due to Zn1 . We conclude that

h(Yn1 SXn1 ) = h(Zn1 ) =
n
Q
i=1
h(Zi) = n2 log �2πeσ2� ,

where in the middle step we used the fact that the random variables Zi are indepen-
dent.¿e last step follows since a Gaussian with variance σ2 has di�erential entropy
1
2 log �2πeσ2�, i.e., if pZ(z) = 1~

º
2πσ2 exp(−z2~(2σ2)), then

−S pZ(z) log pZ(z)dz = 1
2
log �2πeσ2� . n

Let us see how we can compute limn�ª h(Yn1 )~n. Because of the ergodicity as-
sumption on the state sequence, − 1

n log pYn
1
(yn1) converges with probability one to

limn�ª h(Yn1 )~n. It follows that if we can compute − 1
n log pYn

1
(yn1) for a very large

sequence, then with high probability the value will be close to the desired entropy
rate. Instead of computing pYn

1
(yn1), let us compute pΣn,Yn

1
(σn, yn1). From this we

trivially get our desired quantity by summing,

pYn
1
(yn1) =Q

σn
pΣn,Yn

1
(σn, yn1).

We have

pΣn,Yn
1
(σn, yn1) = Q

xn,σn−1
pXn,Σn−1,Σn,Yn

1
(xn,σn−1,σn, yn1)
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= Q
xn,σn−1

pXn,Σn,Yn SΣn−1(xn,σn, yn S σn−1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kernel

pΣn−1,Yn−1
1
(σn−1, yn−11 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
message

.

Consider the FSFG of Figure 5.14. We claim that the above recursion produces the
messages of the BP decoder which are sent from “le to right”. Indeed, if we de-
note the message sent along the edge corresponding to Σn by αΣn(σn) then by the
standard message-passing rules

αΣn(σn) = Q
xn,σn−1

pXn,Σn,Yn SΣn−1(xn,σn, yn S σn−1)αΣn−1(σn−1).

In other words, αΣn(σn) = pΣn,Yn
1
(σn, yn1), so that

lim
n�ª

h(Yn1 )~n = − lim
n�ª

log�Q
σn
αΣn(σn)�~n.(5.20)

We can therefore get a good estimate of limn�ª h(Yn1 )~n by computing the mes-
sages αΣn(σn) for a very long trellis, summing them up, taking the log, and normal-
izing the result by the length n.

From a practical perspective it is typically more convenient to pass normalized
messages α̃Σn(σn) so that Pσ α̃Σn(σn) = 1. ¿e �rst message αΣ0(σ0) = pΣ0(σ0) is
a probability distribution and, hence, α̃Σ0(σ0) = αΣ0(σ0). Compute αΣ1(σ1) and let
λ1 = Pσ1 αΣ1(σ1). De�ne α̃Σ1(σ1) = αΣ1(σ1)~λ1. Note that all subsequent messages
are also scaled by this factor.¿erefore, if λn denotes the normalization constant by
which we have to divide at step i so as to normalize the message then α̃Σn(σn) =
αΣn(σn)~(Ln

i=1 λi). It follows that

lim
n�ª

h(Yn1 )~n = − lim
n�ª

log�Q
σn
αΣn(σn)�~n

= − lim
n�ª

log��
n
M
i=1
λi�Q

σn
α̃Σn(σn)�~n = − lim

n�ª
�
n
Q
i=1

log(λi)�~n.

¿e above observation and the derivation contained in Example 5.19 allow us to de-
termine I(Xn1 ;Yn1 ) for the IIC case. For the GEC, where we do not have an analytic
expression of h(Yn1 SXn1 ), we write h(Yn1 SXn1 )~n = h(Yn1 ,Xn1 )~n − h(Xn1 )~n. ¿e
second part is trivial since the inputs are binary, uniform, and iid by assumption,
hence h(Xn1 )~n = 1. For the term h(Yn1 ,Xn1 )~nwe use the same technique as for the
computation of h(Yn1 )~n. Due to the ergodicity assumption − 1

n log pYn
1 ,X

n
1
(yn1 ,xn1 )

converges with probability one to limn�ª h(Yn1 ,Xn1 )~n. Write pYn
1 ,X

n
1
(yn1 ,xn1 ) =

Pσn pΣn,Yn
1 ,X

n
1
(σn, yn1 ,xn1 ) and use the factorization

pΣn,Yn
1 ,X

n
1
(σn, yn1 ,xn1 ) = Q

σn−1
pΣn−1,Σn,Yn

1 ,X
n
1
(σn−1,σn, yn1 ,xn1 )
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= Q
σn−1

pXn,Σn,Yn SΣn−1(xn,σn, yn S σn−1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kernel

ċ

pΣn−1,Yn−1
1 ,Xn−1

1
(σn−1, yn−11 ,xn−11 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
message

.

Inwords, we generate a random instanceXn1 andY
n
1 and run the forward pass on the

FSFG shown in Figure 5.14 assuming that both Yn1 and Xn1 are “frozen.” Taking the
logarithm, multiplying by minus one, and normalizing by 1~n gives us an estimate
of limn�ª h(Yn1 ,Xn1 )~n.

Now that we can compute the information rates, let us consider coding over the
IIC or the GEC. ¿e decoding function of the optimal bitwise decoder is

x̂i = argmaxxi>��1�pXi SYn
1
(xi S yn1)

= argmaxxi>��1�Q
�xi

pXn
1 ,Y

n
1 ,Σ

n
0
(xn1 , yn1 ,σn0 )

= argmaxxi>��1�Q
�xi

pΣ0(σ0)
n
M
j=1
pXj,Yj,Σj SΣj−1(xj, yj,σj S σj−1)1�x>C�.

In words, the FSFG in Figure 5.14 describes also the factorization for the iterative de-
coder if we add to it the factor node describing the de�nition of the code. As always,
this factor graph togetherwith the initialmessages stemming from the channel com-
pletely specify the message-passing rules, except for the message-passing schedule.
Let us agree that we alternate one round of decoding with one round of channel
estimation. No claim as to the optimality of this scheduling rule is made.

It is not hard to see that, as in the case of BMS channels, for a �xed number of it-
erations, the decoding neighborhood is again asymptotically tree-like (this assumes
windowed decoding for the channel estimation part). In the case of the GEC the
channel is also symmetric and we can proceed assuming that the all-one codeword
was transmitted. In the case of the IIC the overall channel is in general not symmet-
ric but we have already seen in Section 5.2 when discussing the Z channel how we
can deal with this situation: symmetrize the channel and analyze the system relative
to the typical codeword type. ¿erefore, in both cases we can employ the technique
of density evolution to determine thresholds and to optimize the ensembles.

Example 5.21 (GEC: State Estimation). For the case of transmission over the
GEC the iterative decoder implicitly estimates the state of the channel. Let us demon-
strate this by means of the following example. We pick a GEC with three states. Let

P =
�
�
�

0.99 0.005 0.02
0.005 0.99 0.02
0.005 0.005 0.96

�
�
�
,
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Figure 5.22: L-densities of density evolution at iteration 1, 2, 4, and 10. ¿e le pic-
tures show the densities of the messages which are passed from the code towards
the part of the FSFG which estimates the channel state. ¿e right hand side shows
the density of the messages which are the estimates of the channel state and which
are passed to the part of the FSFG corresponding to the code.

which has a steady state probability vector of p � (0.4444,0.4444,0.1112). Let the
channel parameters of the BSC in these three states be (є1,є2,є3) = (0.01,0.11,0.5).
¿is corresponds to an average error probability of єavg = P3

i=1 piєi � 0.108889. Us-
ing the methods described above, the maximum rate at which information can be
transmitted reliably over this channel assuming iid inputs is C � 0.583 bits per chan-
nel use. ¿is is markedly higher than 1 − h(єavg) � 0.503444, which is the capacity
of the BSC(єavg), the channel that we experience if we ignore the Markov structure.
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Assume we use the ensemble

LDPC �n, λ(x) = 0.245x + 0.4585x2 + 0.1183x5 + 0.1782x7, ρ(x) = x6� ,

which has a design rate of r � 0.5498. Figure 5.22 shows the evolution of the densi-
ties for this case.¿e pictures on the right correspond to the channel state estimates.
Note that 5 clear peaks emerge a er 10 iterations: at � ln(0.99~0.01) � �4.595,
� ln(0.9~0.1) � �2.197, � ln(0.5~0.5) = 0. ¿ey correspond to the received like-
lihoods in the three possible channel states. ¿e emergence of the peaks indicates
that at this stage the system has identi�ed the channel states with high reliability.n

§5.4. Coding for High Spectral Efficiency
Let us reconsider the additive white Gaussian noise channel, Yt = Xt + Zt, where
�Zt� is an iid sequence of zero-mean Gaussian random variables with variance σ2.
If we limit the input Xt to be an element of ��1�, then the rate is upper bounded
by 1, regardless of the noise variance σ2. Particularly for small values of σ2, higher
rates are achievable by allowing Xt to lie in an extended constellation.

Most commonly such constellations are chosen to be one or two-dimensional.
Some standard two-dimensional constellations are discussed in Problem 5.5. As a
concrete example let us consider the 4-PAM constellation shown in Figure 5.24.¿e
scaling is chosen so that the average signal energy is equal to 1 (assuming a uniform
probability distribution on the points).

Assume that we decided on the signal constellation, call it S . For convenience
we assume that S contains 2k points. It is then natural to label these points by k
bits, call them x = �x[1],� ,x[k]�. We formally specify this labeling by introducing
a one-to-one map, ψ � Fk2 � S , which maps each k-tuple of bits x = �x[1],� ,x[k]�
into a distinct point of the constellation S . We assume a uniform prior on the bits
which induces a uniform prior on the elements of S . ¿ere are 2k! possible such
maps and we will see shortly how our choice a�ects the system performance. Note
that

(5.23) I(X;Y) = I�X[1], . . . ,X[k];Y� =
k
Q
i=1
I�X[i];Y SX[1], . . . ,X[i−1]�,

where the second step is the well-known chain-rule of mutual information (it fol-
lows from (1.44), the chain rule of entropies). It is crucial to notice that the mutual
information I(X;Y) is independent of the map ψ but that the split of the mutual in-
formation into subterms does depend onψ. Note that the i-th termon the right hand
side expresses the mutual information between the i-th bit and the received symbol
Y, given the previous (i − 1) bits. For the 4-PAM example two possible maps are
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Figure 5.24: Two speci�c maps ψ for the 4-PAM constellation.

shown in Figure 5.24. Equation (5.23) can be given an operational meaning which
one can use to design a transmission system. Consider the case k = 2 (which would
apply to 4-PAM). Equation (5.23) then reads

I�X[1],X[2];Y� = I�X[1];Y� + I�X[2];Y SX[1]�.(5.25)

¿e �rst term is themutual information between bit X[1] and the received symbolY
considering channel input X[2] as noise, i.e., as part of the channel. More precisely,
the “channel” seen by bitX[1] (assuming thatX[2] is treated as noise andhas uniform
prior) has transition probability

pY SX[1]�y S x[1]� =
1
2
�pY SX[1] ,X[2]�y S x[1],0� + pY SX[1] ,X[2]�y S x[1],1��.

¿is transition probability depends on the map ψ. ¿e transition probabilities for
the two choices of ψ depicted in Figure 5.24 are shown in Figure 5.26.

−3º
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3º
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5

Figure 5.26: Transition probabilities pY SX[1]�y S x[1]� for σ � 0.342607 as a function
of x[1] = 0~1 (solid/dashed). ¿e two cases correspond to the two maps ψ shown in
Figure 5.24.

¿e second term has a similar interpretation, except that now at the receiver we
have side information X[1], i.e., the term is the mutual information between bit X[2]
and the channel output Y given that X[1] is available at the receiver. If we consider,
e.g., the map shown on the le of Figure 5.24, and if we assume that X[1] = 0 then
the channel “seen” by the second decoder is a binary channel with inputs located at
��3~º5� and additive Gaussian noise with variance σ2. Figure 5.27 shows the cor-
responding receiver diagram. Because the decoding process is done in (two) levels,
the scheme is called amultilevel decoding scheme.
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Y Decoder 1

Decoder 2

X̂[1]

X̂[1]

X̂[2]

Figure 5.27: Multilevel decoding scheme.¿e two decoding parts correspond to the
two parts of the (5.25).

Example 5.28 (Multilevel Scheme for 4-PAM). Consider themultilevel scheme
for 4-PAM and the twomaps shown in Figure 5.24.We know that both maps lead to
the same overall capacity. For σ � 0.342607 this sum capacity is 3~2 bits per channel
use. But this sum rate is split in di�erent ways between the two subchannels. We have

I�X[1];Y� + I�X[2];Y SX[1]� = 0.666549 + 0.833455 = 3~2, le map,

I�X[1];Y� + I�X[2];Y SX[1]� = 0.518198 + 0.981806 = 3~2, right map.

n

¿e above interpretation gives rise to the following general multilevel scheme.
For a given constellation of size 2k, choose a map ψ. ¿is gives rise to k chan-
nels, where the i-th channel has capacity I�X[i];Y SX[1], . . . ,X[i−1]�. Note that each
channel is binary (albeit not necessarily symmetric) and, therefore, on each level we
can employ the coding schemes discussed in this book.

One point in the above multilevel scheme that may raise concerns is the de-
pendence of the decision of bit X[i] on the previous decisions. ¿erefore, once an
error is made at level i it is likely that this error will adversely a�ect all following
levels. ¿is is called error propagation. In order to limit error propagation, one has
to ensure that levels are decoded highly reliably. ¿is usually means large latency.

¿is issue can be circumvented at a small cost in transmission rate by using a bit-
interleaved coded modulation (BICM) scheme. ¿e basic idea of BICM is straight-
forward. We have

I(X;Y) = I�X[1], . . . ,X[k];Y� =
k
Q
i=1
I�X[i];Y SX[1], . . . ,X[i−1]� C

k
Q
i=1
I�X[i];Y�.

¿e interpretation of the above inequality is immediate. Rather than �rst decoding
bit X[1] and then using this information as side information for decoding bit X[2]
and so on, decode all bits in parallel. ¿is is shown in Figure 5.29. ¿is obviously
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Figure 5.29: BICM decoding scheme. ¿e two decoding parts correspond to
I�X[1];Y� and I�X[2];Y�, respectively.

avoids the latency and error propagation problems. On the other hand, each term
I�X[i];Y� is now, in general, strictly smaller than the corresponding term

I�X[i];Y SX[1], . . . ,X[i−1]�,
i.e., the overall transmission rate achievable by BICM is, in general, strictly less than
the optimal multilevel scheme. How much is lost crucially depends on the map-
ping ψ. ¿e optimal BICMmapping ψ is the one which maximizesPk

i=1 I�X[i];Y�.
As a rule of thumb, the so-called Gray mapping is typically a good choice. A Gray
mapping of a constellation is a binary labeling so that the labels of any two nearest
neighbors (in the Euclidean sense) di�er in exactly one position. E.g., if we look back
at Figure 5.24 we see that the le mapping is a Graymapping but that the right one is
not. It turns out that for those constellationsmost frequently used, surprisingly little
is lost by employing BICM as opposed to the more complicated multilevel scheme.

Example 5.30 (BICM for 4-PAM). Consider BICM for 4-PAM and the two map-
pings ψ shown in Figure 5.24. If we choose again σ � 0.342607 then

I�X[1];Y� = 0.666549, I(X[2];Y) = 0.832902, le map,

I�X[1];Y� = 0.518198, I(X[2];Y) = 0.832902, right map.

It follows that for the map on the le the achievable sum rate is 1.49945, which is
only negligibly less than the full sum rate of 1.5. On the other hand, for the map on
the right the sum rate is 1.3511, which is noticeably smaller. n

§5.5. Multiple-Access Channel
¿e factor graph approach can deal with multiple-user scenarios with equal ease as
the single user case. Let us consider the binary-input additive white-Gaussian noise
multiple-access (BAWGNMA) channel. A “noiseless” multiple-access channel is the
topic of Problem 5.6.
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Let X[1]t and X[2]t denote the input of user 1 and 2 at time t, and let Yt denote the
corresponding output.We assume that X[1]t and X[2]t are elements of ��1�. We have
Yt = X

[1]
t + X

[2]
t + Zt, where �Zt� denotes a sequence of iid zero-mean Gaussian

random variables with variance σ2. ¿is channel model is shown in Figure 5.31. We

X[1]t

X[2]t

Yt

Zt � N (0,σ2)
Figure 5.31: BAWGNMA channel with two users.

assume that the two users can not coordinate their transmissions. Mathematically
we model this by assuming that the input distribution has product form

pX[1] ,X[2]�x[1],x[2]� = pX[1]�x[1]�pX[2]�x[2]�.
Let r[1] and r[2] denote the transmission rate of user 1 and 2, respectively. It is intu-
itive, and in fact correct, that any achievable rate pair �r[1], r[2]� is upper bounded
by

r[1] B I�X[1];Y SX[2]�,
r[2] B I�X[2];Y SX[1]�,

r[1] + r[2] B I�X[1],X[2];Y�.
¿e�rst two inequalities state an upper bound on the individual rates assuming that
the signal from the other user is known at the receiver. ¿e third inequality states
a bound on the sum rate of both users. It is more surprising, and a cornerstone of
information theory, that all rate tuples within this pentagon are indeed achievable.
Figure 5.32 shows this capacity region for the particular choice σ � 0.778.

Consider rate tuples �r[1], r[2]�which havemaximal sum.¿ismeans that r[1]+
r[2] = I�X[1],X[2];Y�. ¿e set of such rate tuples is called the dominant face and is
typically denoted by D (see Figure 5.32). Without loss of generality we can restrict
our attention to D. ¿is is true, since all other achievable rate tuples are dominated
(component-wise) by at least one of those inD. Consider a “corner” point ofD. One
such corner point corresponds to the rate tuple

�r[1], r[2]� = �I�X[1];Y�, I�X[2];Y SX[1]��,
and the second one has the same form with the roles of the two users reversed.¿is
is essentially the situation which we encountered in Section 5.4 when discussing the
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r[1]

r[2]

1~2

1~2

D

Figure 5.32: Capacity region for σ � 0.778. ¿e dominant face D (thick diagonal
line) is the set of rate tuples of the capacity region of maximal sum rate.

multilevel coding scheme.More precisely, we see that this rate tuple can be achieved
by two binary single-user codes.¿e �rst is operating at rate I�X[1];Y� over a chan-
nel with transition probability

pY SX[1]�y S x[1]� =
1

2
º
2πσ2

�e− (y−x
[1]
−1)2

2σ2 + e−
(y−x[1]+1)2

2σ2 �.

¿e second user is transmitting at rate I�X[2];Y SX[1]� over the channel with tran-
sition probability

pY SX[1] ,X[2]�y S x[1],x[2]� =
1º
2πσ2

e−
�y−x[1]−x[2]�

2

2σ2 ,

where x[1] is assumed to be known.
How about general points in D? One technique is to use time-sharing between

the two corner points with an appropriate time-sharing constant. ¿is achieves any
point in D with essentially the same complexity as the two corner points. A slight
disadvantage is that this scheme requires at least two codes as well as coordination
between the two users in terms of synchronization.

Let us therefore look at an alternative approach. Factor graphs to the rescue.
Assuming equal priors on the inputs, the optimal decoding rule for bit x[1]i reads

x̂[1]i (y) = argmaxx[1]i >��1�
pX[1]i SY

�x[1]i S y�

= argmaxx[1]i >��1� Q
�x[1]i

�M
j
pYj SX[1]j ,X[2]j

�yj S x[1]j ,x[2]j ��1�x[1]>C[1]�1�x[2]>C[2]�.
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Figure 5.33: FSFG corresponding to decoding on the BAWGNMAC.

¿e corresponding FSFG is shown in Figure 5.33. In the above derivation and in
Figure 5.33wehave assumed that the transmissions of the twousers are block aligned,
i.e., the two users employ the same blocklength and the boundaries of the codewords
are aligned. In fact this is not necessary. Nothing essential changes if we only have bit
alignment, i.e., the codewordsmight be of di�erent lengths or simply are not aligned
but there is alignment on a bit level. For the discussion below we will assume that
the decoder interleaves one decoding round for user one with one decoding round
of user two. No claim with regards to the optimality of such a scheme is made.

Under the above stated conditions, it is quickly veri�ed that the computation
graph for the decoding of a speci�c bit is again asymptotically tree like if we consider
a �xed number of iterations and if we let the blocklength grow to in�nity. We can
therefore employ the density evolution method. Further, by using the symmetries
in the problem, we can assume that one user transmits the all-one codeword and
that the second user employs a codeword of type one-half. As for the Z channel
in Section 5.2, we can “symmetrize” the remaining problem and reduce the density
evolution analysis to a single density that we need to track.

Example 5.34 (Optimized Degree Distribution for Bit-Aligned Scenario).
Assumewewant to achieve a sum rate of one bit per channel use. One can check that
the corresponding threshold as given by the Shannon capacity, call it σSha, is equal to
σSha � 0.7945.Wewant to achieve the equal rate point, i.e, we are looking for a pair of
ensembles, each of rate one-half, with an iterative decoding threshold σBP as close
as possible to σSha. To simplify matters, assume that both users employ identical
ensembles LDPC (n, λ, ρ). Finally, we assume bit alignment and assume that the
matching of the variable nodes of the two users at the receiver is done randomly.
Consider the degree distribution pair

λ(x) = 0.315434x + 0.242272x2 + 0.0988336x16 + 0.05x17 + 0.293462x99,

Preliminary version – October 18, 2007



notes 313

ρ(x) = x7.

¿e density evolution analysis shows that σBP(λ, ρ) � 0.778 which is only 0.18dB
away from capacity. Figure 5.32 shows the achievable rate pair (1~2,1~2) and the
capacity region for σ � 0.778. n

Consider the number of minimal codewords in the product C[1] � C[2] and let
P̂�x[1],x[2]� be its asymptotic generating function. Since the two codes are indepen-
dent and since we are looking at minimal codewords, it follows that P̂�x[1],x[2]� is
the sum of the individual generating functions. More precisely, if the degree distri-
bution pair associated to C[j] is �λ[j], ρ[j]� let

µ[j] =�dλ
[j](x)
dx

U
x=0
��dρ

[j](x)
dx

U
x=1
�.

¿en

P̂�x[1],x[2]� = −1
2

2
Q
j=1

ln�1 − µ[j]x[j]�.

¿e stability condition follows from this in the usual manner.

Lemma 5.35 (Stability Condition for Multiple-Access Channel). Consider
transmission over the two-user BAWGNMAC(σ). Assume user j, j= 1,2, uses the
ensemble LDPC �n, λ[j], ρ[j]� and that a BP decoder is used. Let B(aBAWGNC(σ))
denote the Bhattacharyya constant associated to the BAWGNC(σ) as computed in
Example 4.26. ¿en the desired �xed-point corresponding to correct decoding is
stable if and only if for each j, j= 1,2,

(5.36) µ[j]B(aBAWGNC(σ)) < 1.

In words, the stability condition for the multiple-access case reduces to the two
single-user stability conditions.

Notes
¿e material of Section 5.1 concerning fading channels is taken from Hou, Siegel,
and Milstein [41]. ¿e exact density for the USI case was worked out by Flegbo and
Méasson [27].

¿e Z channel discussed in Section 5.2 is probably the simplest non-trivial
asymmetric channel. It was shown by Majani and Rumsey [51] that for the class
of binary-input discrete memoryless channels at most 1 − 1

2e ln(2) � 5.8 percent
of capacity is lost if we use the uniform input distribution instead of the optimal
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input distribution. ¿is result was later strengthened by Shulman and Feder [67],
who showed that the Z channel is extremal in this respect, see also [48]. Iterative
decoding for the Z channel was �rst discussed by McEliece [53], who pointed out
the fortunate consequence of the insensitivity of the capacity with respect to the in-
put distribution for the setting of iterative decoding. ¿e approach we presented,
reducing the analysis to the symmetric case by regarding density evolution with re-
spect to the dominant codeword type, it is not the only possible. An alternative path,
which considers the average of the density evolution analysis with respect to each
codeword, was put forward by Wang, Kulkarni, and Poor in [73]. Both approaches
lead to the same result. ¿e stability condition for the asymmetric case was �rst
considered by Bennatan and Burshtein [11].

¿e �rst papers regarding iterative decoding over channels with memory (see
Section 5.3) are from Douillard, Picart, Jézéquel, Didier, Berrou, and Glavieux [23],
Hagenauer, Bauch, and Khorram [38, 8], and from Garcia-Frias and Villasenor [28,
31, 29, 30, 32]. Kschischang andEckford considered iterative decoding for theGilbert-
Elliott channel [47, 25].¿e code presented in Example 5.21 is taken from their work
and the densities shown in Figure 5.22were computed byNeuberg andMéasson [55].
A partial ordering (in the sense of thresholds) of Gilbert-Elliott channels under iter-
ative decoding is discussed by Eckford, Kschischang, and Pasupathy [26]. Iterative
decoding for the IIC channel was investigated by Kavc̆ić, Ma, and Mitzenmacher
[46] as well as Doan and Narayanan [22]. ¿e approach of computing the informa-
tion rate of a channel with memory by means of a factor graph was proposed inde-
pendently and more or less simultaneously by Arnold and Loeliger [5, 4], Sharma
and Singh [66], P�ster, Soriaga, and Siegel [58, 57], as well as Kavc̆ić [45] (see also
the work by Holliday, Goldsmith, and Glynn [40].) Extensions of this method are
discussed by Arnold, Loeliger, and Vontobel [6], Zhang, Duman, and Kurtas [76],
and Dauwels and Loeliger [21].

In a landmark paper, Ungerboeck showed how one could construct bandwidth
e�cient coding andmodulation schemes, called trellis-codedmodulation, built from
binary (convolutional) codes and suitable signal constellations and maps [68, 69].
¿e �rst investigation into high spectral e�ciency coding using iterative techniques
(see Section 5.4) was performed by Le Go� , Glavieux, and Berrou [35] exactly one
year a er the publication of the turbo coding concept.¿is was soon followed by the
work of Benedetto, Divsalar, and Montorsi [9], Robertson and Woerz [61, 62, 63],
and Blackert and Wilson [14], as well as Benedetto, Divsalar, Montorsi, and Pollara
[10]. An overview can be found in Robertson [60].

At the same time asUngerboeck’s set partitioning scheme appeared the paper by
Imai andHirakawa [43].¿ey proposed the so-calledmulti-level scheme.¿emulti-
level scheme in principle can achieve capacity (see [70]) but it needs as component
codes powerful binary codes.¿is is the reason why until the advent of turbo codes,
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multi-level coding played a less prominent role. It was suggested by Wachsmann
andHuber to build bandwidth e�cient coding schemes using themultilevel scheme
[71, 70]. With the advent of powerful binary codes this was now possible.

As we have discussed, bit-interleaved coded modulation is closely related to
multi-level schemes. It was introduced by Zehavi [75] as a pragmatic and �exible
approach. A good summary can be found in the book by Jamali and Le-Ngoc [44].
A systematic study of bit-interleaved coded modulation schemes can be found in
the paper of Caire, Taricco, and Biglieri [18].

Consider now themultiple-access channel discussed in Section 5.5.¿e capacity
region of the multiple-access channel was determined by Ahlswede [1], Liao [49],
Bergmans and Cover [12], as well as Wyner [74]. An alternative to the time-sharing
technique as well as the joint-iterative method discussed in the section is the rate-
splitting method developed by Rimoldi and Urbanke [59] (for the Gaussian case)
andGrant, Rimoldi, Urbanke, andWhiting [37] (for discretememoryless channels).
¿e�rst papers on the use of joint iterative techniques applied to theGaussianmulti-
ple access channel are the ones by Ibrahim and Kaleh [42], as well as by Chayat and
Shamai [19]. Palanki, Khandekar, and McEliece [56] considered the binary adder
multiple-access channel discussed in Problem 5.6. An optimization of degree distri-
butions for multiple-access channels was performed by Amraoui, Dusad, and Ur-
banke [2]. ¿e same problem was also discussed by Roumy, Declercq, and Fabre
[64]. Coding for theMIMObroadcast channel was considered byAmraoui, Kramer,
and Shamai [3]. LDPC codes for the fading Gaussian broadcast channels were stud-
ied by Berlin and Tuninetti [13].

¿e list of problems which are amenable to the factor graph approach is much
larger than what we could present in the limited space. We mention just a few fur-
ther applications. ¿e source coding problem for memoryless sources using itera-
tive schemes was addressed by Garcia-Frias and Y. Zhao [34]. It was then shown by
Caire, Shamai, and Verdú [17, 16] how to compress stationary ergodic sources with
memory. Further related references are the papers byHagenauer, Barros, and Schae-
fer [39] as well as Dütsch and Hagenauer [24]. Iterative solutions to the Slepian-
Wolf coding problem of correlated sources were proposed by Bajcsy andMitran [7],
Garcia-Frias and Zhao [33], and Liveris, Xiong, and Georghiades [50], Murayama
[54], as well as Schonberg, Ramchandran, and Pradhan [65]. ¿e K-SAT problem
was investigated by Braunstein, Mézard, and Zecchina [15] through the introduc-
tion of the so-called survey propagation algorithm. It was then shown by Maneva,
Mossel, andWainwright [52] and also Braunstein and Zecchina [15] that the survey
propagation algorithm can be reformulated as a BP algorithm. Finally, the survey
propagation algorithm was applied by Ciliberti, Mézard, and Zecchina [20] as well
as Maneva and Wainwright [72] to the source coding problem.
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Problems
5.1 (Z-Channel: Optimal Input Distribution – Golay [36]). Consider the Z
channel discussed in Section 5.2. Show that the choice of α that maximizes the in-
formation rate given in (5.9) is the one stated in (5.10).

5.2 (Z-Channel: Extremal Property – Majani and Rumsey [51]). Show that
the uniform input distribution achieves at least a fraction 1

2e ln(2) � 0.942 of the
channel capacity of the Z channel for all channel parameters є.

Hint: Show that Iα~(α ln 1
α) is a monotone increasing function in α for α >

[0,1]. Now use the fact that for α > [0,1], α ln 1
α B

1
e
.

Note: Without proof we mention that the Z channel is extremal in this sense.
¿is means that for any binary-input memoryless channel the fraction of capacity
that can be achieved using the uniform input distribution is at least 1

2e ln(2).
5.3 (Symmetryof “SymmetrizedDensity”). Consider a binary-inputmemoryless
channel (not necessarily symmetric) and let a+BM(y) and a−BM(y) denote the corre-
sponding L-densities assuming that X = �1, respectively. De�ne the “symmetrized”
density

a(y) = (a+BM(y) + a−BM(−y))~2.

Show that this density is symmetric.

5.4 (Z-Channel: Bhattacharyya Constant and Stability Condition). Us-
ing the symmetrized density, compute the Bhattacharyya constant for the ZC(є)
according to (4.63). Show that the resulting stability condition reads λ′(0)ρ′(1) <
1~ºє.
5.5 (Two-DimensionalModulation Schemes). In the two-dimensional case, Xt
is assumed to be an element of R2 with average energy equal to 2E and Zt is a two-
dimensional zero-mean Gaussian with independent components, each of variance
σ2.¿is normalization ensures that the energy and the noise variance per dimension
are the same as in the one-dimensional case. Let Xt take values from the signal set
S = �s1, . . . , s2k�, si > R2, where for convenience we have assumed that the number
of signal points is a power of two. Figure 5.37 shows several standard constellations:
2-PAM, which we discussed beforehand, 4-QAM, and 16-QAM, where the signal
points are arranged on a square grid, and 8-PSK, in which the signals are equally
spaced along a circle. In each case a uniform prior on the signals is assumed.

Show that the capacity for a given constellation S can be written as

CS = I(X;Y) = h(Y) − h(Y SX) = h(Y) − h(Z)
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8-PSK
S �= �º2E(cos(iπ~4), sin(iπ~4))�

16-QAM: S �= �
»
E~5(i, j)�

i, j> �−3,−1,1,3�

2-PAM: S �= ��ºE� 4-QAM: S �= �(�ºE,(�ºE)�

Figure 5.37: Four standard signal constellations: 2-PAM (le -top), 4-QAM (right-
top), 8-PSK (le -bottom), and 16-QAM (right-bottom). In all cases it is assumed
that there is a uniform prior on S . ¿e signal constellations are scaled so that the
average energy per dimension is E.

= −S pY(y) log pY(y)dy− log(2πeσ2),

where
pY(y) = 1

2πσ2SS SQs>S
e−

Yy−sY2
2σ2 .

Plot the capacities of the four constellations shown in Figure 5.37 and compare them
with the Shannon capacity (using Gaussian inputs).

5.6 (Analysis of Noiseless Multiple Access Binary-Input Adder Channel –
Palanki, Khandekar, and McEliece [56]). Consider the following noiseless
two-user multiple access channel shown in Figure 5.38. We have Yt = X

[1]
t + X

[2]
t ,

where X[j]t > �0,1�, j= 1,2, and Yt > �0,1,2�.
X[1]t

X[2]t

Yt

Figure 5.38: Multiple access binary adder channel.
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Assume that both users encode their data using regular LDPC codes from the
same ensemble LDPC �n, λ(x) = xl−1, ρ(x) = xr−1�.

Start by writing down the distribution of the received values. Next, draw the fac-
tor graph that corresponds to the optimal bit decoding andwrite down themessage-
passing rules. Show that the messages take values in a discrete set. What is this set
assuming that messages are represented as log-likelihood ratios?

Consider the following scheduling. Initially, the messages received from the
channel are sent to the variable nodes of both users. One decoding iteration is per-
formed in each part of the factor graph. ¿en the variable nodes of the two users
exchange messages. ¿e decoding continues in this way, performing in parallel the
operations of both users. We call this the symmetric schedule. Show that for a �xed
number of iterations the computation graph is indeed a tree with probability con-
verging to one as the blocklength tends to in�nity. Assuming symmetric scheduling,
argue that the average error probability PBP

ÑTℓ can be expressed in the form of a one
dimensional recursion. Write down this recursion.

What is the degree distribution pair (l,r) corresponding to the highest rate
that you can �nd such that, for in�nite length, the average error probability a er
decoding on this factor graph tends to zero.

Assume that for any erasure probability, we can �nd degree distribution pairs
that achieve capacity on a BEC. Devise a method that enables the construction of
codes that are suited for our binary input adder channel from one of these capacity
achieving codes.

What is the capacity region of this multiple access channel?
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Chapter 6

T U R B O C O D E S

Turbo codes played a decisive role in the development of iterative decoding. ¿ere-
fore, they deserve special attention. ¿ere are many variations on the theme. We
start with a discussion of convolutional codes, the building blocks of turbo codes.
We then introduce the twomain �avors of turbo codes: parallel and serially concate-
nated convolutional codes with systematic recursive rate one-half convolutional en-
coders as component codes. We formulate most theorems only for the parallel case
and leave the extensions to the serial case as problems. In Section 6.10 we brie�y
mention some of the many generalizations.

§6.1. Convolutional Codes

¿e encoding function of block codes maps blocks of data into (longer) blocks of
data. Convolutional codes, on the other hand, are codes in which the encoder maps
(in principle continuous and in�nite) streams of data into (more) streams of data.
¿e mapping (encoding) is realized by sending the input streams over linear �lters.
¿e name convolutional code/encoder stems from the fact that this �ltering opera-
tion can be expressed as a convolution.

Depending on the nature of the �lter, we distinguish between di�erent types of
convolutional encoders. ¿e most common case is when all operations are over F2.
We then talk about binary convolutional encoders.¿e �lter can be feed-forward or
recursive.We then talk about non-recursive or recursive encoders.¿e �lter can have
a single or multiple input stream(s). Finally, if the input streams appear unaltered
among the output streams we talk about systematic encoders.

¿emost important convolutional encoders in the context of iterative decoding
are binary systematic recursive convolutional encoders since they are the de�ning
components for standard turbo codes. We discuss their structure and the associated
decoding algorithm in detail.

A binary systematic recursive convolutional encoder of memory m and rate one-
half is de�ned in terms of a binary rational function G(D) = p(D)~q(D) of mem-
ory m, m = max�deg(p),deg(q)�. In order for this rational function to represent
a well-de�ned �lter we require that q0 = 1 (see the discussion starting on page
511 in Appendix D). Note that we allow �lters also with deg(p) A deg(q) and/or
gcd(p,q) x 1. It is convenient for future discussions to introduce the following
shorthand to denote binary rational functions: with some abuse of notation, we
characterize the polynomial p(D) = Pi piDi with binary coe�cients pi by pwhich

325
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is equal to Pi pi2i in octal notation. For example, the octal number 21 is equal in
binary notation to 010001. In both cases the least signi�cant digit is on the right
and each octal digit corresponds to a binary triple: e.g., 2 corresponds to 010 and 1
corresponds to 001. ¿e polynomial with binary coe�cients corresponding to 21 is
therefore 1 + D4. In this sense we write G = p~q, where p and q are the octal num-
bers which characterize p(D) and q(D), respectively. To give somemore examples,
G = 21~37 corresponds to G(D) = (1 +D4)~(1 +D+D2

+D3
+D4) and G = 1~13

corresponds to G(D) = 1~(1 + D + D3). Figure 6.1 depicts the particular example
G = 7~5.

xs xs

xp1 D DD D2

1 D2

Figure 6.1: Binary systematic recursive convolutional encoder ofmemorym = 2 and
rate one-half de�ned by G = 7~5. ¿e two square boxes are delay elements. ¿e 7
corresponds to 1+D+D2.¿ese are the coe�cients of the “forward” branch (the top
branch of the �lter) with 1 corresponding to the le -most coe�cient. In a similar
manner, 5 corresponds to 1+D2, which represents the coe�cients of the “feedback”
branch. Again, the le -most coe�cient corresponds to 1.

Although the “natural” setting is to consider encoders that map semi-in�nite
streams into semi-in�nite streams, for our application it is more convenient to con-
sider “terminated” schemes that have a �xed blocklength. For a given rational func-
tionG and a given length n, n > N, we de�ne a codeC(G,n) as follows: let the input
xs (systematic bits) be

xs = �xs1,� ,xsn,0,� ,0´¹¹¹¹¹¸¹¹¹¹¹¹¶
m times

�,

where the �rst n components are arbitrary elements ofF2 and the lastm components
are zero. Associated with each input xs is an output xp = �xp1 ,� ,xpn+m� (parity
bits). It is the result of passing xs through a linear �lter. For the �rst n steps the �lter
is G(D), whereas for the last m steps the �lter is Ḡ(D) = p(D), i.e., we remove
the feedback. ¿is is not necessarily the best termination scheme for a particular
situation, but it is universally applicable and simpli�es our discussion. ¿e Notes
at the end of this chapter contain a summary of the many alternative termination
schemes proposed in the literature. As discussed in Problem 6.18, it is typically quite
straightforward to adapt the calculations of the weight distribution given below to
alternative termination schemes.
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A convenient way of describing this map is in terms of a so-called state-space
model: let xsi denote the i-th component of the input, where i = 1,� ,n+m. Further,
let σi denote the state of the system at time i, i = 0,� ,n + m. We de�ne the state
σi−1 to be equal to the content of the shi register just before the i-th bit xsi has
been input to the system and σi to be the resulting content of the shi register. We
therefore have the sequence: (σi−1,xsi) ( (σi,xpi ). ¿e state is a binary m-tuple.
By convention, the initial state is the all-zero state, i.e., we have σ0 = (0,� ,0). For
1 B i B n +m, the evolution of the system is described by

σi = σi−1A+ xsiC, xpi = σi−1B
T
+ xsip0,(6.2)

where A is a m � m binary matrix and B and C are 1 � m binary matrices. More
speci�cally, in terms of p(D) and q(D) these matrices are

A=

�
������
�

q1 1 0 � 0
q2 0 1 � 0
� � � � �

qm−1 0 0 � 1
qm 0 0 � 0

�
������
�

, BT=

�
������
�

p1 + p0q1
p2 + p0q2
�

pm−1 + p0qm−1
pm + p0qm

�
������
�

, CT =

�
������
�

1
0
�

0
0

�
������
�

,

where for the lastm steps we have q(D) = 1. By removing the feedback in the lastm
stepswe guarantee that the �nal state is again the all-zero state, i.e., σn+m = (0,� ,0).

Let the encoding map be denoted by xp = γ(xs). For simplicity we suppress the
dependency of γ on G and n in our notation. In terms of γ, the code C(G,n) is
de�ned as

C(G,n) = ��xs,γ�xs�� � xs = �xs1,� ,xsn,0,� ,0´¹¹¹¹¹¸¹¹¹¹¹¹¶
m times

�,xsi > F2�.

Because of them appended zeros the rate is slightly less than one-half but the di�er-
ence is of order 1~n and we ignore this issue in the following. It is important to note
that, as in the case of block codes, there are many di�erent encoders which generate
the same code. For iterative decoding systems, the choice of encoder is typically at
least as important as the choice of code.

Example 6.3 (Encoding and State Sequence for G = 7~5). Consider the en-
coder depicted in Figure 6.1 where G = 7~5 and n = 5. We have m = max�deg(1 +
D+D2),deg(1+D2)� = 2. Table 6.4 lists the state sequence σ as well as the output
xp associated with the input xs = (xs1,xs2,xs3,xs4,xs5,xs6,xs7) = (1,0,1,1,0,0,0). n
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i xsi σi xpi i xsi σi xpi
0 (00) 4 1 (10) 1
1 1 (10) 1 5 0 (01) 1
2 0 (01) 1 6 0 (00) 1
3 1 (00) 1 7 0 (00) 0

Table 6.4: State sequence σ as well as the output xp associated with the input xs =
(xs1,xs2,xs3,xs4,xs5,xs6,xs7) = (1,0,1,1,0,0,0) for the code C(G = 7~5,n = 5).

Assume that a codeword ofC is transmitted over a BMS channel with transition
probability p(y S x). In order to avoid having to switch notation frequently let us re-
fer in this chapter to the logical values of the input, i.e., we assume that x take values
in �0,1� (rather than the usual ��1�, which corresponds to the physical values the
input takes on). Let �Ys,Yp�, taking values �ys, yp�, be the observation at the output
of the channel assuming �Xs,Xp�was transmitted.We are interested in the optimal
decoder. We start with the bitwise MAP decoder. We denote its decoding function
by x̂si = x̂

s
i�ys, yp�:

x̂si = argmaxxsi>�0,1�p�x
s
i S ys, yp�

= argmaxxsi>�0,1�Q
�xsi

p�xs,xp,σ S ys, yp�

= argmaxxsi>�0,1�Q
�xsi

p�ys, yp S xs,xp,σ�p�xs,xp,σ�

= argmaxxsi>�0,1�Q
�xsi

p(σ0)
n+m
M
j=1

p�ysj S xsj�p�ypj S xpj�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

channel

p�xsj�
²
prior

p�xpj ,σj S xsj,σj−1�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
allowed transitions

.

Due to our convention on the initial state, p(σ0) is a zero-one function: it is 1 for
the all-zero state, and zero otherwise. In the above derivation we encountered an
important new ingredient in �nding e�cient representations. ¿e crucial innova-
tion is to introduce the state sequence σ, even though this state sequence is “hidden”
and cannot be observed. Figure 6.5 shows the corresponding FSFG. Note that there
is a factor node pΣ0 at the bottom of the �gure that enforces the constraint that all
paths start in the zero state. No such node is needed at the top of the �gure: the
constraint that all paths end in the zero straight is implicitly contained in the fac-
tor nodes pXp

i ,Σi SXs
i ,Σi−1

for the last m steps. ¿is FSFG is a tree and therefore the
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p(σ0)
Σ0

Σ1

Σ2

Σn+m−1

Σn+m

Xs
1

Xs
2

Xs
n+m = 0

Xp
1

Xp
2

Xp
n+m

p�xs1�p�ys1 S xs1�

p�xs2�p�ys2 S xs2�

p�xsn+m�p�ysn+m S xsn+m�

p�yp1 S xp
1�

p�yp2 S xp
2�

p�ypn+m S xp
n+m�

p�x
p
1
,σ1 S x

s
1,σ0
�

p�x
p
2
,σ2 S x

s
2,σ1
�

p�x
p
n+m

,σn+m
S xsn+m,

σn+m−
1�

Figure 6.5: FSFG for the MAP decoding of C(G,n).

message-passing algorithm is exact. In the conventional coding literature the asso-
ciated message-passing algorithm applied to the decoding of convolutional codes
is known as the BCJR algorithm. ¿e graph is essentially a line. ¿erefore, for the
message-passing algorithm there are essentially two �ows of information. In our
representation this is the �ow which starts at the bottom and goes towards the top
and the reverse �ow, starting at the top and eventually reaching the bottom. ¿ese
two �ows of messages correspond to what in the standard literature are called the
α-recursion and β-recursion, respectively. Finally, there is the decision step. It is usu-
ally called the γ-step. In principle we could at this point simply refer to the message-
passing rules summarized in Figure 2.12. But since the BCJR algorithm is the core
ingredient that makes turbo-codes perform well, it is worth discussing this special
case in some more detail.

Consider one section of the factor graph. ¿is section consists of two con-
secutive states, call them σi−1 and σi, the two associated variables xsi and x

p
i , and

three factor nodes: two of these factor nodes correspond to p�xsi�p�ysi S xsi� and
p�ypi S xpi �, respectively.¿ey describe the e�ect of the channel as well as the prior on
xsi .¿e third factor node is associatedwith p�xpi ,σi S xsi ,σi−1�.¿is is a �0,1�-valued
function: given that the encoder is in state σi−1 and that the input to the encoder is
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(00)

(10)

(01)

(11)

(00)

(10)

(01)

(11)
xsix

p
i

01

00

10

11

00

01

10

11

Σi−1 Σi

Figure 6.6: Trellis section for the caseG = 7~5. ¿ere are four states. A dashed/solid
line indicates that xsi = 0~1 and thin/thick lines indicate that xpi = 0~1.

xsi , the function describes which is the next state σi and what is the corresponding
output bit xpi . A useful graphical way to describe this function is in form of a trel-
lis, a directed graph, whose nodes correspond to the states and whose labeled edges
indicate allowed transitions. ¿e labels indicate the corresponding values of xsi and
xpi , respectively. Figure 6.6 shows one section of this trellis for the case G = 7~5.
Since for this case m = 2, there are four states. From this �gure we see, e.g., that
there is a transition from state (10) to state (11). ¿is transition has an associated
value of the systematic bit of 1 and the parity bit output during this transition has
the value 0. In principle this graph is directed. ¿e natural evolution is from le to
right corresponding to the encoding operation. As we will soon see, the decoding
also requires us to pass this graph from right to le . It is common however not to
draw any arrows.

We start with the α-recursion corresponding to the �ow of messages from bot-
tom to top in Figure 6.5. Consider the message sent along the edge representing
Σi. Let us call this message αΣi(σi). By the message-passing rules (see (2.21)) this
message is equal to

Q
xsi ,x

p
i ,σi−1

p�xpi ,σi S xsi ,σi−1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kernel

p�xsi�p�ysi S xsi�p�ypi S xpi �αΣi−1(σi−1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
product of incoming messages

.

We claim that αΣi(σi) = p�σi, ys1,� , ysi , y
p
1 ,� , ypi �. ¿is is true for αΣ0(σ0), since

the emitted message at a leaf node is equal to the function itself, i.e., αΣ0(σ0) =
pΣ0(σ0). To prove the claim for i A 0, use induction and write

p�σi, ys1,� , ysi , y
p
1 ,� , ypi �

= Q
xsi ,x

p
i ,σi−1

p�σi−1, ys1,� , ysi−1, y
p
1 ,� , ypi−1,x

s
i ,x

p
i , y

s
i , y

p
i ,σi�
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= Q
xsi ,x

p
i ,σi−1

p�σi−1, ys1,� , ysi−1, y
p
1 ,� , ypi−1�p�xsi�

p�xpi ,σi S xsi ,σi−1�p�ysi S xsi�p�ypi S xpi �

= Q
xsi ,x

p
i ,σi−1

p�xpi ,σi S xsi ,σi−1�p�xsi�p�ysi S xsi�p�ypi S xpi �αΣi−1(σi−1),

where in the last line we have used the induction hypothesis. In other words, the
message along Σi is proportional to the probability that Σi = σi, conditioned on the
the observations y1,� , yi.

So far we have considered the computation from the point of view of the FSFG.
Alternatively, we can accomplish this recursive computation on the trellis. We ini-
tialize the boundary values to αΣ0(σ0) = 1�σ0=0�, which encodes the constraint that
all paths must start in the all-zero state. Further, we associate with each edge in the
i-th trellis section the weight p�xsi�p�ysi S xsi�p�ypi S xpi �: note that for a given edge,
xsi , x

p
i , y

s
i , and y

s
i are known quantities so that the above label is well de�ned. We

can compute the values αΣi(σi) recursively, starting with i = 1, based on the val-
ues αΣi−1(σi−1), which we assume have been stored in the nodes corresponding to
Σi−1 = σi−1 (recall that the values αΣ0(σ0) are already determined via the boundary
condition.) To compute αΣi(σi), run over all incoming edges of the state Σi = σi,
and compute the sumof the product of the corresponding αΣi−1(σi−1) times the edge
weights. Store this value in the node corresponding to Σi = σi.¿is is the traditional
way of phrasing the BCJR algorithm.

Let us switch back to the FSFG point of view and interpret the �ow of messages
starting at Σn+m and propagating down to Σ0. Let us call the correspondingmessage
βΣi(σi). If we apply the message-passing rules to βΣm+n−1(σm+n−1) we get

βΣm+n−1(σm+n−1) = Q
xsm+n−1,x

p
m+n−1,σm+n−1

p�xpm+n−1,σm+n−1 S xsm+n−1,σm+n−2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kernel

p�xsm+n−1�p�ysm+n−1 S xsm+n−1�p�ypm+n−1 S xpm+n−1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
product of incoming messages

= p�ysn+m, ypn+m S σm+n−1�.

We claim that, more generally, for i = m + n − 1,� ,0,

βΣi(σi) = p�ysi+1,� , ysn+m, y
p
i+1,� , ypn+m S σi�.

As for the α-recursion we can prove this by induction: we start with the case i =
m+n−1 and work our way down. Using the general message-passing rules and the
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induction hypothesis

βΣi(σi−1) = Q
xsi ,x

p
i ,σi

p�xpi ,σi S xsi ,σi−1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kernel

p�xsi�p�ysi S xsi�p�ypi S xpi �βΣi(σi)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
product of incoming messages

= Q
xsi ,x

p
i ,σi

p�xpi ,σi S xsi ,σi−1�p�xsi�p�ysi S xsi�p�ypi S xpi �ċ

ċ p�ysi+1,� , ysn+m, y
p
i+1,� , ypn+m S σi�

= p�ysi ,� , ysn+m, y
p
i ,� , ypn+m S σi−1�.

Last but not least, let us consider the �nal (decision) step. Typically one is interested
in the decision regarding Xsi . ¿is decision metric is a function of xsi and, by the
message-passing rules, it is equal to

p�xsi�p�ysi S xsi�Q
�xsi

p�xpi ,σi S xsi ,σi−1�p�ypi S xpi �βΣi(σi)αΣi−1(σi−1).

If we insert the expressions for αΣi−1(σi−1) and βΣi(σi), we see that this is equal to
p�xsi , ys1,� , ysn+m, y

p
1 ,� , ypn+m�,

as one would expect: up to a global normalization, this decision metric is the a-
posterior of xsi given the observation (ys, yp).
Example 6.7 (BCJR for C(G = 7~5,n = 5)). Consider the simple convolutional
code C(G = 7~5,n = 5). Assume that transmission takes place over the BSC(є = 1

4)
and that the received word is �ys, yp� = (1001000,1111100). By de�nition of the
code we have pΣ0(0) = pΣ7(0) = 1. ¿e top row in Figure 6.8 shows the trellis
with branch labels corresponding to p�ysi S xsi�p�ypi S xpi �. (We did not include in
this branch labels the prior p�xsi� since it is uniform and so does not in�uence the
computation.) ¿e middle row shows the α-recursion, and the bottom row shows
the β-recursion. Finally, the decoded sequence is indicated at the very bottom and
it is �x̂s, x̂p� = (1011000,1111100).

¿is is important: this sequence doesnot constitute a valid codeword.¿ismight
seem strange at �rst. But it is a consequence of the fact that bitwise MAP decoding
optimizes the decision for each bit individually, instead of optimizing the decision
of the whole sequence jointly (which is done by the blockwise MAP decoder).

As the index i increases, themetric αΣi decreases (and, conversely, βΣi decreases
as i decreases). ¿is can lead to numerical problems when performing the compu-
tation on long graphs. As we discussed already in Section 2.5.2, the normalization
of the messages plays no role. In practice it is therefore common to normalize both
αΣi and βΣi with respect to the maximum component. n
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Figure 6.8: BCJR algorithm applied to the code C(G = 7~5,n = 5) assuming
transmission takes place over the BSC(є = 1~4). ¿e received word is equal to
�ys, yp� = (1001000,1111100). ¿e top �gure shows the trellis with branch labels
corresponding to the received sequence.We have not included the prior p�xsi�, since
it is uniform.¿emiddle and bottom�gures show the α and the β recursion, respec-
tively. On the very bottom, the estimated sequence is shown.
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Example 6.9 (Performance of Convolutional Codes). Figure 6.10 shows the
performance of the rate one-half codeC(G = 21~37,n = 216)over theBAWGNC(σ)
when decoded via the BCJR algorithm. We show the performance only for a single

1.0 2.0 3.0 4.00.0

10-4

10-3

10-2

10-1

10-5 (Eb~N0)dB

Pb

Figure 6.10: Performance of the rate one-half code C(G = 21~37,n = 216) over
the BAWGNC under optimal bitwise decoding (BCJR – solid line). Note that
(Eb~N0)dB = 10 log10 1

2rσ2 . Also shown is the performance under optimal blockwise
decoding (Viterbi – dashed line). ¿e two curves overlap almost entirely. Although
the performance under the Viterbi algorithm is strictly worse the di�erence is neg-
ligible.

n since the bit error probability of a convolutional code is essentially independent of
the length (except for very small blocklengths). Only if we let the memory m tend
to in�nity do convolutional codes have a threshold, but in this case the complex-
ity tends to in�nity as well (exponentially with memory). We will see in the next
section that suitably concatenated convolutional codes make excellent iterative de-
coding systems. n

In Section 2.5.5 we have seen that if we use the (negative) log of the usual branch
labels, i.e., for our case if we use

− log�p�xsi�p�ysi S xsi�p�ypi S xpi ��,

and apply the min-sum algebra instead of the sum-product algebra, then we �nd
themost likely codeword (instead of the sequence of most likely bits). In the frame-
work of convolutional codes this algorithm equivalent to the Viterbi algorithm. For
iterative decoding it plays a less important role. ¿ere is a slight di�erence between
the Viterbi algorithm (as it is usually de�ned) and the message-passing algorithm
which we get by applying the min-sum algebra. ¿e di�erence lies in the schedule.
For the Viterbi algorithm we typically perform one forward recursion, applying the
min-sum rules once from the beginning of the trellis until the end. In a second step
we back-trace from the end of the trellis until the beginning to “read-o�” the best
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path. A straightforward application of the message-passing algorithm, on the other
hand, involves three steps: a forward pass, a backward pass, and a decision step. It
is the topic of Problem 6.2 to see why the Viterbi algorithm can get away with only
two passes.

Example 6.11 (Viterbi for C(G = 7~5,n = 5)). Consider again the code C(G =
7~5,n = 5) as in Example 6.7 and transmission via the BSC(є = 1~4). As before,
the received word is equal to �ys, yp� = (1001000,1111100). Fig 6.11 shows the
application of the message-passing algorithm using the min-sum algorithm to this
problem.¿e decoded sequence of bits is indicated at the very bottom and it is equal
to �x̂s, x̂p� = (1011000,1111110). For our example, optimum bit and optimum
block decoding do not lead to the same result. n

§6.2. Structure and Encoding
Astandard parallel concatenated turbo codewith two component codes is de�ned as
follows. Fix a binary rational functionG(D) = p(D)~q(D) of memorymwith q0 =
1 and a length n. Further, let π = (π1,π2), where πi � �1,� ,n+m�� �1,� ,n+m�,
1 B i B 2, is a permutation on n+m letters which �xes the lastm letters. Recall from
Section 6.1 that we denote the encoding map associated with a rational function
G(D) by γ. More precisely, if x = (x1,� ,xn,0,� ,0) denotes the input to the �lter
G(D), then the corresponding output is γ(x), where we assume as in Section 6.1
that the feedback is removed in the last m steps. Using this notation, the code C =
C(G,n,π) is de�ned as

C(G,n,π) = �( x®
xs
,γ(π1(x))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

xp1

,γ(π2(x)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

xp2

� x = (x1,� ,xn,0,� ,0´¹¹¹¹¹¸¹¹¹¹¹¹¶
m times

),xi > F2�.

We call xs the systematic bit stream and xpi , 1 B i B 2, the i-th parity bit stream.
Figure 6.13 shows the encoder for C(G = 21~37,n,π). It is sometimes conve-

nient to assume, as we have done this in Figure 6.13, that π1 is the identity map.¿is
entails no loss of generality since a code with a general π1 di�ers from one with π1
equal to the identity only in a global reshu�ing of the bits. But such a global reshuf-
�ing has no impact on the performance on a memoryless channel. ¿erefore, we
will not make a distinction between these two cases and frequently switch between
the general de�nition and the more speci�c one where the �rst permutation is the
identity.

For �xed G and n, let P = P(G,n) denote the ensemble of codes generated by
letting each component of π vary over all permutations on n+m letters that �x the
last m letters and endowing this set with a uniform probability distribution. We let
C = C(G,n,π) be a code chosen at random from P(G,n).
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Figure 6.12: Viterbi algorithm applied to the code C(G = 7~5,n = 5) assuming
transmission takes place over the BSC(є = 1~4). ¿e received word is (ys, yp) =
(1001000,1111100).¿e top �gure shows the trellis with branch labels correspond-
ing to − log10 �p(ysi S xsi)p(ypi S xpi )�. Since we have a uniform prior we can take out
the constant p(xsi). ¿ese branch labels are easily derived from Figure 6.8 by apply-
ing the function − log10. ¿e bottom �gure show the workings of the Viterbi algo-
rithm. On the very bottom the estimated sequence is shown.

¿e “natural” rate of such a code is one-third, since for every information bit we
send three bits (we ignore here the e�ect of them appended zeros on the rate which
vanishes with Θ(1~n)). O en one is interested in punctured turbo codes to adjust
the rate. If we puncture (delete), e.g., every second bit of both xp1 and xp2 then we
get a rate one-half code. More generally, by picking a suitable puncturing pattern
the rate r can be varied in the range 1~3 B r B 1. From the point of view of analysis,
random puncturing is particularly appealing: to achieve rate r, puncture each bit of
each parity stream with probability (3r − 1)~(2r). ¿is gives rise to an ensemble of
punctured codes whose average rate is r.We denoted this ensemble byP(G,n,π, r).
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Figure 6.13: Encoder for C(G = 21~37,n,π = (π1,π2)), where π1 is the identity
permutation.

By standard concentration results (see Appendix C) we know that most elements in
P(G,n,π, r) have rate r�O(1~ºn).We denote a punctured code of design rate r by
C(G,n,π, r), where the exact nature of the puncturing will be clear from context.
We can also puncture the m extra systematic bits appended to the n information
bits since they are known to be zero.

Standard serially concatenated codes are de�ned in an analogous way. Fix a bi-
nary rational function Go of memorymo, a binary rational function Gi of memory
mi, and a length n (the superscripts o and i stand for outer and inner, respectively).
Further, let π, π � �1,� ,2(n +mo) +mi�� �1,� ,2(n +mo) +mi�, be a permu-
tation on 2(n+mo) +mi letters which �xes the lastmi letters. ¿e associated code
C = C�Go,Gi,n,π� is de�ned as

C(Go,Gi,n,π) =��π�x ċ γo(x) ċ 0,� ,0´¹¹¹¹¹¸¹¹¹¹¹¹¶
mi times

�,γi�π(x ċ γo(x) ċ 0,� ,0´¹¹¹¹¹¸¹¹¹¹¹¹¶
mi times

)�� �

x = (x1,� ,xn,0,� ,0´¹¹¹¹¹¸¹¹¹¹¹¹¶
mo times

),xi > F2�,

where “ċ” denotes concatenation of sequences. We call xso the systematic bits of the
outer code and xpo = γo(xso) the corresponding parity bits. Further, we denote by
xsi = π(xso ċ xpo ċ 0,� ,0) the systematic bits of the inner code and xpi = γi(xsi)
the corresponding parity bits. We append mi zeros to the output of the �rst en-
coder so that the input to the second encoder has the proper form. Figure 6.14
shows the encoder for C(Go

= 21~37,Gi
= 21~37,n,π). For �xed Go, Gi, and n let
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Figure 6.14: Encoder for C(Go
= 21~37,Gi

= 21~37,n,π).

S = S(Go,Gi,n) be the ensemble of codes generated by varying π over all permuta-
tions on 2(n+mo)+mi letters which �x the lastmi positions and endowing this set
with a uniform probability distribution. We let C = C(Go,Gi,n,π) be a code cho-
sen at random from S(Go,Gi,n). ¿e “natural” rate of such a code is one-quarter
(ignoring again the vanishing e�ect of the additional appended zeros). We can in-
crease the rate to r, where 1~4 B r B 1, by an appropriate puncturing of the output.
¿ere is a considerable degree of freedom in the choice of bits that are punctured and
di�erent choices lead, in general, to di�erent performances. We denote a punctured
code by C = C(Go,Gi,n,π, r) and the corresponding ensemble by S(Go,Gi,n, r),
where the exact nature of the puncturing is again understood from the context.

From the above description it is hopefully clear that the encoding operation is
linear in the blocklength and that it can be implemented e�ciently.We can therefore
proceed directly to the decoding problem.

§6.3. Decoding

Assume that transmission takes place over a BMS channel. We denote the chan-
nel input by X and the channel output by Y. Consider the ensemble P(G,n) and
optimal bit-wise decoding. For the moment, we assume that none of the bits are
punctured. Recall from Section 6.1 that the mapping of a convolutional encoder at
time j is completely determined by the current state, call it σj−1, and the current in-
put xj. Let xs1 = π1(xs) and xs2 = π2(xs), i.e., xs1 and xs2 represent the permuted
versions of the systematic bits. Let σ1 and σ2 denote the state sequence of encoder 1
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and 2, respectively. ¿en the bit MAP decoder has the form

x̂MAP
i (ys, yp1 , yp2)
= argmaxxsi>�0,1�p(x

s
i S ys, yp1 , yp2)

= argmaxxsi>�0,1�Q
�xsi

p(xs,xp1 ,xp2 ,σ1,σ2, ys, yp1 , yp2)

= argmaxxsi>�0,1�Q
�xsi

�
n+m
M
j=1

p(xsj)
²
prior

p(ysj S xsj)p(yp1j S xp1j )p(yp2j S xp2j )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

channel

�

p(σ10)p(σ20)�
n+m
M
j=1

p(xp1j ,σ1j S xs1j ,σ1j−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

code 1

p(xp2j ,σ2j S xs2j ,σ2j−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

code 2

�.

¿e corresponding FSFG is shown in Figure 6.15. ¿e message-passing rules stated

p(xs1)p(ys1 S xs1) p(xsn+m)p(ysn+m S xsn+m)

π2

π1

p(yp21 S xp2
1 ) p(yp22 S xp2

2 ) p(yp2n+m S xp2
n+m)

p(σ20) σ20 σ21 σ22 σ2n+m−1 σ2n+m
p(xp2

n+m,σ2n+m S xs2n+m,σ2n+m−1)

p(yp11 S xp1
1 ) p(yp12 S xp1

2 ) p(yp1n+m S xp1
n+m)

p(σ10) σ10 σ11 σ12 σ1n+m−1 σ1n+m

p(xp1
n+m,σ1n+m S xs1n+m,σ1n+m−1)

Figure 6.15: FSFG for the optimum bit-wise decoding of an element of P(G,n).

in Figure 2.12 completely specify the iterative decoder, except for the scheduling of
the messages. Since the FSFG of the present example is not a tree, di�erent sched-
ules can result in di�erent performances. Based on our discussion on factor graphs,
the natural schedule is to initialize all messages in the graph and then in each “it-
eration” to recompute the outgoing messages from the incoming ones. If we use

Preliminary version – October 18, 2007



340 turbo codes

log-likelihood ratios as messages, the natural initialization is to set all messages to
zero (this acts like the neutral value).

If you look closer at Figure 6.15, you see that it is composed of FSFGs of two
convolutional codes (compare to Figure 6.5). ¿is is not surprising. A er all, we
de�ned elements of P(G,n) exactly in this way as a concatenation of two convolu-
tional codes. Let us call each of the two convolutional codes a component. If we think
of turbo codes as being composed of two components, we arrive at a second natu-
ral schedule. We call it the turbo schedule. In the turbo schedule, we also initialize
all messages by setting them to zero (assuming again that the messages are in log-
likelihood ratio form). In each “iteration” we “freeze” (do not change) the messages
in one component and decode the other component by running one complete iter-
ation of the BCJR algorithm as discussed in Section 6.1. To be speci�c: in iteration
1 we “freeze” the messages in the second component and run the BCJR algorithm
on the �rst component. (¿e messages which �ow via the permuter π2 into the �rst
component are initially zero.) In iteration 2we exchange the roles of component one
and component two and run one complete BCJR algorithm on the second compo-
nent while “freezing” the messages in the �rst component code. ¿is is important:
the messages that �ow via permutation π1 into the second component code are no
longer zero, but summarize the knowledge that the �rst iteration has gathered about
the systematic bits via the code constraints of the �rst code. ¿is information acts
like a prior. We continue in this way until the algorithm has converged or some
stopping criterion has been reached. ¿is is the original turbo decoding algorithm
as proposed by Berrou, Glavieux, and¿itimajshima and it is typically a very good
choice. In what follows, we always assume this schedule.

So far we have considered the case of no puncturing, but the general case is not
much harder: we can imagine that all bits are transmitted, but that part of the bits are
sent over an erasure channel. If we are interested in a particular puncturing pattern
then these (punctured) bits are sent over an erasure channel with erasure proba-
bility one. If, on the other hand, we want to know the performance of randomly
punctured ensembles, we imagine that the bits are �rst passed through the given
BMS channel and subsequently through an erasure channel (with non-binary in-
puts) with the appropriate erasure probability. In short, puncturing only in�uences
the local functions p(ys~p1~p2j S xs~p1~p2j ), but the overall form of the FSFG remains
unchanged.

Let Pb(C,Eb~N0) denote the bit error probability of a code C assuming that
transmission takes place over a BAWGNC with parameter (Eb~N0)dB. Figure 6.16
shows EP(G=21~37,n,r=1~2)[Pb(C,Eb~N0)] for n = 211, �, 216. Recall that the block-
length is equal to (1 + 2r)(n+m) which equals 2(n+ 4) for the particular case. As
indicated, the ensembleP(G = 21~37,n, r = 1~2) has rate one-half.¿is is achieved
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by an alternating puncturing pattern, puncturing every second parity bit. Fi y itera-
tions using the turbo schedule (i.e., twenty-�ve iterations for each component code)
as discussed above were performed. As usual, these plots show two distinct behav-
iors: thewaterfall region inwhich the error probability drops o� steeply as a function
of the channel parameter, and the error-�oor region,with amuch gentler slope. From
these plots one can see that for increasing lengths the codes show again a threshold
behavior. In the next section we discuss how this threshold can be determined and
we describe analytic approximations (the dashed curves in Figure 6.16) of the error-
�oor in Lemma 6.52. ¿is is important: if we do not pick random permutations but

0.4 0.5 0.6 0.7 0.8

10-5
10-4
10-3
10-2
10-1

10-6 (Eb~N0)dB

Pb

(E
b~N

0)B
P dB
�
0.
53
7

Figure 6.16: EP(G=21~37,n,r=1~2)[Pb(C,Eb~N0)] for an alternating puncturing pat-
tern (identical on both branches), n = 211,� ,216, 50 iterations, and transmis-
sion over the BAWGNC(Eb~N0). ¿e arrow indicates the position of the thresh-
old (Eb~N0)BPdB � 0.537 (σBP � 0.94) which we compute in Section 6.5. ¿e dashed
curves are analytic approximations of the error-�oor discussed in Lemma 6.52.

design the permutations carefully, then we can get a signi�cant reduction in the er-
ror �oor. ¿e Notes at the end of this chapter give points to the literature which
describe the so-called “interleaver design” problem.

Iterative decoding and the FSFG for serial concatenated ensembles are discussed
in Problem 6.6. Generally speaking, serially concatenated ensembles show a better
error �oor behavior than parallel concatenated ensembles, but at the cost of slightly
worse thresholds.

§6.4. Basic Simplifications
¿e asymptotic analysis proceeds according to the standard recipe: decoder sym-
metry, all-one codeword assumption, concentration, asymptotically tree-like com-
putation graph for a �xed number of iterations, and – �nally – density evolution.

We start with the symmetry of the decoder. Each (part of the) decoder performs
MAP decoding on a linear code (BCJR on trellis). ¿erefore, by ¿eorem 4.30 the
output density is symmetric assuming that all input densities are symmetric. It fol-
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lows that if transmission takes place over a BMS channel (so that the received den-
sities are symmetric) then we can make the all-one codeword assumption.

Consider the ensemble P(G,n, r). Focus on one bit and consider one round
of the decoding algorithm (according to the turbo schedule): a little thought shows
that the computation graph for one iteration includes all variables, regardless of the
size of the code. ¿erefore, even in the asymptotic case, the computation graph of
this naive decoder does not become tree-like and we cannot employ our standard
density-evolution analysis.

One way to proceed is to consider a windowed decoding algorithm: instead of
running the BCJR algorithm over the whole length of the trellis, we construct a
symmetric window extending w trellis sections to the le as well as to the right
of any given bit and compute the posterior (or extrinsic information) based only
on this local window. To complete the description of this algorithm we also need
to decide on the probability distribution on the boundary of these windows – it is
convenient to pick the uniform distribution.

Consider the computation graph for this windowed decoding algorithm. For
w = 1 and two iterations (one on each component) the resulting computation graph
is shown in Figure 6.17. Using the same type of argument as for LDPCensembles (see
Section 3.8.2), we see that, for a �xed number of iterations, this computation graph
is a tree with probability converging to one as the blocklength tends to in�nity. Next,

Figure 6.17: Computation graph corresponding to windowed (w = 1) iterative de-
coding of a parallel concatenated code for two iterations. ¿e black factor nodes
indicate the end of the decoding windows and represent the prior which we impose
on the boundary states.

for a �xed window size and a �xed number of iterations, it is rather routine to check
the concentration of the performance as a function of the permutation used and the
observations received. We can therefore again use an ensemble average approach.
¿e computation graph for the serial case is the topic of Problem 6.8.
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§6.5. Density Evolution
Let us consider density evolution for general BMS channels. From our previous dis-
cussion, we know that for a �xed window size w we can use density evolution to
compute

lim
ℓ�ª

lim
n�ª

EP(G,n)[Pb(C,a, ℓ)],

where a characterizes the BMS channel and where ℓ denotes the number of itera-
tions. If we now let the window size tend to in�nity we get

lim
w�ª

lim
ℓ�ª

lim
n�ª

EP(G,n)[Pb(C,a, ℓ)].

From a practical point of view it is convenient to exchange the two outer limits and
to compute

lim
ℓ�ª

lim
w�ª

lim
n�ª

EP(G,n)[Pb(C,a, ℓ)].

¿is is the limit we consider below.¿e proof that the exchange of limits is admissi-
ble is technical and so we skip it. In fact, it is conjectured that all three limits can be
taken in any order without changing the result. ¿is is quite important from a prac-
tical perspective since in a typical scenario we use a �xed length, an unbounded
window, and we run as many iterations as we can a�ord from the perspective of
complexity.

De�ne the followingmaps acting on pairs of densities as depicted in Figure 6.18.
¿ere is a bi-in�nite trellis generated by G(D). For sake of de�niteness, we assume
that all messages are in log-likelihood ratio form. ¿e systematic bits experience
a channel with L-density a, whereas the parity bits are passed through a channel
with L-density b. We are interested in the outgoing message densities as indicated
in Figure 6.18. Let us denote them by c and d, respectively, and the map between

b b b b d b b b

a a a a c a a a

parity bits

syst. bits

Figure 6.18: De�nition of the maps c = ΓsG(a,b) and d = ΓpG(a,b). We are given a bi-
in�nite trellis de�ned by a rational function G(D). Associated with all systematic
variables are iid samples from a density a, whereas the parity bits experience the
channel b. ¿e resulting densities of the outgoing messages are denoted by c and d,
respectively.
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incoming and outgoing messages by

c = ΓsG(a,b), d = ΓpG(a,b).
We write ΓG(ċ, ċ) if we mean either of the two maps and we write Γ(ċ, ċ) if G is un-
derstood from context. Before discussing how the map Γ(ċ, ċ) can be computed, let
us state several equivalence relationships. ¿ese relations signi�cantly decrease the
number of cases that one has to investigate when trying to optimize the threshold
of iterative systems with convolutional components.

Consider a binary polynomial p(D) of degree deg(p) such that p0 = 1. Asso-
ciate with such a polynomial the time-reversed and shi ed polynomial

p̂(D) = Ddeg(p)p(1~D).

We extend this de�nition to a binary rational function G(D) = p(D)
q(D) so that p0 =

q0 = 1 by de�ning Ĝ(D) = p̂(D)
q̂(D) . ¿e proof of the following theorem is the topic of

Problem 6.4.

Theorem 6.19 (Equivalence of Encoders). Consider a convolutional encoder
de�ned by a binary rational function G(D) = p(D)

q(D) with q0 = 1. ¿en for any pair
of symmetric densities a and b and jC 1,

(i) ΓG(Dj)(a,b) = ΓG(D)(a,b), (ii) ΓG(D)(a,b) = ΓDjG(D)(a,b),
(iii) ΓG(a,b) = ΓĜ(a,b), if p0 = 1, (iv) ΓsG(a,a) = ΓpG−1(a,a), if p0 = 1.

Example 6.20 (Application of Equivalence Relationships). We claim that

Γs D+D2
1+D2+D3

(a,a) = Γp1+D2+D6
1+D2

(a,a).

Indeed,

Γs D+D2
1+D2+D3

(a,a) (ii)= Γs 1+D
1+D2+D3

(a,a) (iii)= Γs 1+D
1+D+D3

(a,a)
(iv)
= Γp1+D+D3

1+D

(a,a) (i)= Γp1+D2+D6
1+D2

(a,a). n

As a slight generalization, if we considering punctured ensembles then we will
assume that the functional Γ(ċ, ċ) is computed according to this puncturing and the
nature of the concatenation. To be concrete: assume that every second parity symbol
is punctured and that we are interested in a parallel concatenation. In this case we
assume that the input to every second parity node is ∆0 (instead of b). If we con-
sider randomly punctured ensembles where each parity symbol is punctured with

Preliminary version – October 18, 2007



density evolution 345

probability p, we replace each input density b of each parity symbol with probability
pwith the density ∆0. ¿e equivalent statements are true regarding puncturing of
systematic bits. ¿e assumed puncturing will be understood from the context and
we do not explicitly include it in our notation. Under some puncturing schemes the
above equivalence relations remain valid but in some cases they will no longer hold:
under random puncturing (of either the systematic or the parity bits or both) state-
ments (i)-(iii) are still correct; on the other hand statement statement (i) is incorrect
for jeven if we puncture every second parity bit;

Let us now return to the description of density evolution. Since density evolution
concerns the performance of ensembles in the limit as n tends to in�nity we drop
the n from the description of ensembles in what follows and simply write P(G, r).
We can “read o�” from Figure 6.15 the following relations concerning the density
evolution process (see Problem 6.7 for the serial case.)

Theorem6.21 (DensityEvolution forParallelConcatenatedCodes). Con-
sider density evolution for the ensembles P(G, r) when transmission takes place
over a BMS channel with L-density aBMSC and the turbo schedule is used. Let cℓ
denote the density emitted from the trellis towards the systematic bits in the ℓ-th
iteration. ¿en c0 = ∆0, and for ℓ C 1

cℓ = ΓsG(aBMSC e cℓ−1,aBMSC).
Unfortunately, the map Γ(ċ, ċ) is in general not easily computed since interme-

diate distributions (the distributions on the states which are computed by the α and
β recursions) “live” in 2m − 1 dimensions, where m is the memory of the rational
function G(D). In practice, the outgoing densities c and d are therefore most o en
determined by sampling: for given input densities a and b we run the BCJR algo-
rithm on a very long trellis which we initialize with independent samples from the
given distributions. By collecting a large number of output samples we estimate the
densities c and d.

Example 6.22 (Density Evolution forP(G = 21~37, r = 1~2)). Assuming trans-
mission over the BAWGN channel, the densities cℓ(y), for ℓ = 1,� ,25, are shown
in Figure 6.23. n

Exactly as in the case of density evolution of LDPC ensembles, depending on
the channel parameter, the densities either converge to a �xed-point density with
a positive associated error probability, or the error probability converges to zero.
Since density evolution is a process on a tree and corresponds to the performance
of a MAP decoder, if we assume that the channel family is degraded then we can
conclude that there exists a threshold: it is that parameter of the channel which sep-
arates the values for which density evolution converges to the desired �xed-point
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Figure 6.23: Evolution of cℓ for ℓ = 1,� ,25 for the ensembleP(G = 21~37, r = 1~2),
an alternating puncturing pattern of the parity bits, and transmission over the
BAWGNC(σ). In the le picture σ = 0.93 (Eb~N0 � 0.63dB). For this parameter
the densities keep moving “to the right” towards ∆ª. In the right picture σ = 0.95
(Eb~N0 � 0.446dB). For this parameter the densities converge to a �xed-point den-
sity.

(∆ª) from those where the error probability stays bounded away from zero. Ta-
ble 6.24 lists thresholds for some ensembles P(G, r = 1~2).

m G = p~q σBP (Eb~N0)dB
2 5~7 0.883 1.08
3 13~15, 15~13 0.93 0.63
4 21~37, 27~37, 35~37 0.94 0.537
5 37~55, 47~41, 63~41, 71~41 0.94 0.537
6 41~167, 103~177, 51~153 0.94 0.537

Table 6.24: ¿resholds of some ensembles P(G, r = 1~2) for transmission over the
BAWGNC(σ) and alternating puncturing.¿e Shannon threshold for rate one-half
codes is σSha � 0.979 (Eb~N0 � 0.18dB).

§6.6. Stability Condition
¿e stability condition plays a fundamental role in the analysis of LDPC ensembles.
It is therefore natural to seewhether an equivalent condition can be derived for turbo
codes. In the present sectionweneed to refer to somenotions and results concerning
the weight distribution of turbo codes. ¿ese are collected in Section 6.9.

Conjecture 6.25 (Stability Condition for Parallel Concatenated Ensem-
ble). Consider the ensemble P(G, r) and let D(x, y) = Pi di(y)xi denote the de-
tour generating function associated withG (taking the appropriate puncturing into
account). Assume that transmission takes place over a BMS channel with L-density
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a. ¿en the �xed-point corresponding to correct decoding is stable if and only if

(6.26) 2B(a)d2(B(a)) < 1.

We state the stability condition as a conjecture since we do not present a proof of
the above result but take a considerable shortcut by making use of an analogy with
respect to standard LDPC ensembles. Recall from (3.166) that for standard LDPC
ensembles with degree distribution pair (λ, ρ) the generating function counting the
number ofminimal codewords in the asymptotic limit is equal to P̂(x) = − 1

2 log�1−
λ′(0)ρ′(1)x�. More precisely, this means that if P̂(x) = Pw p̂wxw, then p̂w denotes
the expected number ofminimal codewords of weightw in the limit of blocklengths
tending to in�nity. Apply the union bound to this asymptotic weight distribution:
if we have a codeword of weight w, the probability that a MAP decoder decides
on this codeword instead on the transmitted all-zero sequence (considering only
these two alternatives) is given by E(aew). From Problem 4.22 we know that for
any 0 <B′ <B(a) there exists a strictly positive α so that for all w > N

α(B′)w B E(aew) BB(a)w.

¿is gives us the bounds

αP̂(B′) = αQ
w
p̂w(B′)w BQ

w
p̂w E(aew) BQ

w
p̂w B(a)w = P̂(B(a)).

Roughly speaking, taking the union bound amounts to replacing the indeterminate
x in the generating function by the Bhattacharyya constantB(a). For the standard
irregular LDPC ensemble where P̂(x) = − 1

2 log�1− λ′(0)ρ′(1)x� we conclude that
the union bound converges if and only if

B(a)λ′(0)ρ′(1) < 1.

¿e latter condition is exactly the stability condition.
Let us apply the same reasoning to parallel concatenated turbo codes. From

Lemma 6.49 we know that P̂(x) = − 1
2 log�1 − 4x2d22(x)�. Convergence of the

union bound therefore requires that 4B(a)2d22(B(a)) < 1. ¿is is equivalent to
2B(a)d2(B(a)) < 1. As always, the stability condition gives an upper bound on
the threshold. In some cases this bound is tight, for others it is not.

Example 6.27 (Stability of P(G = 7~5, r = 1~3)). For the ensemble P(G =
7~5, r = 1~3) we know from Example 6.41 that d2(y) = y3

1−y. Let x
Sta be the unique

positive solution to the equation 2xd2(x) = 2x x3
1−x = 1. We have xSta � 0.647799.

If we assume that transmission takes place over the BEC(є) we have B(є) = є,
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so that єSta � 0.647799. If transmission takes place over the BAWGNC(σ), so that
B(σ) = e−

1
2σ2 , then σSta � 1.07313 (Eb~N0 � 1.148dB). By running density evo-

lution we see that in both cases the stability condition determines the BP thresh-
old. From the discussion in Figure 6.34 we know that the MAP threshold is upper
bounded by the same number (and it is of course always lower bounded by the BP
threshold). It follows that all three thresholds (stability, BP, andMAP) are the same.
n

Example 6.28 (Stability of P(G = 21~37, r = 1~2) and Alternating Punc-
turing). For the ensemble P(G = 21~37, r = 1~2) with alternating puncturing we
know from Example 6.42 that d2(y) = y2 �3+y2�

2−2 y2 . Let xSta be the unique positive so-
lution to the equation 2xd2(x) = 1.We have xSta � 0.582645. If we assume transmis-
sion over the BEC(є)we haveB(є) = є so that єSta � 0.582645. If we consider trans-
mission over the BAWGNC(σ) then we have σSta � 0.962093 (Eb~N0 � 0.336dB).
For both channels the stability condition di�ers from the BP threshold. n

§6.7. EXIT Charts
Consider again the density evolution process introduced in Section 6.5. According
to ¿eorem 6.21 we start with c0 = ∆0, and for ℓ C 1, cℓ = ΓsG(aBMSC e cℓ−1,aBMSC).
Unfortunately, the “intermediate” densities cℓ do not have simple analytic descrip-
tions in general.

If at each iteration ℓ we replace the intermediate density cℓ in the density evo-
lution process with an “equivalent” density chosen from some “suitable” family of
densities then we get an approximate density evolution process. If we choose an
intermediate density which has equal entropy then we get the EXIT chart method.
Although other choices are possible and sometimes also useful, the preferred choice
for the family of intermediate densities is �aBAWGNC(h)�.
Definition 6.29 (EXIT Chart Method With Respect To �aBAWGNC(h)�). ¿e
density evolution process according to the EXIT chart method with respect to the
channel family �aBAWGNC(h)� can be speci�ed as follows. Let h0 = 1. For ℓ C 1, de�ne

hℓ = H(ΓsG(aBMSC e aBAWGNC(hℓ−1),aBMSC)).
We then say that hℓ is the entropy emitted in the ℓ-th iteration according to the EXIT
chart method. ¿e condition for convergence reads

H(Γs(aBMSC e aBAWGNC(h),aBMSC)) < h,h > (0,1).(6.30)

Discussion: In words, at each stage of the decoding process the entropy h has
to decrease. If we plot the entropy a er one decoding round as a function of the
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entropy of the input, call it h, then the corresponding graph must lie below the line
h.

Example 6.31 (EXIT Chart Method for Ensemble P(G = 21~37, r = 1~2)).
¿e le picture in Figure 6.32 shows the decoding process according to the EXIT
chart method for σ = 0.93 (Eb~N0 � 0.63dB). ¿is is the same parameter used
in Figure 6.23, where we considered true density evolution. ¿e interpretation of
these curves is essentially the same as discussed in Sections 3.14 and 4.10 for the
case of LDPC ensembles. ¿e only di�erence is that for LDPC ensembles the two
curves correspond to the “action” of the variable nodes and check nodes, respec-
tively, whereas in the present context the two curves correspond to the “action” of
the two component codes. Since we have assumed identical component codes, the
two curves are identical, which explains whywe get a symmetric picture. In the right
hand picture the parameter has been increased to σ � 0.941 (Eb~N0 � 0.528dB).
We see from this �gure that σ � 0.941 is the critical parameter according to the
EXIT chart method. ¿is parameter di�ers only slightly form the true parameter
σBP computed according to density evolution. It is listed in Table 6.24 as σBP � 0.94
(Eb~N0 � 0.537dB). n
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Figure 6.32: EXIT chart method for the ensemble P(G = 21~37, r = 1~2) with al-
ternating puncturing on the BAWGN channel. In the le picture the parameter is
σ = 0.93, whereas in the right picture we chose σ = 0.941.

§6.8. GEXIT Function and MAP Performance
In the above description we have used EXIT curves as a convenient (albeit approxi-
mate) tool to visualize the density evolution process. But we can also plot the EXIT
curve of the overall code in response to a channel family �aBMSC(h)�. As we have
seen for LDPC ensembles, in this case it is more useful to plot the GEXIT curve.
Typically, it is di�cult to determine the actual such GEXIT curve since no e�cient
procedure is known to compute the MAP performance. It is much easier to �nd
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the corresponding BP GEXIT curve, i.e., we use the densities at the output of the
iterative decoder, instead of the true MAP densities.

Lemma 6.33 (BP GEXIT Curve for Parallel Concatenated Ensemble). Con-
sider the ensemble P(G, r). Assume that transmission takes place over a smooth
family of BMS channels ordered by degradation characterized by their L-densities
�aBMSC(h)�, where h denotes the entropy of the channel. For each h, let ch denote
the �xed-point density of the density evolution process, i.e.,

ch = Γs(aBMSC(h) e ch,aBMSC(h)).

¿en the BP GEXIT curve is given in parametric form as

�h,S �rch e ch + r̄Γp(aBMSC(h) e ch,aBMSC(h))�lBMSC(y)dy�,

where lBMSC(h)(y) is the GEXIT kernel associated with the BMS channel.

Figure 6.34 shows the BP GEXIT curve for the ensemble P(G = 7~5, r = 1~3).
Transmission takes place over the BAWGNC(h).

As for LDPC ensembles, we get from the BP GEXIT curve an upper bound on
theMAP threshold by determining the point on the horizontal axis so that the inte-
gral starting at h = 1 and ending at this point is equal to the rate of the code. For the

h

r = 1
3
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Figure 6.34: BP GEXIT curve for the ensemble P(G = 7~5, r = 1~3) assuming that
transmission takes place over the BAWGNC(h). ¿e BP and the MAP thresholds
coincide and both thresholds are given by the stability condition.We have hMAP~BP

�

0.559 (σMAP~BP
� 1.073).

ensemble P(G = 7~5, r = 1~3) the BP threshold coincides with the MAP threshold.
Both are given by the stability condition that is discussed in the previous section.
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§6.9. Weight Distribution and Error Floor
Weight distributions played a pivotal role in the development of the theory of turbo
codes. We start by determining the weight distribution of a convolutional code.

§6.9.1. Convolutional Codes

Let C(G,n) denote the convolutional code of input length n de�ned by the binary
rational functionG. Let ai,o,n count the number of codewords of inputweight i and
output weight o. More precisely, i counts the weight of the information bits and o
counts the weight of the parity bits, so that i + o is the (total/regular) weight of a
codeword. De�ne the associated generating function

A(x, y, z) = Q
i,o,n

ai,o,nxiyozn.

We call A(x, y, z) the input-output weight generating function of the (sequence of)
code(s) C(G,n). It is our aim to compute A(x, y, z).
Example 6.35 (The Encoder G = 7~5). We use the binary rational function G =
7~5 as our running example. A trellis section for this code is shown in Figure 6.6 on
page 330. n

We employ the transfer matrixmethod. Encode the e�ect of the state transitions
at each step in matrix form as

(00) (10) (01) (11)

M(x, y) =
(00)

(10)

(01)

(11)

�
���
�

1 xy 0 0
0 0 y x
xy 1 0 0
0 0 x y

�
���
�
.

More precisely, the rows of the matrix are associated with the current state, whereas
the columns are associated with the state a er the transition. For our running ex-
ample we get M(00),(10) = xy, since the transition from state (00) to state (10)
requires an input of one and results in a parity bit of one as well. ¿is matrix en-
codes the transitions corresponding to paths of length one. Consider now paths of
length two. Such paths are the concatenation of two paths of length one whose in-
termediate states coincide. LetM(2) denote the matrix which encodes such paths of
length two. Let us associate integers to each state in the natural way, i.e., state (01)
corresponds to 2, whereas (11) is identi�ed with 3. Since the intermediate state, call
it k, must coincide we have

M(2)i,j =Q
k
Mi,kMk,j.
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¿is means that M(2)(x, y) = M2(x, y), a simple matrix multiplication. For our
example we get

(00) (10) (01) (11)

M(2)(x, y) =
(00)

(10)

(01)

(11)

�
���
�

1 xy xy2 x2y
xy2 y x2 xy
xyx2y2 y x
x2y x xy y2

�
���
�
.

¿e same reasoning applies to paths of length n: we can think of them as paths of
length (n − 1) concatenated with paths of length one that share the same interme-
diate state. ¿erefore,M(n)(x, y) = Mn(x, y) by induction.

Recall that in the last m steps we eliminate the feedback. For these m steps the
transitionmatrix, call it M̄, corresponds to the encoder p~1 (instead of p~q). Further,
all the input bits are zero so that M̄ = M̄(y). For our example we have

(00) (10) (01) (11)

M̄(y) =
(00)

(10)

(01)

(11)

�
���
�

1 0 0 0
0 0 y 0
y 0 0 0
0 0 1 0

�
���
�
.

By assumption the codewords start and end in the zero state, where for the �rst
n steps we use G = p~q, whereas for the last m steps we set G = p~1. ¿erefore,
the codewords of C(G,n) are encoded by �Mn(x, y)M̄m(y)�0,0. It follows that (see
Problem 6.14)

A(x, y, z) =Q
n
�Mn(x, y)M̄m(y)�0,0zn = �(I − zM(x, y))−1M̄m(y)�0,0.

Example 6.36 (Weight Distribution of C(G = 7~5,n)). To accomplish the
above calculations for a speci�c example it is convenient to use a symbolic com-
puter algebra system. For C(G = 7~5,n) we �nd that A(x, y, z) equals

1 + z�−�x2z2� − y�1 + z� + xy3�1 + z� − xy4z�1 + z� + y2z�x2 + z + x3z��
1 − �1 + y�z + �y�1 + y� − x2�1 + y3�� z3 + �x2 − �1 + x4�y2 + x2y4�z4 .

¿e �rst few terms (up to z2 corresponding to n +m = 2 + 2 = 4) of the expansion
are (see Problem 6.9)

A(x, y, z) = 1 + �1 + x y3� z + �1 + x2 y2 + 2 x y3� z2 +O(z)3.
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¿ismeans that there is 1 codeword (namely the empty one) contained in the length
zero code, there are 2 codewords (the all-zero codeword and a codeword with 1
nonzero input bit and 3 nonzero output bits) contained in the length 1 code, there
are 4 codewords in the length two code, and so on. n

Let us de�ne the regular (as compared to the input-output) weight distribution
of the code C(G,n). We have

A(x, z) = A(x, y = x, z) =Q
w,n

aw,nxwzn,

with coe�cients aw,n = Pi,o�i+o=w ai,o,n. ¿e coe�cient aw,n counts the number of
codewords of length n and weight w in the sequence of codes C(G,n).
Example 6.37 (RegularWeightDistribution forC(G = 7~5,n)). Specializing
the expression in Example 6.36 we get

A(x, z) = xz �((x − 2)z − 1)x
3
+ z + 1� − 1

x (x4 − 1) z3 + (x + 1)z − 1 . n

Example 6.38 (Asymptotic Weight Distribution for C(G = 7~5,n)). Fig-
ure 6.39 shows 1

n log2(aw,n) as a function of the normalized weight w~n for n =
64,128, and 256 (recall that the blocklength of the code is 2(n +m)). Also shown
is limn�ª

1
n log2(aw,n). It is the topic of Problem 6.17 to see how this limit can be

computed e�ciently. n
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0.8
1.0

0.0 w~n
Figure 6.39: Exponent 1

n log2(aw,n) of the regular weight distribution of the code
C(G = 7~5,n) as function of the normalized weight w~n for n = 64,128, and 256
(dashed curves). Also shown is the asymptotic limit (solid line).

As discussed in Problems 6.10 and 6.11, it is not much harder to deal with punc-
tured ensembles.

Before we discuss how to compute the weight distribution of concatenated en-
sembles, let us see howwe can compute the generating function counting detours. A
detour is a codeword that starts in state zero at time zero, diverges in the �rst transi-
tion from the zero state and stops the �rst time it returns to the zero state. We have
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already seen that detours (of input-weight 2) play the key role in determining the
stability condition. We will soon discuss that the error �oor is determined by such
detours as well.

Lemma6.40 (DetourGeneratingFunction). Consider the binary rational func-
tion G and let M(x, y) be the corresponding transfer matrix where x encodes the
input weight and y encodes the output weight. Let M•(x, y) be equal to M(x, y)
except for entry (0,0) which we set equal to zero. Let D(x, y) be the generating
function counting detours. ¿en we have

D(x, y) = 1 − 1
�(I −M•(x, y))−1�0,0

.

Proof. By setting the entry (0,0) equal to zero we do not allow transitions from
the zero state to the zero state. ¿erefore, �(I − M•(x, y))−1�0,0 counts all paths
(irrespective of their length) that start and end in the zero state and have no zero
transition. Such paths are the concatenation of an arbitrary number of detours. If the
generating function for detours is D(x, y) then the generating function for paths
which are the concatenation of two detours is D2(x, y) and the generating function
of paths which are the concatenation of i detours is Di(x, y). We have

�(I −M•(x, y))−1�0,0 =Q
i
Di(x, y) = 1

1 − D(x, y) ,

from which the claim follows.

Example 6.41 (Detour Generating Function for G = 7~5). For G = 7~5 we
�nd

D(x, y) = x
2 y2 �x2 + y− y2�
�1 − y�2 − x2

= x2
y3

1 − y
+ x4

y2

�1 − y�3
+O(x6). n

We are primarily interested in codewords of small weight since these are the
ones responsible for the error �oor that we have observed in Figure 6.16. ¿erefore,
we write

D(x, y) =Q
iC2
di(y)xi.

Note that i C 2 since a detour requires an input of weight at least two: one nonzero
input to drive the encoder out of the zero state and a second one to force it back
to the zero state. We will soon see that d2(y) plays the key role in the asymptotic
analysis of the weight distribution for small weights. In many cases d2(y) has the
form

d2(y) = yα

1 − yβ
.
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In these cases α and β have the following interpretation: α is the weight of the lowest
weight detour due to inputs of weight two; β is the weight of the unique cycle in the
state diagram corresponding to zero input (where the transition from the zero state
to the zero state is forbidden). A simple “atypical” example is G(D) = 1+D+D2

1+D , for
which a direct calculation leads to

d2(y) = y2

1 − y
+ y3.

How to compute the detour generating function for punctured codes is the topic of
Problem 6.12.

Example 6.42 (Detour Generating Function for G = 21~37with Alternat-
ing Puncturing). Specializing the general expressions in Problem 6.12 to the spe-
ci�c case G = 21~37 we get

nd2(y) =
y2 �3 + y2�
2 − 2 y2

.

§6.9.2. Concatenated Ensembles

We have seen how to compute the weight distribution of convolutional codes. It is
now only a small step to derive the weight distribution of parallel and serially con-
catenated ensembles. More precisely, we compute the expected weight distribution
where the expectation is over the choice of interleavers.

Lemma 6.43 (Expected Weight Distribution of P(G,n, r)). Consider the en-
semble P(G,n, r). Let A3r−1

2r
(x, y, z) = Pi,o,n ai,o,nxixozn denote the generating

function of the input-output weight distribution of C(G,n) under puncturing of
rate 3r−1

2r so that the overall rate of the ensemble P is r (see discussion on page 336).
Let P(x, y, z) = Pi,o,n pi,o,nxiyozn denote the generating function of the expected
input-output weight distribution of P(G,n, r), where the expectation is taken over
all elements of the ensemble (i.e., all interleavers). ¿en

pi,o,n =
Pjai,j,nai,o−j,n

�ni�
.(6.44)

¿e generating function of the regular weight distribution is P(x, z) = P(x, y =
x, z).
Proof. Consider a codeword of the underlying convolutional code with systematic
weight i and parity weight o. ¿e permuted information sequence also has weight i.
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Since we impose a uniform probability distribution over all interleavers, the per-
muted input sequence is mapped into any of the possible Po ai,o,n sequences of
input weight i with equal probability. ¿is explains the “convolution” with respect
to the parity weight o. ¿e factor �ni� ensures the proper normalization: we have
Po ai,o,n = �ni�, since there are �ni� inputs of weight i, each leading to one distinct
codeword.

Example 6.45 (Expected Weight Distribution for P(G = 7~5,n, r = 1~3)).
Consider the ensemble P(G = 7~5,n, r = 1~3). In Example 6.36 we computed
A(x, y, z) for C(G = 7~5,n). Let us compute the �rst few terms of the associated
regular weight distribution for n = 64, 128, and 256 via (6.44):

P(x, z) �
�

�1 + 0.0005 x6 + 0.126 x7 + 2.2255 x8 + 4.2853 x9 + 6.34 x10 +��z64+
�

�1 + 0.0001 x6 + 0.0627 x7 + 2.111 x8 + 4.1337 x9 + 6.1395 x10 +��z128+
�

�1 + 0.0313 x7 + 2.0551 x8 + 4.0647 x9 + 6.0622 x10 + 8.0525 x11 +��z256+
O(z257).

Figure 6.46 shows the exponent 1
n log2(pw,n) as a function of the normalized weight

w~n for the ensemble P(G = 7~5,n, r = 1~3) and n = 64,128, and 256. n
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w~n
Figure 6.46: Exponent 1

n log2(pw,n) as a function of the normalized weightw~n for
the ensemble P(G = 7~5,n, r = 1~3) and n = 64,128, and 256. ¿e normalization
of the weight is with respect to n, not the blocklength.

Consider the �rst few terms of P(x, z) in Example 6.45. ¿ese terms give the
expected number of codewords of low weight for n = 64, 128, and 256. ¿ese low-
weight codewords are the cause of the error �oor (see, e.g., the performance curve
in Figure 6.16).
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We will now show that the expected number of codewords of �xed weight con-
verges to a limit as the blocklength increases (see Example 6.45). We will also show
how this limit can be computed. From this result we will be able to derive the ex-
pected number of minimal codewords of �xed weight in the asymptotic limit and
we will show that these minimal codewords are distributed according to a Poisson
distribution. ¿is will allow us to compute the probability that a random element
from the ensemble has a given minimum distance.

Lemma6.47 (AsymptoticExpectedNumberofCodewordsofFixedWeight).
Consider the ensembleP(G,n, r). Letd2(y) count detours ofG(D) that have input-
weight two. Let P(x, y, z) = Pi,o,n pi,o,nxiyozn denote the generating function of
the input-output weight distribution of the ensemble P(G,n, r) and let P̄(x, y) =
Pi,o p̄i,oxiyo be the generating function of the asymptotic input-output weight dis-
tribution. More precisely, p̄i,o = limn�ª pi,o,n. ¿en

P̄(x, y) = 1»
1 − 4x2d22(y)

.(6.48)

Proof. LetD(x, y) = Pi,o di,oxiyo denote the generating function counting detours
of G(D). We want to count minimal codewords of C(G,n) of “type” (i,o), i.e.,
minimal codewords that have input weight i and output weight o.We claim that this
number, divided by n, converges for increasing n to di,o. ¿is is true since, ignoring
boundary e�ects, each detour of type (i,o) can be shi ed to start at n positions to
create a minimal codeword of C(G,n). Conversely, every minimal codeword is a
shi of a detour.

Consider now a generic codeword of C(G,n). Such a codeword is the union
of minimal codewords. In the large n limit, the number of codewords of �xed type
(i,o)which consist of lminimal codewords converges to the coe�cient of xiyozl of
Pl �nl�Dl(x, y)zl .¿is is true since the l detours give rise to �nl� degrees of freedom
of choosing their starting value. De�ne ei,o,l as the coe�cient in front of xiyozl of
Pl �nl�Dl(x, y)zl . Note that ei,o,l is proportional to nl .

Look at theweight distribution of the parallel concatenated code.We know from
Lemma 6.43 that the asymptotic weight distribution is equal to

p̄i,o = lim
n�ª
Q
l

Pjei,o−j,lei,j,l
�ni�

.

Aminimal codeword has inputweight at least two.¿erefore, a codeword consisting
of l minimal codewords has input weight at least 2l. If its weight is strictly larger
than 2l then its contribution to the above sumwill vanish like n2l−i (recall that ei,o,l
is proportional to nl). ¿e only surviving terms are therefore from those minimal
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codewords that have input weight exactly two and their contribution will converge
to a constant. We can restrict ourselves therefore to Pl �nl�(x2d2(y))lzl instead of
Pl �nl�Dl(x, y)zl . We get

P̄(x, y) =Q
i
�2i
i
�d2i2 (y)x2i =

1»
1 − 4x2d22(y)

,

where the term �2ii � appears because �2ii � = limn�ª
�ni�

2

� n2i�
.

Lemma 6.49 (Expected Number of Minimal Codewords of Fixed Weight
in the Asymptotic Limit). Consider the ensemble P(G,n, r). Let P̄(x, y) de-
note the generating function of the asymptotic input-output weight distribution of
P(G,n, r) and let P̂(x, y) denote the corresponding generating function counting
minimal codewords. ¿en

P̂(x, y) = log(P̄(x, y)) = −1
2
log�1 − 4x2d22(y)�.(6.50)

Let P̂(x) = P̂(x, y = x) = Pw p̂wxw. Let C denote a random element of P(G,n, r).
For any d A 0, d > N,

lim
n�ª

P�dmin(C) A d� = e−Pd
w=1 p̂w .

Further, if (W1,W2,� ,Wd) denotes the random vector counting the number of
minimal codewords of weight up to d for a random sample C, then the distribu-
tion of this vector converges to a vector of independent Poisson distributed random
variables with mean equal to (p̂1, p̂2,� , p̂d).
Proof. ¿e idea of the proof of this lemma is basically the same as in the case of
LDPC ensembles. In the realm of LDPC codes, codewords/stopping sets of small
weight are (asymptotically) due to cycles in the bipartite graph which involve exclu-
sively degree-two nodes. For turbo codes, the role of degree-two variable nodes is
played by detours of input-weight two. For LDPC ensembles we were able to reduce
the question of the number and distribution of cycles to awell-known randomgraph
problem by converting the bipartite graph into a standard graph (see Lemma C.37).
For the ensemble of turbo codes no such reduction is known. ¿erefore we have to
perform the necessary computations explicitly. Our main tools are ¿eorem C.33
and Fact C.35.

Let Xw denote the number of minimal codewords of weightw. As we have seen
previously, in the limit of large blocklengths, all such codewords are due to combi-
nations of detours of input-weight two, which are mapped via the interleaver again
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to combinations of detours of input-weight two. ¿e minimality condition implies
that such a codeword cannot be decomposed into two smaller codewords. Consider
now (Xw)r, the factorial moment of Xw de�ned in (C.34). We can represent Xw as
Xw = Pi Zw,i, where Zw,i is an indicator random variable which corresponds to
a particular choice of placement of up to w input bits. If this choice of input bits
leads to a minimal codeword and if this codeword has weightw then Zw,i takes the
value one, otherwise it takes the value zero. ¿e randomness resides in the choice
of the interleaver. From Fact C.35 we know that we can write (Xw)r as (Xw)r =
P(i1,�,ir) Zw,i1�Zw,ir . Consider the contribution of the sum on the right hand side
stemming fromall those choices of (i1,� , ir)which correspond to non-overlapping
bits. Since each bit pattern has some �nite (small) weight and n tends to in�nity,
almost all placements have the property that they do not overlap. Further, for non-
overlapping patterns the involved indicator random variables become asymptoti-
cally independent. We conclude that the portion of the sum P(i1,�,ir) Zw,i1�Zw,ir
corresponding to non-overlapping patterns tends toLm

i=1 µ
ri
i .

It remains to look at those summands which involve overlapping patterns. We
claim that their contribution vanish likeO(1~n). For this step to hold it is important
that we look atminimal codewords as it would not hold for codewords themselves.
We skip the tedious veri�cation of this claim.

Now where we know that the distribution of the minimal codewords is Poisson
(in the asymptotic limit), what is the relationship between P̂(x, y) (counting mini-
mal codewords) and P̄(x, y) (counting regular codewords)? We claim that we have
P̂(x, y) = log P̄(x, y) as stated in the lemma. ¿is is equivalent to

P̄(x, y) = eP̂(x,y) =Q
k

P̂(x, y)k
k!

.

¿e interpretation is similar to the one on page 157 where we derived the block er-
ror probability from the distribution of minimal codewords. Consider one term of
P̂(x, y), call it p̂i,jxiyj. It corresponds to the occurrence of a minimal codeword of
“type” xiyj. From our above discussion we know that this type has a Poisson distri-
bution. ¿erefore,

ep̂i,jx
iyj
=Q

k

p̂ki,jx
ikyik

k!

represents the generating function counting regular codewordswhich are composed
entirely of minimal codewords of this particular type. Why can we simply add the
weights of the individual codewords?¿is is true since if we have lets say kminimal
codewords that form a regular codeword and if we consider the blocklength n as
very large, then with high probability these minimal codewords do not overlap –
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their weights therefore add. We get the �nal formula P̄(x, y) = eP̂(x,y) by recalling
that the joint distribution of di�erent types is of product form and of Poisson type
as well.

Example 6.51 (P̄(x, y) and P̂(x, y) forP(G = 7~5, r = 1~3)). In Example 6.41 we
determined d2(y) for this case. Inserting this into (6.48) and (6.50) we get

P̄(x, y) = 1¼
1 − �2xy3~(1 − y)�2

, P̂(x, y) = −1
2
log�1 − �2xy3~(1 − y)�2�.

Let us expand out the �rst few terms. We get

P̄(x) = 1 + 2x8 + 4x9 + 6x10 + 8x11 +O(x12) = P̂(x).
¿e �rst few terms of P̄(x, y) and P̂(x) are the same but they di�er as soon as we
look at weights starting from twice the minimum distance.

Compare this to the �nite-length weight distribution which we computed in
Example 6.45: e.g., we have pw=8,n=64 = 2.2255, pw=8,n=128 = 2.111, and pw=8,n=256 =
2.0551. From above, we know that the asymptotic value is p̄w=8 = 2. We conclude
that the �nite-length values converge to the asymptotic limit reasonably quickly (at
the speed of 1~n). ¿is implies that the asymptotic quantities are of practical value.
From Lemma 6.49, we know that for an element C chosen uniformly at random
from the ensemble we have

lim
n�ª

P�dmin(C) C 8� = 1, lim
n�ª

P�dmin(C) C 9� = e−2,
lim
n�ª

P�dmin(C) C 10� = e−6, lim
n�ª

P�dmin(C) C 11� = e−12. n

§6.9.3. Error Floor under MAP Decoding

Now where we know the distribution of low-weight codewords, it is only a small
step to the error �oor under MAP decoding. We could start from the �nite-length
weight distribution. However, as we have seen, the di�erence to the asymptotic case
is typically small and the asymptotic expressions are easier to handle. We skip the
proof of the following lemma since it is similar to the proof of Lemmas 3.167 and
4.180.

Lemma 6.52 (Asymptotic Error Floor for P(G,n, r)). Consider the ensemble
P(G,n, r) and assume that transmission takes place over the BAWGNC(Eb~N0).
Let P̂(x, y) be the generating function counting the asymptotic input-output weight
distribution of minimal codewords, where we assume that the appropriate punctur-
ing has been performed. De�ne

P̂(x) = P̂(x, y = x) = −1
2
log(1 − 4x2d22(x)),
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P̂b(x) = x∂P̂(x, y)∂x
S y=x = 4d22(x)x2

1 − 4d22(x)x2
.

Let σBP denote threshold under BP decoding and de�ne (Eb~N0)BP = 1
2rσBP . ¿en

for Eb~N0 A (Eb~N0)BP

lim
n�ª

EP(G,n,r)[PMAP
B (C,Eb~N0)] = 1 − e

−
1
π R

π
2

0 P̂�e−
rEb~N0
sin2(θ) �dθ

,(6.53)

lim
n�ª

nEP(G,n,r)[PMAP
b (C,Eb~N0)] = 1

π S
π
2

0
P̂b�e−

rEb~N0
sin2(θ) �dθ.(6.54)

Discussion: If we consider expurgated ensembles then instead of P̂(x) and P̂b(x)
use the corresponding generating functions where the summation ranges from the
expurgation parameter to in�nity.

Example 6.55 (Error Floor of P(G = 7~5,n, r = 1~3)). From Example 6.51 we
have

P̂(x) = P̂(x, y) S y=x = −
1
2
log�1 − �2x4~(1 − x)�2�,

P̂b(x) = x∂P̂(x, y)∂x
S y=x= 4x8

1 − 2x + x2 − 4x8
. n

Example 6.56 (Error Floor of Berrou-Glavieux-Thitimajshima Code). Us-
ing the result of Example 6.42 we get

P̂(x) = −1
2
log�1 − �2x3(3 + x2)~(2 − 2x2)�2�,

P̂b(x) =
x6�3 + x2�2

1 − 2x2 + x4 − 9x6 − 6x8 − x10
.

¿eerror �oor which is predicted if we insert P̂b(x) into (6.54) and numerically per-
form the integration is shown in Figure 6.16 together with the curve corresponding
to simulations. As you can see there is a good match. n

§6.9.4. Minimum Distance

Our previous investigation concerned the behavior of typical elements of the en-
semble. What is the minimum distance of the best element of the ensemble? From
the result concerning the Poisson distributionwe can conclude that there exist turbo
codes with arbitrary large minimum distance (assuming the blocklength is chosen
su�ciently large). But what about the relativeminimumdistance?Without proof we
state that a more careful variation of the previous probabilistic argument shows that

Preliminary version – October 18, 2007



362 turbo codes

we can let d grow as fast as Θ�log1~4(n)�. ¿is shows the existence of turbo codes
whose minimum distance grows like Θ�log1~4(n)�. We will now show, conversely,
that no element of the ensemble has minimum distance larger than Θ�log(n)�.

Assume that we feed the input 1 + xd to a convolutional encoder with G = p~q.
¿ismeans, we input a 1 at time zero, followed by another 1, exactly d time instances
later. All other inputs are 0. We claim that for a proper choice of d the output has
small weight, even if n tends to in�nity. ¿is is true since for any polynomial q(x)
with q0 = 1 there exists an integer d such that q(x) divides 1+xd (see Problem 6.15.)
Assuming a su�ciently large n (so that the termination no longer plays a role), the
output is (1+ xd) p(x)q(x) . But if q(x) divides 1+ xd then this is a polynomial and has,
hence, �xed weight regardless of n. We call the smallest such integer d the period of
the convolutional encoder.

Note that 1+x2d = 1+xd +xd(1+xd), and more generally, 1+xdi is the sum of
i shi ed copies of 1+ xd. By linearity of the code, we conclude that for a �xed i > N,
the output corresponding to the input 1 + xdi has small weight, even if n tends to
in�nity: indeed, there exist two integers, α and β, so that the weight of the codeword
corresponding to the input 1+xdi is upper bounded by α+βi. O en, but not always
(see the discussion on page 355), α is the weight of the lowest weight detour due to
inputs of weight two and β is the weight of the unique cycle in the state diagram
corresponding to input zero.

Theorem 6.57 (Logarithmic Upper Bound on Minimum Distance). Consider
the ensemble P(G,n, r). Let d denote the period of the convolutional encoder and
let α and β be as discussed above. ¿en for every ∆ > N, 1 B ∆ B

¼
n+1
d , and every

C > P(G,n, r),
dmin(C) < 2log(n(∆− 1)

2~∆)
log(∆− 1) (α + ∆β).

Discussion: If we choose ∆ to be a constant then the above expression shows that
the minimum distance grows at most logarithmically with the blocklength.

Proof. First note that puncturing only decreases the minimum distance. Although
better bounds can be derived by taking the e�ect of puncturing explicitly into ac-
count, a valid upper bound is derived by considering the unpunctured ensemble
P(G,n).

Consider the set [n] = �1,� ,n�, corresponding to the n bits of the input, and
pick an integer ∆, 1 B ∆ B

¼
n+1
d . We claim that we can partition [n] into non-

overlapping subsets Sj, j = 1,� , 
n~∆�, so that �jSj = [n] and that each subset
Sj has the form Sj = �0,d,� ,(∆ − 1)d� + sj or Sj = �0,d,� , ∆d� + sj. In both
cases the shi sj is an integer. ¿at such a partition can always be found under the
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given conditions can be seen as follows. First partition [n] into the d subsets Ni =

[n]�(Zd +i), i = 0,� ,d− 1. Now partition eachNi into 
SNiS~∆� subsets: the �rst

SNiS~∆�(∆ + 1) − SNiS have size ∆, the remaining have size ∆ + 1. ¿e condition
∆ B
¼

n+1
d guarantees that 
SNiS~∆�(∆+ 1) − SNiS C 0.

To be concrete, consider the case n = 19, d = 2, and ∆ = 3. We have 3 = ∆ B»
(n + 1)~d � 3.16. We get

N0 = �2,4,6,8,10,12,14,16,18�, N1 = �1,3,5,7,9,11,13,15,17,19�.
We partitionN0 into the subsets �2,4,6�, �8,10,12�, and �14,16,18�, andN1 into
the subsets �1,3,5�, �7,9,11�, and �13,15,17,19�.

Consider a particular input xs1 . Assume that this input enters the �rst encoder
directly and that it is permuted via a permutation π before being fed to the second
encoder. Call the permuted sequence xs2 , xs2 = π(xs1). Group the bits of xs1 as well
as xs2 according to the partition �Sj�j. Construct a bipartite graph in the follow-
ing way. ¿e nodes of the bipartite graph correspond to the groups of the partition
for each encoder. For the above example the bipartite graph would have in total 12
nodes, 6 on each side. E.g., node one (on each side of the bipartite graph) represents
the input bits 2, 4, and 6; node two represents the input bits 8, 10, 12 and so on.¿e
edges are drawn according to the permutation π: if a bit of xs1 belongs to lets say
group Sk and is mapped via the permutation to a position which belongs to group
Sl in xs2 then we draw an edge in the bipartite graph from node k (on the le ) to
node l (on the right). Multiple edges between pairs of nodes are possible. Consider
our example and the permutation

π = �12,1,4,18,17,4,3,19,5,13,2,6,16,7,15,14,9,8,10�.
¿is means that the permutation sends 1 to 12 and so on.¿e corresponding bipar-
tite graph is shown in Figure 6.58. Note that 1 belongs to S4 and that 12 belongs to
S2. ¿ere is therefore an edge from S4 (on the le ) to S2 (on the right).

¿is bipartite graph has 
n~∆� nodes on each side and each node has degree at
least ∆ (more precisely degree ∆ or degree (∆ + 1)). Such a bipartite graph must
have a cycle of length strictly less than

4� log(n~∆)
2 log(∆− 1) + 1� = 2

log(n(∆− 1)2~∆)
log(∆− 1) .

¿is means, the graph must contain a path of length strictly less than this number
which starts and ends at the same node. ¿e argument is identical to the one used
in Problem 3.24 to determine the girth of the Tanner graph of an LDPC code.

Consider a cycle of length 2c, which involves c le nodes and c right nodes.
One such node corresponds in the encoder to a set of at most (∆ + 1) bits which
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S1 = �2,4,6�
S2 = �8,10,12�
S3 = �14,16,18�
S4 = �1,3,5�
S5 = �7,9,11�

S6 = �13,15,17,19�

S1 = �2,4,6�
S2 = �8,10,12�
S3 = �14,16,18�
S4 = �1,3,5�
S5 = �7,9,11�
S6 = �13,15,17,19�

Figure 6.58: Bipartite graph corresponding to the parameters n = 19, d = 2, ∆ = 3,
and π = �12,1,4,18,17,4,3,19,5,13,2,6,16,7,15,14,9,8,10�. Double edges are
indicated by thick lines. ¿e cycle of length 4, formed by (starting on the le ) S6 �
S6 � S4 � S2, is shown as dashed lines.

are always exactly d positions apart. Assume at �rst that the bipartite graph has
no double edges. For each node in the cycle there are then exactly two bits that
correspond to the two outgoing edges. For both xs1 as well as xs2 set these bits to 1
and all other ones to 0. Note that this de�nition guarantees that xs2 = π(xs1). We
have constructed an input of weight 2c (for both the �rst encoder and the encoder
with the permitted input).

By construction, xs1 as well as xs2 give rise to c detours, each of input-weight 2
and each corresponding to an input of the form 1+xdi for some i.¿e corresponding
codeword consists therefore of 2c such detours. Since the length of each such detour
is limited to at most ∆d, by our previous discussion the weight of each such detour
is at most α + ∆β. From this the indicated upper bound on the total length follows.

For our example there is a cycle of length 4 formed by (starting on the le )
S6 � S6 � S4 � S2. On the le we set the bits 1 and 5 (corresponding to the two
edges in the cycle entering S4 = �1,3,5�) as well as 15 and 19 (corresponding to
the two edges in the cycle entering S6 = �13,15,17,19�) to 1. On the right we set
the bits 10,12,15, and 17 to 1. By construction, the second word is the permutation
(under π) of the �rst one. Both inputs give rise to 2 detours, each of input-weight
2. ¿e separation of the 4 detours is (here d = 2) 2d, 2d, d, and d, respectively. We
therefore have an upper bound on the total weight of 4α + 6β. ¿e argument used
in the theorem is weaker and uses the upper bound 4(α + ∆β) = 4α + 12β.

If the bipartite graph has double edges then we have some degree of freedom in
placing the non-zero bits, but the argument still applies.
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§6.10. Variations on the Theme
As mentioned before, there are many variations on the basic theme of turbo codes.
¿e aim of these variations is to introduce some extra degree of irregularity in their
design and to choose this irregularity in such away as to increase the performance or
to decrease the complexity. Let us mention some of the more prominent variations.

First, in our de�nition of admissible encoders G = p~q we imposed no restric-
tion on the degree of pwith respect of the degree q. In particular, we can choose
deg(p) A deg(q). ¿is means that the feedback does not extend over the whole
range of the shi register. In a classical setting, where we are interested in the mini-
mumdistance corresponding toG, it is not hard to show that such a choice yields no
advantage and that, to the contrary, it is detrimental in terms of complexity. How-
ever, in the iterative setting, the resulting codes (called big numerator codes) are
sometimes superior to classical choices.

Asymmetric turbo codes represent another interesting variation.¿ese are turbo
codes which employ di�erent component encoders.¿at such a choicemight be ad-
vantageous is easily understood from the EXIT chart analysis. Consider a parallel
concatenated ensemble and consider the EXIT chart as shown in Figure 6.32. If the
two component encoders G are identical then the two component EXIT curves are
symmetric around the forty-�ve degree line. ¿e threshold is determined by the
condition that each such curve just touches the forty-�ve degree line. Clearly, a po-
tentially better “matching of the curves” can be achieved if we allow di�erent com-
ponent codes. In this case each individual curve is allowed to cross the forty-�ve
degree line – as long as the two curves do not intersect.

Example 6.59 (Asymmetric Big Numerator Parallel Concatenated Ensem-
ble). Figure 6.60 shows theEXIT curves for transmission over theBEC(h � 0.6481)
for an asymmetric big-numerator parallel concatenated ensemble. ¿e two compo-
nent encoders are G1 = 11~3 and G2 = 11~13. Note that G1 is a big-numerator en-
coder. ¿e threshold of hBP � 0.6481 is larger than the threshold of any symmetric
memory-three parallel concatenated ensemble. n

As a �nal generalization consider the ensemble of irregular turbo codes. Let us
�rst represent a standard parallel concatenated code with two component codes in
the following alternative form. ¿e encoder structure is shown in Figure 6.61. As
before, let xs denote the information sequence of length n + m, where the last m
bits are assumed to be zero. ¿is sequence is again sent directly over the channel.
To generate the parity bits, �rst repeat each bit of xs once to generate a sequence
of the form (xs1,xs1,xs2,xs2,�, xsn+m,xsn+m). Next, permute this sequence. Assume at
�rst that the permutation is constrained so that the permuted sequence has the form
(xs,π(xs)), where π is a permutation on n + m letters �xing the last m positions.
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Figure 6.60: EXIT chart for transmission over the BEC(h � 0.6481) for an asym-
metric (big-numerator) parallel concatenated ensemble.

Input this permuted sequence of length 2(n + m) into the convolutional encoder.
Because we have m zeros at the end of xs as well as at the end of π(xs) the output
of the convolutional encoder is simply the concatenation of the output of the stan-
dard parallel concatenated codewith two component codes, i.e., xp = (xp1 ,xp2).We

repeat π G(D)

xs

xp

Figure 6.61: Alternative view of an encoder for a standard parallel concatenated
code.

therefore see that this new encoder structure is simply an alternative way of accom-
plishing the encoding. Assume next that we li the restriction on the permutation
on 2(n + m) letters (except that the last m positions should be �xed). ¿e corre-
sponding FSFG is shown in Figure 6.15. A moments thought shows that the density
evolution analysis for this new (larger) ensemble of codes is identical to the one of
the corresponding parallel concatenated code, i.e., the thresholds are identical. In
this FSFG every systematic bit has degree exactly two, i.e., it appears exactly twice
at the input to the encoder. ¿is corresponds to the fact that the code is composed
of two concatenated component codes. It is now straightforward to generalize this
picture by allowing a varying degree of repetitions. ¿is is shown in Figure 6.63.
As always, let L(x) denote the (normalized) degree distribution from a node per-
spective. If we assume that we puncture a fraction pof all parity bits we see that the
design rate ful�lls the relation

1
r
= 1 + p̄L′(1).
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π

Figure 6.62: Alternative view of the FSFG of a standard parallel concatenated code.

π

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
degree 2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
degree 3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
degree dlmax

Figure 6.63: FSFG of an irregular parallel concatenated turbo code.

Example 6.64 (Irregular Turbo Ensemble). Consider the turbo code ensemble
with a degree distribution from an edge perspective equal to λ(x) = 55~100x +
45~100x9. ¿is correspond to a node degree distribution of L(x) = 55~64x2 +
9~64x10. Further assume that the puncturing is random and that we puncture parity
bits at a rate p = 68~100. From the previous formula we can then compute the rate
of the code to be equal to 1

r = 1+(1− 68
100) 258 , which yields, r = 1~2. To complete the

speci�cation of the code we choose G = 11~13.
A density evolution analysis for the case that transmission takes place over the

BEC(є) shows that єBP � 0.4825, which is close to the Shannon threshold of one-
half. Further, we can compute the upper bound on the threshold єMAP

� 0.495. n

Notes
Our approach to convolutional codes presented in Section 6.1 is non-standard. Usu-
ally, a convolutional code is de�ned as the set of all output streams resulting from
the set of all input streams, where these streams are taken to be either semi-in�nite,
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starting at time zero, or bi-in�nite. ¿e classical reference is the work by Forney
[29, 30, 31, 32]. We also recommend the article by McEliece [53]. In-depth refer-
ences are the book by Johanneson and Zigangirov [46] as well as the book by Piret
[64]. Considering in�nite sequences is convenient for the purpose of analysis, but
it is also meaningful since the length of a convolutional code has little impact on
its performance. For applications in iterative decoding systems, to the contrary, one
usually considers terminated convolutional codes.

¿e termination rule which we introduced on page 326 (removing the feedback
for the last m steps) leads to a simple analysis but is not the best in terms of the
resulting error �oor. A popular solution proposed by Divsalar and Pollara [27] is
the following: for the last m steps the input is chosen in such a way that the �rst
encoder terminates. ¿is can be accomplished by choosing the input equal to the
feedback signal. ¿is choice e�ectively cancels the feedback and pushes zeros into
the shi register. A erm steps the register is cleared and we are back to the all-zero
state.¿is method has the same e�ect on the parity bits as the method we presented
but the systematic bits are in general not zero, hence, increasing the weight of the
codeword. Problem 6.18 discusses how the weight distribution can be calculated for
this termination method.

¿ere is a large number of alternatives. ¿ey di�er in which of the component
encoders is terminated, how the termination is achieved, and whether or not tail
bits are transmitted: Joerssen andMeyr [45], Barbulescu and Pietrobon [5], Blackert,
Hall, and Wilson [13], Reed and Pietrobon [65], Hattori, Murayama, and McEliece
[41], Khandani [48], van Dijk, Egner, and Motwani [81], Le Dantec and Piret [25],
Tanner [79], McEliece, Le Dantec, and Piret [55], Huang, Vucetic, Feng, and Tan
[84], Le Bars, Le Dantec, and Piret [50], and Anderson and Hladik [3]. A summary
and comparison of many of the proposed termination schemes was written by Hok-
felt, Edfors, and Maseng [42].

It is worth pointing out that in classical coding the code itself plays the central
role, whereas for iterative systems more prominence is due to the encoder.

Turbo codes were introduced together with the corresponding turbo decoding
algorithm by Berrou, Glavieux, and¿itimajshima in [11]. ¿is paper set o� a revo-
lution in coding and, more generally, communications and lead to the rediscovery
of Gallager’s thesis. ¿e importance of the introduction of turbo codes on the de-
velopment of coding cannot be overstated. Very soon a er the introduction of their
original scheme for binary transmission, Le Go�, Glavieux, and Berrou showed in
[39] that the same principle can be applied for non-binarymodulation and it quickly
became clear that the turbo-principle, as Hagenauer termed it in [40], had wide ap-
plicability.

Wiberg introduced the notion of a support tree which is our computation tree
[82]. An early paper that recognized the role of the computation tree is by Gelblum,
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Calderbank, and Boutros [38]. ¿e method of analysis (concentration around en-
semble average and asymptotic analysis via density evolution) presented in Sec-
tion 6.4 is due to Richardson and Urbanke [67]. An alternative route for the anal-
ysis is the geometric interpretation of the turbo decoding algorithm introduced by
Richardson [66] and followed up by Agrawal andVardy [2], and Kocarev, Lehmann,
Maggio, Scanavino, Tasev, and Vardy [49]. Turbo codes can also be analyzed from a
statistical mechanics point of view.¿is was accomplished byMontanari and Sourlas
[58]. ¿e basis for this analysis is the observation by Sourlas that codes can be
phrased in the language of spin-glass systems [75].

¿eweight distribution of turbo codes has been studied by a large set of authors.
Probably one of themost important stepswas the realization byBenedetto andMon-
torsi that, although the weight distribution of individual codes is hard to determine,
the average weight distribution of the ensemble is relatively easy to compute [10, 9].
¿is was the beginning of the ensemble average analysis. With few exceptions, most
analytic results for iterative decodes are due to this ensemble point of view. Much
of what we discuss in Section 6.9 has been the topic of investigation in [10]. Similar
concepts were discussed around the same time by Perez, Seghers, and Costello in
[60]. In particular, [9] as well as [60] both contain the error �oor expressions for
the parallel case.¿e average value analysis was re�ned by Baligh and Khandani [4]
as well as Richardson and Urbanke [68] to include the distribution of low-weight
codewords. ¿e limiting Poisson distribution of the number of minimal codewords
stated in Lemma 6.49 is similar in spirit to the distribution of cycles in the turbo
graph which was studied by Ge, Eppstein, and Smyth in [37]. In the derivation of
the average weight distribution of convolutional codes in Section 6.9.1 we follow
the description of McEliece in [54] and employ the transfer matrix method. It was
shown by Sason, Telatar, andUrbanke [73, 74] how to e�ciently compute the growth
rate of the weight distribution. In this respect it is interesting to note that Bender,
Richmond, andWilliamson showed in [7] that one can derive central and local limit
theorems also for the growth of the components of the power of a matrix. ¿is al-
lows one in principle to apply Hayman-like techniques to the problem of the weight
distribution of turbo codes in a similar manner as we discuss this in Appendix D
for the weight distribution of LDPC ensembles. Muchmaterial on the weight distri-
bution problem (including Problem 6.17) can be found in the Ph.D. thesis by P�ster
[62].

¿e average weight distribution was used by a large number of authors to derive
upper bounds on the performance of maximum-likelihood decoders. Since the cor-
responding list of references is considerable we cite Sason and Shamai [72], where
the reader can �nd an extensive literature review.

¿eminimumdistancewas investigated byKahale andUrbanke in a probabilistic
setting [47]. In particular, it was shown that theminimumdistance of typical parallel
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concatenated turbo codes with two component codes grows atmost logarithmically.
¿e �rst worst case upper bound was the O(ºn) bound proposed by Breiling and
Huber [17]. It has since been improved toO(n1~3) and, �nally, toO(logn) in [18, 6].
¿is is the result we present in Section 6.9.4. A similar logarithmic bound was also
shown by Perotti and Benedetto [61]. ¿e material in Section 6.9.4 follows closely
the results of Breiling and Huber. Conversely, Truhachev, and Lentmaier, Wintzell,
and Zigangirov give in [80] an explicit construction of a permutation that leads to a
minimum distance that grows like Θ(logn) (see also the work of Boutros and Zé-
mor [15] ). ¿is is quite pleasing since the combination of the upper bound on the
lower bound show that the optimum growth of the minimum distance as a function
of the blocklength is Θ(logn). A very general and fundamental bound which re-
lates the complexity of the encoding process with the resulting minimum distance
is due to Bazzi and Mitter [6]. Algorithms to compute the low-weight terms of the
weight distribution for a speci�c turbo code were discussed by Perez, Seghers, and
Costello [60], Breiling and Huber [16], Berrou and Vaton [12], Garello, Pierleoni,
and Benedetto [36], Garello and Casado [35], Crozier, Guinand, and Hunt [22, 23],
and Rosnes and Ytrehus [69].

¿e stability of speci�c turbo code ensembles was �rst studied byMontanari and
Sourlas in [58]. ¿e general stability condition as stated in Conjecture 6.25 is due to
Richardson andUrbanke [68]. Lentmaier, Truhachev, Zigangirov, and Costello state
in [51] a su�cient condition for a turbo code that the bit error probability converges
to zero by tracking the evolution of the Bhattacharyya parameter.

An important practical question which we have not discussed is the choice of
the permutation(s) π. ¿is is typically referred to as the interleaver design problem.
It is probably fair to say that there are more papers written on this issue than on any
other topic in iterative decoding. We will not even attempt to summarize the state
of a�airs, but simply give a number of pointers to the literature. ¿e aim of most
interleaver designs is to construct permutations with a large minimum distance.
Under MAP decoding such an interleaver guarantees a low error �oor. A popular
class of interleavers are the so-called S-random interleavers which require that for
the permutation π the sum Si − jS + Sπ(i) − π(j)S is lower bounded for all distinct
pairs (i, j) (there are several variants of this de�nition in the literature). ¿e intu-
ition for this restriction is simple. Consider a convolutional encoder and inputs of
weight two. If the two non-zero positions are in a general position then the encoder
produces an output weight which is proportional to the length of the encoded se-
quence and we do not need to worry. However, if we place the inputs a multiple of
the period of the encoder apart, then the corresponding output has a weight which
is proportional to the length Si − jS. ¿e same argument is true for the permuted
tuple (π(i),π(j)). ¿e lower bound on Si − jS + Sπ(i) − π(j)S therefore translates
directly into a lower bound on the weight due to inputs of weight two. As we have
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seen in our discussion on the weight distribution, for a “random” permutation the
number of low-weight codewords is asymptotically determined by such input pairs
of weight two. It is therefore intuitive that the above restriction should lead to an
increased (as compared to random interleavers) minimum distance. ¿e condition
on the permutation does not depend on the component codes (in particular the pe-
riod of the component codes). S-random permuters are therefore universal. On the
other hand, they are not optimized with respect to the particular components that
are used. S-random permuters were introduced by Divsalar and Pollara [27], with
follow-up work by Fragouli andWesel [33], Crozier [20], Dinoi and Benedetto [26],
Breiling, Peeters, and Huber [19], and Sadjadpour, Sloane, Nebe, and Salehi [71].
Dithered relative prime interleavers were introduced by Crozier and Guinand [21].
Quadratic interleavers were proposed by Sun and Takeshita [76].

Alternatively, one can directly optimize the minimum distance for a given com-
ponent code. As samples of this approach we refer to the papers by Yuan, Vucetic
and Feng [83], Daneshgaran and Mondin [24], Le Ruyet, Sun, and ¿ien [70], Ab-
basfar and Yao [1], and Ould-Cheikh-Mouhamedou, Crozier, and Kabal [59].

Explicit constructions were given by Takeshita and Costello [78], and Le Bars,
Le Dantec, and Piret [50].

A word of warning: there is no guarantee that under iterative decoding the error
�oor is solely due to codewords (and not pseudo-codewords).

As discussed in the text, there are uncountable many �avors of the basic theme.
Serially concatenated codes were introduced by Benedetto, Divsalar, Montorsi, and
Pollara [8]. Asymmetric turbo codes were suggested by Takeshita, Collins, Massey,
and Costello, [77]. Big numerator codes were introduced by Massey, Takeshita, and
Costello [52] and independently discovered by Huettinger, ten Brink, and Huber
[44]. It was suggested by Hokfelt and Maseng [43] to optimize the energy which is
assigned to the various streams (systematic and parity) of turbo codes. ¿e same
idea was investigated also by Duman and Salehi in [28]. Irregular turbo codes were
�rst suggested by Frey and MacKay [34] and optimized versions were presented by
Boutros, Caire, Viterbo, Sawaya, and Vialle [14]. Examples 6.59 and 6.64 are due to
Méasson and appeared in [56, 57].

Implementation issues concerning turbo codes are discussed by Pietrobon [63].

Problems

6.1 (MoreGeneral Convolutional Encoders). Consider the convolutional en-
coder in Figure 6.65.¿is convolutional encoder is a rate one-half non-recursive en-
coder that hasm = 2. For any memorym, let σi denote the state vector at time i and
let xp,qi = (xpi ,xqi ) be the length two output vector at time i. Write down the general
form of the state equations (6.2) and specify the corresponding matrices in terms of
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xs
xp
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D D

Figure 6.65: Binary feed-forward convolutional encoder of memorym = 2 and rate
one-half de�ned by (p(D) = 1 + D + D2,q(D) = 1 + D2).

the �lter coe�cients. Draw one labeled trellis section.

6.2 (Viterbi Versus BCJR). Explain why the Viterbi algorithm only needs two
passes (running over the FSFG once from lets say le to right and then backtrack-
ing), whereas in the BCJR we needed three passes (one forward, one backward, and
one decision step)?

6.3 (StateProbability inTrellis). Consider the trellis shown in Figure 6.8.Using
the results of the α and β recursion shown – what is pΣ3 SYs,Yp((0,0) S ys, yp)?
6.4 (Proof of Equivalence Relationships). Prove¿eorem 6.19.

6.5 (Symmetric Turbo Schedule for Parallel Concatenation). Consider it-
erative decoding of an element from the ensemble P(G,n, r) using the following
“symmetric” turbo schedule: one decoding round consists of running in parallel
one complete BCJR algorithm on each component code and then exchanging the
messages via the interleaver.

Draw the computation tree for one iteration assuming windowed decoding with
w = 1.

Prove that the threshold for this symmetric turbo schedule is identical to the
threshold for the standard turbo schedule discussed in the main text.

Hint: Show that the computation tree for the symmetric turbo schedule is in-
cluded in the computation tree of the standard turbo schedule for a su�ciently large
number of iterations, and vice versa. Use the fact that on the computation tree iter-
ative decoding is optimal.

6.6 (Iterative Decoding and FSFG for S(Go,Gi,n, r)). Consider the ensemble
S(Go,Gi,n, r) and optimal bit-wise decoding. Write the decision map

x̂MAP
j (ysi , ypi)

in factorized form. Show that the corresponding FSFG is the one depicted in Fig-
ure 6.66. Label the various elements of the FSFG with the corresponding factors.
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Figure 6.66: FSFG for the optimal bit-wise decoding of S(Go,Gi,n, r).

6.7 (Density Evolution for Serially Concatenated Ensembles). Consider
the density evolution equations for the ensembleS(Go,Gi,n, r)when transmission
takes place over a BMS channel with L-density aBMSC. Assume that no puncturing is
performed on the output of the outer encoder. Consider the following schedule: in
each even iteration we perform one complete decoding pass on the outer code (le 
part in Figure 6.66); in each odd iteration we perform one complete decoding pass
on the inner code (right part in Figure 6.66). In between iterations, themessages are
exchanged via the interleaver. Let bℓ denote the density emitted from the trellis in
the ℓ-th iteration of density evolution and let cℓ = aBMSC e bℓ. Argue that b0 = ∆0,
and that for ℓ C 1

bℓ =

¢̈̈
¦̈̈
¤
ΓsGi(cℓ−1,aBMSC), ℓ odd,
1
2�ΓsGo(cℓ−1,cℓ−1) + ΓpGo(cℓ−1,cℓ−1)�, ℓ even.

6.8 (Computation Graph of S(Go,Gi,n, r)). Draw the computation graph for
S(Go,Gi,n, r) corresponding to windowed (w = 1) iterative decoding for two iter-
ations and the schedule indicated in Problem 6.7.

6.9 (Recursion for Computation of Weight Distribution). ¿e generating
function A(x, y, z) introduced on page 351 completely speci�es the weight distribu-
tion ai,o,n and in principle we can derive from it any desired term by long division.
¿is method quickly runs into computational limitations though. A more e�cient
way of determining ai,o,n is to note that the rational function gives rise to a recur-
sion. Assume that we have

A(x, y, z) = α(x, y, z)
β(x, y, z) ,

so that

(6.67) A(x, y, z)β(x, y, z) = α(x, y, z).
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Without loss of generality we can assume that β has the form

β(x, y, z) = 1 + Q
i,o,nC1

βi,o,nxiyozn.

If we expand the le side of (6.67) explicitly as a sum and compare terms we see that
we have

ai,o,n = αi,o,n − Q
i′ ,o′ ,n′C1

βi′ ,o′ ,n′ai−i′ ,o−o′ ,n−n′ ,

where the recursion is valid for any triple (i,o,n) if we assume that all coe�cients
are zero if any of the indices is negative. Assuming that we are interested in the
weight distribution for a particular value of n, the complexity of the recursion is
O(n2) in space and O(n3) in time.

Use this method to compute the terms of A(x, y, z) up to and including z2 for
the encoder C(G = 7~5,n) (see Example 6.36).

6.10 (Weight Distribution of C(G = 7~5,n) and Alternating Puncturing).
Consider theweight distribution ofC(G = 7~5,n)wherewe puncture all even parity
bit positions. Assuming that we only look at codes of even length, write down a
general expression for A(x, y, z). Show that the �rst few terms of A(x, y, z) are

A(x, y, z) = 1 + �1 + 2 x y2 + x2 y2� z2+
�1 + x y�1 + 3 y+ x ��1 + y� �1 + 2 y� + x �2 + y2 �1 + x + y����� z4 +O(z6).

6.11 (Weight Distribution of C(G,n) and Puncturing). Let A(x, y, z) be the
generating function of the input-output weight distribution of the codeC(G,n). Let
Aα(x, y, z)denote the corresponding generating function for the punctured ensem-
ble in which each parity bit is punctured independently with probability α. Prove
that Aα(x, y, z) = A(x, yᾱ + α, z).

6.12 (Detour Generating Function for Punctured Codes). Consider the de-
tour generating function for punctured ensembles. Show that for random punctur-
ing we have Dα(x, y) = D(x, yᾱ + α), whereas for alternating puncturing we have

2(1 − D(x, y)) = 1
�(I −M•(x, y)M•(x, y = 1))−1�I +M•(x, y)��0,0
+

1
�(I −M•(x, y = 1)M•(x, y))−1�I +M•(x, y = 1)��0,0

.
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6.13 (Expected Weight Distribution of S(Gi,Go,n, r)). Consider the ensem-
ble S(Gi,Go,n, r). Let Ai(x, y, z) and Ao(x, y, z) denote the generating functions
corresponding to the input-output weight distribution of the inner and outer code,
respectively, where we assume that the appropriate puncturing has been performed.
Let S(x, y, z) = Pi,o,n si,o,nxixozn denote the generating function corresponding to
the expected input-output weight distribution of S(Gi,Go,n, r), where the expec-
tation is taken over all interleavers. Show that

si,o,n =
Pjaoi,j,na

i
j,o,n

�nj�
.

6.14 (Matrix Series). Consider the formal power sumPnC0M(x)nyn, whereM(x)
is a symbolic square matrix in the variable x over some �eld F (see Appendix D).
Show that over the ring of formal power sums we have

Q
nC0

M(x)nyn = (I − yM(x))−1,

where I is the identity matrix.
Note: In Appendix D we assume that the coe�cients of a power sum are ele-

ments of a �eld. In fact, all that is needed that they are elements of a ring.

6.15 (q(x) divides 1+xd). Let q(x) be a polynomial over F2 with q0 = 1. Show that
there exists an integer d such that q(x) divides 1 + xd. Show that d B 2deg(q) − 1.

Hint: Consider the set xi mod q(x) for i = 0,� ,2deg(q) − 1.

6.16 (Parallel Turbo Code Ensemble with k Components). De�ne a parallel
concatenated turbo code ensemble with k components, k > N, analogous to the case
k = 2 discussed on page 335. Draw the encoder diagram equivalent (Figure 6.13 for
k = 2) and the FSFG for the optimum bit-wise decoding (Figure 6.15 for k = 2).
What is the “natural” rate of this ensemble assuming no puncturing? Consider a
decoding schedule in which we perform in parallel one complete decoding pass on
each branch and then exchange the messages via the interleavers. Write down the
density evolution equations for this schedule. Finally, derive the stability condition.

6.17 (Asymptotic Growth Rate of Weight Distribution - Pfister [62]). In
Figure 6.39 we plotted limn�ª

1
n log2(aw,n). Let us discuss how this limit can be

computed in an e�cient manner.
Note that when the blocklength tends to in�nity the e�ect of the speci�c termi-

nation scheme vanishes. ¿erefore, we only need to compute

lim
n�ª

1
n
log coef�[Mn(x)]0,0,xnω�.
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Let 2m be the number of states. Assume that the matrix M(x) is diagonalizable so
that we can write the identity

Mn(x) =
2m

Q
i=1
λni (x)Li(x),

where λi(x) is the i-th eigenvalue and Li(x) is thematrix formed by the outer prod-
uct of the corresponding i-th le and right eigenvector. Suppose that we have the
ordering λ1(x) A Sλ2(x)S C � C Sλ2m(x)S for all x > R, i.e., λ1(x) is the strictly
largest eigenvalue (it has to be real).

Argue that

lim
n�ª

1
n
log coef�[Mn(x)]0,0,xnω� = lim

n�ª

1
n
log coef�λn1(x),xnω�.

¿erefore, if λ1(x) is Hayman admissible (see De�nition D.5 on page 516) then we
can use the Hayman method to compute the asymptotic growth rate.

Apply this idea to compute limn�ª
1
n log2(aw,n) for the code C(G = 1~3,n).

For larger examples it is in general di�cult to compute λ1(x) symbolically as a
function of x but it is easy to compute it numerically for a given value of x. In or-
der to determine the growth rate via the Hayman method we need not only λ1(x)
but also its derivative λ′1(x). Show that this derivative can be computed in the fol-
lowing way: let p(x, z) be the characteristic polynomial, p(x, z) = det(M(x) −
zI). E.g., for the code C(G = 1~3,n) we get p(x, z) = x − x3 − z − xz + z2.
Let dp(x, z) = a(x, z)dx + b(x, z)dz denote the total derivative of p(x, z), where
a(x, z) = ∂p(x, z)~∂x and b(x, z) = ∂p(x, z)∂z. Set dp(x, z) = 0, and solve for
dz~dx so that dz~dx = −a(x, z)~b(x, z). For our speci�c example we get dz~dx =
1−3x2−z
1+x−2z . Show that λ′1(x) = −a(x, z)~b(x, z) S z=λ1(x). ¿is method of computing
λ′1(x) works o en even if we cannot compute λ1(x) symbolically. ¿is is true since
the characteristic polynomial can be computed symbolically for relatively large ma-
trices.

6.18 (WeightDistribution forAlternative Termination Scheme). Consider
a convolutional code with rational function G and the alternative termination dis-
cussed in the Notes. Instead of terminating the feedback for the last m steps and
setting the input to zero, we keep the feedback and set the input in the last m steps
to be equal to the feedback signal.

Using the matrix transfer method as introduced on page 351, express the weight
distribution for this case in terms of a generating function. Apply your general for-
mula to the example G = 7~5.
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Chapter 7

G E N E R A L E N S E M B L E S

We shi our focus in the direction of practical design considerations, achieving best
possible performance. Although we have used the framework of irregular LDPC
ensembles throughout this book, the notion of “irregularity” we have employed is
not the most general possible and the best performing structures are not properly
captured in that framework.

We start by presenting in Section 7.1 a generalization of irregular LDPC ensem-
bles calledmulti-edge type LDPC ensembles. In principle, any of the ensembles sug-
gested to date can be represented in this form and we demonstrate this discussing a
few examples.

In Section 7.2 we review the theory surrounding these ensembles. It is largely
the same as for the standard irregular case, which is why we have avoided using this
more complex notion so far. ¿e multi-edge type generalization enjoys several ad-
vantages. With multi-edge type LDPC codes one can achieve better performance at
lower complexity. ¿e generalization is especially useful under extreme conditions
where standard irregular LDPC codes do not fare so well. Examples of these condi-
tions include very low code rates, high rate codes that target very low bit error rates,
and codes used in conjunction with turbo equalization schemes.

We discuss in Section 7.3 an alternative way of describing structured ensembles.
¿ese ensembles are the result of li ing a very small graph to a large graph by �rst
replicating the structure of the small graph a large number of times and then by
choosing the connections between these copies in a random way. ¿e advantage
of this construction is that both the encoder as well as the decoder can exploit the
underlying structure.

Section 7.4 introduces non-binary LDPC codes. To keep the exposition sim-
ple we focus on non-binary codes for transmission over binary channels, but these
codes are of course also of interest for transmission over non-binary channels.

Finally, we discuss in Section 7.5 the dual of LDPC codes, namely low-density
generator-matrix (LDGM) codes. On their own these codes have limited perfor-
mance since by their very de�nition they necessarily contain some very low-weight
codewords. But if we precode them to clean up the error �oor the performance can
be remarkably good. More importantly, an important generalization of precoded
LDGM codes leads to the concept of rate-less codes. Rate-less codes are ideally
suited for the purpose of broadcasting or in situations where the channel quality
varies widely and a (very low rate) feedback channel is available.

383
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384 general ensembles

§7.1. Multi-Edge Type LDPC Codes: Definition
§7.1.1. Introduction

¿e basic idea of multi-edge type LDPC ensembles is conveyed by the modi�er
multi-edge type. In standard irregular LDPC ensembles the graph connectivity is
constrained only by the node degrees. In the multi-edge type setting we de�ne sev-
eral edge (equivalence) classes and every node is characterized by its number of
sockets in each class.Only sockets of the same class can be connected by an edge.¿is
gives considerable control over the graph. In fact, as an extreme case it is possible, in
this framework, to specify a particular graph. ¿at such a further speci�cation can
potentially improve the performance is easily seen. Recall from the analysis of stan-
dard LDPC ensembles that optimized (with respect to the threshold) degree distri-
butions contain a signi�cant fraction of degree-two edges. Given the importance of
degree-two edges, it is natural to conjecture that degree-one edges could bring fur-
ther bene�ts. In the standard irregular framework, because of the random nature of
the edge placements, such degree-one edges inadvertently lead to error probabilities
bounded away from zero (see Problem 3.6). If, on the other hand, we carefully place
these degree-one edges (e.g., by assuming that each check node contains atmost one
connection into a degree-one edge) then we can reap the bene�ts and at the same
time circumvent the related problems. ¿e multi-edge type framework provides a
convenient language for expressing and optimizing such constraints.

§7.1.2. Parametrization

Amulti-edge ensemble is comprised of a �nite numberme of edge types. ¿e degree
type of a check node is a vector of (non-negative) integers of length me, the i-th
entry of this vector records the number of sockets of the i-th edge type. We shall
also refer to this vector as an edge degree. ¿e degree type of a variable node has two
parts. ¿ese are of length me and mr + 1, respectively. ¿e �rst part speci�es the
edge degree: it plays the same role as for check nodes – edges of a given type can
only connect to sockets of the same type. ¿e second part relates to the received
distribution: di�erent node types may have di�erent received distributions, i.e., the
associated bits may go through di�erent channels.¿is is convenient, e.g., if we look
at punctured bits in which case the corresponding channel is the binary erasure
channel with erasure probability one. To each i, i = 0,� ,mr, there is an associated
BMS channel with L-density aBMSCi . ¿e channel for i = 0 plays a special role. We
assume that aBMSC0 = ∆0. In words, this channel corresponds to punctured bits.

To represent the structure of the graph we introduce a node-perspective multi-
nomial representation. We interpret degrees as exponents. Let d = (d1, ...,dme) be
a multi-edge degree and let x = (x1, ...,xme) denote a vector of variables. We use
xd to denote Lme

i=1 x
di
i . Similarly, let b = (b0, ...,bmr) be a received degree and let
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r = (r0, ..., rmr) denote variables corresponding to received distributions. By rb we
mean Lmr

i=0 r
bi
i . We assume in the sequel that received degrees b have exactly one

entry set to 1 and the rest set to 0. ¿e seemingly more general case in which a node
has several observations is easily cast in this framework since every combination of
BMS channels is again a BMS channel.

A graph ensemble is speci�ed through twomultinomials, one associated to vari-
able nodes and the other associated to check nodes. With some abuse of notation,
we denote these multinomials by

L(r,x) =QLb,drbxd, R(x) =QRd xd,

where coe�cients Lb,d and Rd, are non-negative reals. We will now interpret the
coe�cients. Let n be the block-length, i.e., the length of the codeword. ¿is is in
general not equal to the number of variable nodes in the graph since punctured bits
are not included in the codeword but are included in the graph. For each variable
node degree type (b,d) the quantity Lb,dn is the number of variable nodes of type
(b,d) in the graph. Similarly, for each check node degree type d the quantity Rdn
equals the number of check nodes of type d in the graph. Further, de�ne

Lri(r,x) =
dL(r,x)
dri

, Lxi(r,x) =
dL(r,x)
dxi

, Rxi(x) =
dR(x)
dxi

.

¿e coe�cients of L and R are constrained to ensure that the number of sockets
of each type is the same on both sides (variable and check) of the graph. ¿is gives
rise to me linear conditions on the coe�cients of L and R as follows. First, we have
the socket count equality constraints

Lxi(1,1) = Rxi(1), i = 1,� ,me .(7.1)

(We use 1 to denote a vector of all 1’s, the length being clear from the context.) If
we assume that the i-th channel is used for a fraction (with respect to n) ξi of the
transmitted bits, then we have the received constraints

Lri(1,1) = ξi, i = 1,� ,mr ,(7.2)

where the ξi are given positive constants satisfying Pmr

i=1 ξi = 1. In the special case
that there is a single channel then this constraint reduces to Lr1(1,1) = 1. Note that
Lr0 is not directly constrained. ¿e design rate is given by

r = L(1,1) − R(1) .(7.3)

To see that this is the design rate, note that if we multiply r by n then we get the
number of variable nodes in the graph minus the number of check nodes. ¿is is,
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nominally, the number of independent variable nodes. Dividing this by n, the length
of the codeword, is, by de�nition, the design rate. Fixing the design rate amounts to
imposing a linear constraint on the parameters.

As we have seen, all key functionals and constraints on the parameters are lin-
ear. ¿us, even a er �xing the design rate, the space of admissible parameters is a
convex polytope. Extreme points may be easily found using linear programming.
¿is aspect is useful when optimizing the parameters.

Consider enumerating the sockets on both sides of the graph in some arbitrary
manner. Let the total number of sockets on either side of the graph be K = K1 +

K2 + ... + Kme , where Ki is the number of edges of type i. A particular graph is
determined by a permutation π on K letters such that socket i on the variable node
side is connected to socket π(i) on the check node side. Further, we constrain socket
π(i) to be of the same type as socket i.¿us, π = (π1, ...,πme) can be decomposed
intome distinct permutations where πi is a permutation on Ki elements.

¿e ensemble of graphs under consideration is de�ned by viewing πi as a ran-
dom variable distributed uniformly over the set of all permutations on Ki elements,
where the permutations for di�erent edge types are independent.

§7.1.3. Some Examples

Example 7.4 (Standard Irregular Codes). Consider a standard irregular LDPC
ensemble characterized by its edge degree distribution pair (λ, ρ). Assume that all
bits are transmitted over the same BMS channel and that no bits are punctured. In
this case we have only a single edge type, so that x = x1. Also, there is only a single
BMS channel, so that r = r1. We therefore get

L(r,x) = L(r1,x1) = r1 R
x1
0 λ(z)dz
R λ

, R(x) = R(x1) = R
x1
0 ρ(z)dz
R λ

.

Note the normalization of R(x1).¿is is so that R(1) = (1−r), where r is the design
rate, and R(1)n gives the number of check nodes in the graph.

We have seen examples of Tanner graphs of LDPC codes throughout this book.
Nevertheless, to facilitate the comparison with more general ensembles we depict a
further such Tanner graph in Figure 7.5. n

Example 7.6 (Repeat-Accumulate Codes). Repeat-accumulate (RA) codes were
originally introduced as a “stripped-down” version of turbo codes (see Notes at the
end of this chapter). It has since been recognized that these are powerful codes them-
selves. Since their introduction a staggering number of variants on the basic theme
has been proposed, a select few of which we discuss.

¿e codes are de�ned as follows. Let xs1, ...,x
s
m be a sequence of m information

bits. ¿ese bits form the systematic part of the codeword. To generate the parity
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permutation π

Figure 7.5: Tanner graph of a standard irregular LDPC code.

part, repeat each bit l times to obtain a sequence of lm bits. Order this sequence
according to a permutation π. Encode the thus ordered sequence using a 1~(1 +
D) convolutional encoder (accumulate). An additional bit is appended at the end
to force the encoder into the ‘0’ state. If no bits are punctured then the resulting
codeword has length m + lm + 1. If all the systematic bits are punctured then a
codeword is of lengthlm+1.¿ese are the twomost commonversions, but of course
more general puncturing schemes are possible. ¿e encoding scheme is shown in
Figure 7.7.

l

repeat
π

permute
1~(1 + D)

accumulate

xs

xp

Figure 7.7: Encoder for an RA code. Each systematic bit is repeated l times, the re-
sulting vector is permuted and fed into a �lter with response 1~(1+D) (accumulate).

¿e code may also be represented as a low-density parity-check code as shown
on the right of Figure 7.8 in which each check node (except for the two “end” nodes)
has degree 3. ¿e check nodes are connected by a chain of degree 2 nodes, and
the systematic bits are nodes of degree l. From this point of view an RA code is a
check 3-regular LDPC code with variable degrees 2 and l and where all degree-two
variable nodes are arranged “in a chain.” Because of the particular structure we can
think of the degree-two variable nodes as the parity bits and the degree l ones as the
systematic bits. In this construction it makes sense to consider a slight modi�cation
in which the chain is extended to a ring so that all check nodes have degree 3. ¿e
additional two edges are shown as dashed lines in Figure 7.8.

¿ere are two edge types, those connected to systematic bits and those con-
nected to check bits. We introduce two variables x1 and x2 accordingly. ¿e poly-
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systematic part³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
parity part

permutation π

Figure 7.8: Tanner graph of an RA code with l = 3.

nomials for this ensemble are

L(r,x) = r1x21 +
1
l
r0xl2 , R(x) = x21x2,

if we consider the punctured case. For the unpunctured case this changes to

L(r,x) = l

l + 1
r1x21 +

1
l + 1

r1xl2 , R(x) = l

l + 1
x21x2.

¿ere is a subtle di�erence between the polynomial description we just gave and
the graph shown in Figure 7.8. ¿e polynomial description only enforces the local
connectivity but can of course not enforce that all degree-2 variable nodes are con-
nected in one cycle. Indeed, de�ne the ensemble of RA codes by endowing the set of
permutations with a uniform probability distribution. If we pick a code at random
from this ensemble then for increasing lengths the permutation between the degree-
2 variable nodes and the check nodes will break into typically Θ(ln(n)) cycles so
that in average each cycle has length Θ(n~ ln(n)). ¿e di�erence to the case of a
single cycle can be signi�cant if we are interested in the behavior of the error �oor
but it has no in�uence on the result of density evolution. Similar remarks apply to
many of the other ensembles which we discuss in the sequel. n

Example 7.9 (Irregular Repeat-Accumulate Codes). In the previous example
we have seen that RA codes are check 3-regular LDPC codes, with degree-2 and
degree-l variable nodes, where the degree-2 variable nodes are arranged in a cycle.
Irregular repeat-accumulate (IRA) codes are a natural generalization of this concept
in which we allow general degree distributions but still insist that there is a ring
formed by the degree-2 variable nodes. ¿e corresponding Tanner graph is shown
in Figure 7.10. Again two edge types are needed, namely one for edges connected to
variable nodes in the ring and one for the remaining edges. Consider the case of no
puncturing. If we let (λ, ρ) denote the degree distribution pair which describes the
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degree 2 variables³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µdegree 3 variables³¹¹¹¹¹¹·¹¹¹¹¹µ degree lmax variables³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

permutation π

Figure 7.10: Tanner graph corresponding to an IRA code.

“LDPC part” of the IRA ensemble, i.e., the part of the graph excluding the ring, then
we get

L(r,x) = Rρ
Rλ+ Rρ

r1x21 +Q
i

λi
i(Rλ+ Rρ)

r1xi2,

R(x) =Q
i

ρi
i(Rλ+ Rρ)

x21x
i
2.

More generally, some of the variable nodes (either in the ring or outside the ring)
may be punctured which changes the degree distributions accordingly. n

Example 7.11 (Accumulate-Repeat-Accumulate Codes). Another natural ex-
tension of RA ensembles is the ensemble of accumulate-repeat-accumulate (ARA)
codes. ¿e Tanner graph of this ensemble is shown in Figure 7.12. Here two “rings”

permutation π

Figure 7.12: Tanner graph of an ARA code.

are added which explains the double “accumulate” in the name. To describe this
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ensemble we need four edge types, one for each level of the edges. Clearly, a large
number of variations is possible based on the choice of degree distributions and the
choice of puncturing. n

Example 7.13 (Low-DensityGeneratorMatrixCodes). Letmdenote the num-
ber of information bits and n the number of code bits. Each code bit is generated as
a linear combination of the information bits via a bipartite graph and all informa-
tion bits are punctured. A generic such Tanner graph is shown in Figure 7.14 and
a speci�c case is drawn in Figure 7.15. Two distinct edge types are needed. For the
speci�c case we have n = 7 and the degree distribution is given by

L(r,x) = 4
7
r0x31 + r1x2, R(x) = 3

7
x1x2 +

3
7
x21x2 +

1
7
x31x2.

¿e design rate is r = m
n . Contrary to the case of LDPC codes, the design rate for

information word (punctured)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
codeword

permutation π

Figure 7.14: Tanner graph of an irregular LDGM code.

x1 = u1 + u4
x2 = u1
x3 = u3
x4 = u1 + u2 + u3
x5 = u3
x6 = u2 + u4
x7 = u3 + u4

u1

u2

u3

u4

Figure 7.15: Tanner graph of a simple LDGM code.

LDGMcodes is always anupper bound.Wewill havemuchmore to say about LDGM
codes in Section 7.5. n
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Example 7.16 (MN or Compound Codes). MN codes are the fusion of an LDGM
with an LDPC code. ¿is is best seen in the Tanner graph which is shown in Fig-
ure 7.17.¿e LDPC code is of rate one and the correspondingmatrix must be invert-
ible. To separate the two subgraphs more clearly, imagine instead of the one layer of

information word (punctured)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
codeword

permutation of LDPC part

permutation of LDGM part

Figure 7.17: Tanner graph of an MN code.

check nodes which has inputs from both top and bottom, two layers of check nodes
with an intermediate layer of variable nodes. Each of these intermediate variable
nodes is connected to exactly one of the top and exactly one of the bottom check
nodes. Let s be the vector that corresponds to the intermediate variable nodes.

With this picture inmind, the information word, call it xs, is �rst translated into
the intermediate word s by means of an LDGM code, i.e., we have s = xsG, whereG
is the sparse matrix that corresponds to the LDGM code. ¿is intermediate word s
is then used as a syndrome for the subsequent LDPC code. More precisely, we have
the relationship H(xp)T = sT , where H is the sparse matrix that corresponds to
the LDPC code. For each given s we want the second relationship to yield a unique
xp. ¿is implies that the matrix Hmust be invertible and so that the LDPC code is
of rate one. ¿e global relationship between input and output is xp = xsG(H−1)T .
Super�cially, looking at the last relationship, it looks as if the resulting code is again
a LDGM code. But in general (H−1)T is not sparse even if H has this property. n

§7.2. Multi-Edge Type LDPC Codes: Analysis
§7.2.1. All-One Codeword Assumption, Tree-Like Computation Tree, and

Concentration

Drawing from our experience with LDPC ensembles we can quickly dispense some
of the preliminary steps of the asymptotic analysis.
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First, assuming that all channels are BMS channels and that themessage-passing
decoder obeys the symmetry condition speci�ed in De�nition 4.83, Lemma 4.92
(which still applies) shows us that the conditional probability of error is independent
of the transmitted codeword. Hence, we can analyze the performance with respect
to the all-one codeword.

Next, if we �x the number of iterations and let (for a �xed type) the blocklength
n tend to in�nity then the computation graph is a tree with probability one. ¿is
enables us to �nd the asymptotic performance in terms of density evolution.

Finally, following the standard arguments, one can show that the performance
of individual graph instances and channel realizations concentrates around the en-
semble average. Hence, at least for large lengths the ensemble average is indicative
of the performance of typical codes.

§7.2.2. Density evolution

Let us write down the density evolution equations. In our current setting we re-
quire one density for each edge type. We therefore consider vectors of L-densities
a = (a1, ...,ame), where ai is the density of messages carried on edge type i. By ∆0
we mean a vector of densities where each density is ∆0. Similarly, by ∆ª we mean
a vector of densities where each density is ∆+ª. We introduce the following multi-
nomials:

λ(r,x) = �Lx1(r,x)
Lx1(1,1)

,
Lx2(r,x)
Lx2(1,1)

, ...,
Lxme
(r,x)

Lxme
(1,1)� ,

ρ(x) = �Rx1(x)
Rx1(1)

,
Rx2(x)
Rx2(1)

, ...,
Rxme
(x)

Rxme
(1)� .

(7.18)

Example 7.19 (Standard IrregularLDPCCodes). Consider a standard irregular
LDPC code with degree distribution pair (λ, ρ). We then get

λ(r,x) = (r1λ(x1)), ρ(x) = (ρ(x1)).
¿is agrees with our standard notation, except that we have introduced a variable
representing received distributions into the arguments of λ. Previously, the received
distribution was not an argument of λ. n

Example 7.20 (RA Codes). For unpunctured RA ensembles discussed in Exam-
ple 7.6 we have

λ(r,x) = (r1x1, r1xl−12 ), ρ(x) = (x1x2,x21). n

In order to describe density evolution in a compact way it is useful to introduce
a notation where we replace the vectors of variables r and x with vectors of densities

Preliminary version – October 18, 2007



multi-edge type ldpc codes: analysis 393

aBMSC and a, respectively.¿emeaning of this notation is analogous to the onewhich
we introduced for standard LDPC ensembles: multiplication of variables is replaced
by convolution of densities, where for λwe use the regular convolution e, but for ρ
we use the convolution�. To be more explicit, note that

λ(r,x) = (λ1(r,x),� , λme
(r,x)), ρ(x) = (ρ

1
(x),� , ρ

me
(x)),

where the components λi(r,x) and ρi(x) are polynomials. Consider the previous
example, λ1(r,x) = r1x1, λ2(r,x) = r1xl−12 , ρ

1
(x) = x1x2, and ρ2(x) = x

2
1 ; in this

case λ1(aBMSC,b) = aBMSC e b1, λ2(aBMSC,b) = aBMSC e b
e(l−1)
2 , ρ

1
(a) = a1 � a2,

and ρ
1
(a) = a�2

1 .

Lemma 7.21 (Density Evolution). Consider amulti-edge ensemble. Let aBMSC de-
note the vector of L-densities corresponding to channels over which information is
received. Each of the involved channels is assumed to be a BMS channel. Let aℓ de-
note the vector of densities passed from variable nodes to check nodes in iteration ℓ
assuming that a0 = λ(aBMSC, ∆0) (corresponding to each variable node sending out
its received value), and let bℓ denote the vector of densities passed from check nodes
to variable nodes in iteration ℓ. ¿en for ℓ C 1, bℓ = ρ(aℓ−1) and aℓ = λ(aBMSC,bℓ),
so that

aℓ = λ(aBMSC, ρ(aℓ−1)).(7.22)

Further, the density of the decision at time ℓ is given by L(aBMSC, ρ(aℓ−1)).
Example 7.23 (RA Codes). For unpunctured RA ensembles discussed in Exam-
ple 7.6 we have a0 = (∆0,aBMSC) and for ℓ C 1

bℓ = ρ(aℓ−1) = (a1,ℓ−1 � a2,ℓ−1,a�2
1,ℓ−1),

aℓ = λ(aBMSC,bℓ) = (aBMSC e b1,ℓ,aBMSC e b
e(l−1)
2,ℓ ),

where ai,ℓ denotes the i-th component of aℓ. n

§7.2.3. Fixed Points, Convergence, and Monotonicity

In the multi-edge type setting certain degeneracies can arise that are not possible
in the standard irregular LDPC setting. ¿ere are two obvious degeneracies which
we rule out a priori: punctured degree-one variable nodes and received distribu-
tions equal to ∆+ª. A punctured degree-one variable node e�ectively eliminates
its neighboring constraint from the decoding process, and a variable node with re-
ceived distribution ∆+ª can be removed from the graph without e�ect.
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We say that b is degraded with respect to a, denoted a _ b, if ai _ bi, i.e., if bi
is degraded with respect to ai for i = 1, ...,me. We assume a parameterized family
of input distributions aBMSC(σ) ordered by degradation where increasing σ signi�es
a degradation of the input distribution.

We need to generalize density evolution to allow di�erent values for a0. In gen-
eral aℓ(a0) denotes the vector density in the ℓ-th iteration assuming a0 in the 0-th
iteration.

Theorem 7.24 (Monotonicity). If, for some b and some k C 0, we have ak(b)_

(^)b then, akℓ(b) _ (^)ak(ℓ−1)(b) for all ℓ A 1 and akℓ(b)
ℓ�ª
ÐÐ� f for some

vector density f . If, in addition ak+1(b)_ (^)b, then aℓ(b)
ℓ�ª
ÐÐ� f .

Proof. Monotonicity, that akℓ(b)_ (^)ak(ℓ−1)(b) under the stated assumptions,
follows from the tree channel argument. Convergence of akℓ(b) in ℓ follows from
sequential compactness of the space of symmetric distributions and completeness
of functionals monotonic under degradation.

¿e extension in the �nal statement is analogous to Corollary 4.110 and can be
proved the same way.

As a special case, the above theorem implies that aℓ(aBMSC(σ)) always converges
to awell-de�ned limit density. Usually we are interested in knowingwhen the output
bit error probability goes to zero, i.e., we are interested in knowing when

lim
ℓ�ª

L(aBMSC(σ), ρ(aℓ)) = ∆ª.

Let �aBMSC(σ)� denote a family of distributions ordered by degradation: aBMSC(σ) _
aBMSC(σ′) if σ B σ′. We de�ne the threshold as

σBP = sup�σ � lim
ℓ�ª

L(aBMSC(σ), ρ(aℓ)) = ∆ª�.

In the setting of standard irregular LDPC ensembles, if σ < σBP then aℓ
ℓ�ª
ÐÐ�

∆+ª. In the multi-edge setting it is not always obvious what the �xed-point limit of
aℓ might be. It is clear, however, that such a �xed point must be perfectly decodable.

A density vector a is a perfectly decodable �xed point of density evolution if it is
a �xed point and L(aBMSC, ρ(a)) = ∆ª. Amulti-edge type structuremay havemore
than one perfectly decodable �xed point. Indeed, consider the simple example

L(r0, r1,x1,x2) = r0x1x2, and R(x1,x2) = x1x2,
where r0 corresponds to ∆0. ¿en any vector density a = (a1,a2) satisfying a1 =
∆+ª or a2 = ∆+ª is a perfectly decodable �xed point for density evolution.

Preliminary version – October 18, 2007



multi-edge type ldpc codes: analysis 395

Lemma 7.25 (Perfectly Decodable Fixed Point). Let a be a perfectly decodable
�xed point and de�ne b = ρ(a).¿en for each i we have either ai = ∆+ª or bi =
∆+ª (or both).

Proof. Assume that a is perfectly decodable and that for some i, ai x ∆+ª. Consider
a variable node type which contains the edge type i so that for this variable node
type the outgoing density along this edge, call it ãi, is not ∆+ª. Note that ai is the
weighted convex sum of possibly several such densities and so if ãi x ∆+ª then
ai x ∆+ª. For this variable node type the density of the decision can be written as
ãiebi. By assumption thismust be equal to∆+ª, which is only true if bi = ∆+ª.

An important corollary of the above lemma is that, for any perfectly decodable
�xed point a, every check node type can have degree at most one in �i � ai x ∆+ª�.

One of the complicating features of the multi-edge type framework is the possi-
bility of having degree-one variable nodes. As a consequence, the message distribu-
tions associated with certain edge types are strictly bounded away from ∆+ª: any
edge type that is connected to a degree-one variable node never carries the distri-
bution ∆+ª in the variable-to-check direction. Any other edge type that connects
to a check node which is connected to a degree-one variable node also never car-
ries the distribution ∆+ª in the check-to-variable direction. ¿is “bounded away
from ∆+ª” property propagates through the graph in a manner similar to erasure
decoding with the roles of check nodes and variable nodes reversed.

Consider aℓ(aBMSC, ∆ª); this is the density emitted in the ℓ-th iteration by
the tree channel, in which the leaf nodes have density ∆

ª
, but the intermediate

nodes have density aBMSC. ¿eorem 7.24 implies that this sequence of vector den-
sities converges and that it is monotonic with respect to degradation. ¿is is true
since any vector density is degraded with respect to ∆

ª
. Let EVC[ℓ] denote �i �

ai,ℓ(aBMSC, ∆ª) x ∆+ª�. Similarly, let ECV[ℓ] denote �i � ρi(aℓ(aBMSC, ∆ª)) x
∆+ª�. It is easy to see inductively that EVC[ℓ] and ECV[ℓ] are monotonically non-
decreasing and that at some �nite ℓ both reach their maximal value EVC and ECV.

To be more explicit we construct the sets recursively. Note that for this initial
condition, densities are degrading each iteration so we need only �nd the �rst point
at which a density ceases to be ∆+ª. Initially EVC[0] = g and ECV[1] = g. Clearly,
the set EVC[1] consists of all edge types that have positive probability of being con-
nected to a degree one variable node. Since no received distribution is∆+ª it follows
that none of the distributions on these edge types are ∆+ª.Tracing the propagation
and bearing in mind that no received distribution is ∆+ª it follows that EVC[ℓ] and
ECV[ℓ] can be de�ned by iterating the following two steps for ℓ starting with ℓ = 2.
(i) Let ECV[ℓ] be the union of ECV[ℓ − 1] and those edge types i ~> ECV[ℓ − 1]

that have a positive probability of being connected to a check node that has
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another edge in EVC[ℓ− 1].
(ii) Let EVC[ℓ] be the union of EVC[ℓ − 1] and those edge types i ~> EVC[ℓ − 1]

that have positive probability of connecting to a variable node having all other
edges in ECV[ℓ].

For all su�ciently large ℓwe have EVC[ℓ] = EVC[ℓ− 1] and ECV[ℓ] = ECV[ℓ− 1]
and we let EVC and ECV denote these limiting sets.

Lemma 7.26. ¿ere exists a perfectly decodable �xed point if and only if EVC9ECV =
g.Moreover, if EVC 9 ECV = g, then there exists a unique perfectly decodable �xed
point a satisfying ai = ∆+ª for all i ~> EVC.
Proof. Any �xed point must be degraded with respect to limℓ�ª aℓ(aBMSC, ∆ª) for
ℓ > N. Lemma 7.25 therefore implies that there cannot exist a perfectly decodable
�xed point if EVC 9 ECV x g.

Assume now that EVC 9 ECV = g. It follows that no check node can have degree
more than one in EVC. It also follows that each variable node type has at least one
edge type not in ECV.

LetΨ denote the space of vector densities b satisfying bi = ∆+ª for i ~> EVC. For
each b > Ψwe have ρ

j
(b) = ∆+ª for all j~> ECV.¿is implies that λi(aBMSC, ρ(b)) =

∆+ª for i ~> EVC.¿us, we see that b > Ψ implies aℓ=1(b) > Ψ. Moreover, since every
variable node type has at least one edge not in ECV,we have L(aBMSC, ρ(b)) = ∆+ª
for all b > Ψ. Existence of a perfectly decodable �xed point in Ψ is clear. ¿e limit
of aℓ(∆ª) as ℓ � ª, which we shall denote by fª is one such. It remains only to
show uniqueness.

Letb0 > Ψbe that elementwithbi = ∆0 for i > EVC.By¿eorem7.24 aℓ(b0)
ℓ�ª
ÐÐ�

f0 for a vector density f0 > Ψ and any other �xed point f > Ψ satis�es fª _ f _ f0 .
¿us, uniqueness is equivalent to fª = f0 .

We have already seen that fªi x ∆+ª for all i > EVC. Similarly we have

(7.27) f0i x ∆0

for all i > EVC, (and in fact for any i). Indeed, it is clear that the densities aℓ(b) are
monotonically upgrading in ℓ. ¿us it is su�cient to show for each i > EVC that
ai,ℓ(b) x ∆0 for some ℓ.We have assumed that no degree one variable node type
has received distribution ∆0 so for all i > EVC[1] we have ai,ℓ=1(b) x ∆0. Recall that
ECV[1] = g. Assume now for some t C 1 that ai,ℓ=t(b) x ∆0 for all i > EVC[t] and
that ρi(aℓ=t−1)(b) x ∆0 for all i > ECV[t]. (We have seen that the assumption is valid
for t = 1.) Consider j> ECV[t + 1]�ECV[t]; there must exist a check node type with
edges of type jthat has exactly one edge type k, say, in EVC[t].¿e outgoing density
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from this check node type on edge type j in the t + 1-th iteration is equal to the
incoming density on edge k,hence it is not∆0. It follows easily that ρj(aℓ=t)(b) x ∆0
for all j > ECV[t]. Now, consider j > EVC[t + 1]�EVC[t]; there must exist a variable
node type with exactly one edge of type j, and since t C 1, the variable node type
has other edge types all of which are in ECV[t + 1].¿e outgoing density from this
variable node type on edge type j is equal to the convolution of its received density
(whichmay be∆0) and the incoming density on the other edge types, none of which
are ∆0.Hence this outgoing density is not ∆0. It follows that aj,ℓ=t+1(b) x ∆0 for all
j> ECV[t + 1].¿is now proves (7.27).

We claim that for any b > Ψ, for each ℓ and i C 0, ai,ℓ(b) is a polynomial (variable
node domain convolution only) in the elements of aBMSC, bj, j > EVC and ∆+ª. To
see this recall that no check node can have degree more than one in EVC. If b > Ψ is
the incoming vector density to the check nodes, then, for any check node type the
outgoing density on any edge type is either ∆+ª or bi for some i > EVC. It follows
that each ρ

j
(b) is a convex combination of ∆+ª and �bj�, j > EVC and the claim

immediately follows.
For any vector b > Ψ Let b̃ denote the sub-vector of b taking only those compo-

nents in EVC.Restricting toΨwe can abuse notation and represent density evolution
as

ãℓ+1 = γ(aBMSC, ãℓ, ∆+ª)
where γ is polynomial (variable node domain convolution) in its arguments. Let
ã0 = b̃ and we may write this as ãℓ(b̃).

Now, applyBc to both sides of this equation. Since γ is a polynomial we get

Bc(ãℓ+1) = γ(Bc(aBMSC),Bc(ãℓ),0)
where now the polynomial is understood as being over real withmultiplication over
the reals. Let us �x c and de�ne

u(x) = γ(Bc(aBMSC),x,0)
and let uℓ(x) denote the ℓ-th iterate of u.

Clearlyuℓ(Ñ0) converges to the �xed point xª =Bc(f̃ª) anduℓ(Ñ1) converges to
the �xed point x0 =Bc(f̃0). Furthermore, if f̃ is any �xed point of the Ψ-restricted
density evolution then x = Bc(f̃) is a �xed point of u, i.e. u(x) = x and Ñ0 < xª B
x B x0 < Ñ1 component-wise. ¿e last, strict, inequality follows from (7.27).We will
show that u(x) = x has a unique solution for each c.¿is is equivalent toBc(f̃ª) =
Bc(f̃0) for each c, which implies f̃

ª

= f̃
0 completing the proof.

¿e polynomial u has positive coe�cients so for non-negative vectors x, ywe
have x B y� u(x) B u(y) where the inequalities are component-wise. Since x0 <
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1, for є A 0 su�ciently small we have x0 B x0 +є(x0 − xª) < 1. Since x0 and xª are
solutions to u(x) = x, convexity of u yields

u(x0 + є(x0 − xª)) C (x0 + є(x0 − xª)) .

Since u preserves ordering we have (applying u repeatedly to both sides),

uℓ(x0 + є(x0 − xª)) C (x0 + є(x0 − xª)) .

for all ℓ C 0. Since x0 B x0 + є(x0 − xª) < 1, u(x0) = x0 and uℓ(1) � x0, letting
ℓ�ª we obtain x0 C (x0 + є(x0 − xª)) , which is equivalent to

x0 − xª B 0.

Since we already have x0 − xª C 0, it now follows that x0 = xª.

¿e edge types ECV and EVC arise from degree one variable nodes.We have seen
that if all edge types otherwise carry density ∆+ª at a perfectly decodable �xed
point then that �xed point is unique. ¿is still leaves open the possibility of non-
unique perfectly decodable �xed points with other edge types not carrying ∆+ª in
one direction or the other. We summarize the general situation in the following.

Theorem 7.28. Given amulti-edge type structure, there exists a perfectly decodable
�xed point if and only ifEVC9ECV = g. Given EVC9ECV = g, the perfectly decodable
�xed point is unique or there exist non-empty disjoint edge types E1 and E2, both
disjoint from EVC 8 ECV, such that

A. No node type has degree more than one in E1.

B. All variable nodes with degree one in E1 are state variable nodes with all other
edges in E2.

C. All check nodes with positive degree in E2 have degree one in E1.

Furthermore, if edge types satisfying A,B, and C, exist, then either there aremultiple
perfectly decodable �xed points or no perfectly decodable �xed point is reachable
under standard density evolution.

Proof. ¿e �rst part of the theorem just restates Lemma 7.26.
Assume EVC9ECV = g.By Lemma 7.26 there exists a unique perfectly decodable

�xed point f� with f�i = ∆+ª for all i ~> EVC.
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Assume now that there exists another perfectly decodable �xed point f and let
g denote ρ(f). ¿en, fk x ∆+ª for some k ~> EVC. Set

m = max
i~>EVC

B(fi) (A 0)

and de�ne
E1 = �i ~> EVC �B(fi) = m� .

Note that E1 is necessarily disjoint from ECV by Lemma 7.25. Recall also that B is
ordered under physical degradation, i.e., f _ g�B(f) BB(g).

Now, an edge type i ~> EVC connects only to variable node types having at least
one other edge not in ECV, so m B maxi~>ECV B(gi) . On the other hand, an edge
type i ~> ECV cannot connect to check nodes having positive degree in EVC, and, by
Lemma 7.25, no check node type can have degree more than one in an edge type
whose variable-to-check density is not ∆+ª somaxi~>ECV B(gi) maxi~>EVC B(fi) B
m .¿us, we see that

max
i~>ECV

B(gi) = m

and so we de�ne
E2 = �i ~> ECV �B(gi) = m� .

Wewill now show that A, B, and C hold. Consider a variable node type of degree
d C 2with an edge of type i > E1. Let S denote the variable-to-check L-density emit-
ted by that node type on that edge type at the perfectly decodable �xed point. Ac-
cording to density evolution, S is the (variable node domain) convolution of the re-
ceived density, whichwewill denoteR,and the incomingdensitiesTi, i = 1, . . . ,d−1
on other edges. ¿erefore

B (S) =B (R)
d−1
M
i=1

B (Ti)

RecallB (S) B m. Since f i is a convex combination of such densitiesB (S),B() is
linear, and f i = m we must have

B (S) = m .

Since for any i > E1 the constraint-to-variable density at the �xed point is ∆+ª (by
Lemma 7.25), if the variable node type had degree more than one in E1 then we
would haveB (S) = 0 , in that case - a contradiction. ¿is proves A.

Sincem B 1,

B (R)
d−1
M
i=1

B (Di) = m,

Preliminary version – October 18, 2007



400 general ensembles

and B (Di) B m for all i we have B (Di) = m for all i and B (R) = 1.¿is proves
B. Note, furthermore, that either d = 2 orm = 1.

Finally, since any checknode has degree atmost one in an edge typewith variable-
to-check density not ∆+ª, and edge types not in ECV connect only to check nodes
with no edges in EVC,we see that check nodes with positive degree in E2 must have
precisely degree one in E1, i.e., C holds.

Assume now that edge types satisfying A,B, and C exist. It is easy to see that
aℓ(∆0) satis�es ai,ℓ = ∆0 for all ℓ C 0 and i > E1.¿us, there is either a perfectly
decodable �xed point f with fi = ∆0 for all i > E1, or, if not, then aℓ(∆0) cannot
converge to a perfectly decodable �xed point.

We will call a multi-edge type structure non-degenerate if EVC 9 ECV = g and
there do not exists non-empty disjoint edge types E1 and E2, both disjoint from
EVC 8 ECV satisfying A,B, and C, of¿eorem 7.28. Otherwise, the structure is called
degenerate.

§7.2.4. Stability

¿e stability analysis of density evolution examines the (asymptotic) behavior of
the decoder when it is close to successful decoding.¿e basic question of interest is
when can one be certain that the error probability is converging to zero, assuming
it has gotten su�ciently close. In the standard irregular setting one can look at the
error probability of the edge message distribution and asks whether it is tending to
zero. In the multi-edge setting this notion is inadequate because, as we saw in the
previous section, messages on certain edge types may not converge to zero error
probability even though the output error probability converges to zero. Neverthe-
less, a more-or-less complete stability theory can be developed.

We limit our presentation to ensembles without degree-one nodes. De�ne the
matrices L = L(r) and P by

Li,j =
dλi(r,x)
dx j

S x=0, Pi,j =
dρ

i
(x)

dx j
S x=1.

Theorem 7.29 (Stability for Multi-Edge). Assume a multi-edge structure with
no degree-one variable nodes. If L(B(aBMSC))P is a stable matrix (spectral radius
less than one) then there exists ξ A 0 such that aℓ(aBMSC,a)

ℓ�ª
ÐÐ� ∆

ª
for any a

satisfyingmaxi�E(ai)� < ξ.

Discussion: If the structure is degenerate, possessing edge type subsets E1 and
E2 as in¿eorem 7.28, then the matrix product L(B(aBMSC)P is, at best, marginally
stable, i.e., it has 0 as an eigenvalue.
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¿e converse to¿eorem 7.29 is a little trickier to state. It is not di�cult to con-
coct structureswhere setting the density on one edge type to∆+ª causes all densities
to eventually converge to ∆+ª.¿us, assuming that L(B(aBMSC)P is unstable, we
cannot say, as we did in the standard irregular case, that if a x ∆

ª
then aℓ(aBMSC,a)

will not approach ∆
ª
.We do, however, have the following.

Theorem 7.30. Assume a non-degenerate multi-edge structure with no degree-one
variable nodes. Assume that L(B(aBMSC)P is an unstable matrix (spectral radius
greater than one). Let a satisfymini�E(ai)� A 0.¿en

lim inf
ℓ�ª

E(L(ρ(aℓ(aBMSC,a)))) A 0.

Proof. Assume that L(B(aBMSC))P is unstable. By the Perron-Frobenious theorem
there exists a non-negative (real) eigenvector x of L(B(aBMSC))P with real posi-
tive eigenvalue ξ A 1 whose magnitude equals the spectral radius. Without loss of
generality we assume that xi B 1 for i = 1, ...,me.

Let є = mini�E(bi)� A 0 and consider the density vector c(η), where ci(η) =
ηxi∆0+(1−ηxi)∆+ª.For all η B 2єwe apply Lemma 4.80 to note that a is degraded
with respect to c(η).Now, for any �xed ℓ, it is not hard to see that c(η)has evolved to
η�L(B(aBMSC)P�

ℓx+O(η2)where themultiplication ofmatrix elements represents
the variable domain convolution. If we apply the Bhattacharyya functional to this
density we get ηξℓx +O(η2).We know from Lemma 4.67 that

E �L(B(aBMSC)P�
ℓx C c

e

3π

¾
Bmin

ℓ+mr

ξℓx,

where c is a positive constant independent of ℓ and the inequality is component-
wise. Since ξ A 1,we can choose ℓ = L su�ciently large so thatE(aL(aBMSC,c(η))) C
ηx +O(η2) component-wise. Assuming now that η is su�ciently small we have

E(ak(aBMSC,c(η))) C
1
2
ηx.

for k = L and k = L + 1. It now follows from Lemma 4.80 that ak(aBMSC,c(η))^

c(η) for k = L and k = L + 1. By ¿eorem 7.24 we have aℓ(aBMSC,c)
ℓ�ª
ÐÐ� f for

some �xed point f satisfying f ^ c(η). Clearly, f is not perfectly decodable.
§7.3. Structured Graphs

In a practical system there ismotivation to impose further structure on the graph be-
yond the degree structure. ¿is can reduce implementation cost, enable parallelism
of the decoder, or simplify encoding.
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§7.3.1. Liftings of LDPC Codes and Graphs

A li ing is conveniently visualized from the Tanner graph perspective. Consider a
“small” graph corresponding to a short LDPC code as illustrated in Figure 7.31. ¿is
small graph goes under various names, protograph, base graph, or projected graph.
¿e�rst two names convey that this graph forms the foundation for building a larger
graph and the name projected graph conveys that this smaller graph is a projection
(a map with the property that this map applied twice is equal to the map itself) of
the latter constructed graph. Makem copies of the base graph as shown in the le of

1 2 3

1 2 3 4

Figure 7.31: Base graph.

Figure 7.32. Identify like nodes (variable and check) as well as like edges into clusters
of size m each. ¿is means that for each node in the original graph there is now a
cluster of sizem and the same is true for each edge in the original graph.

To construct the li ed graph take each edge cluster and apply a permutation
to this cluster so that di�erent copies of the base graph become connected to each
other. ¿e result is shown on the right of Figure 7.32 where all permutations are
cyclic. In standard graph theory this construction is known as a cover, more speci�c

1112131415 2122232425 3132333435

11121314
15

21222324
25 3132333435 4142434445

cluste
r

m copies of base graph
1112131415 2122232425 3132333435

11121314
15

21222324
25 3132333435 4142434445

li ed base graph = m-cover

Figure 7.32: Le : m copies of base graph with m = 5; Right: Li ed graph resulting
from applying permutations to the edge clusters;

an m-cover. ¿is is important: from the point of view of density evolution there is
no di�erence whether we are working on the base graph or on an m-cover. Locally
they are identical, and that is all that a message-passing decoder can tell.
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For another perspective, consider the li ing of the parity-check matrix. ¿us,
let Hb be the parity-check matrix of the base graph. For our example we have

Hb =
�
�
�

1 0 0 1
0 1 1 0
1 1 1 1

�
�
�
.(7.33)

It o en occurs in practice that the base graph hasmultiple edges.¿is is not captured
in the description using the parity-check matrix. We get back to this point shortly.
Let P denote the group of m �m permutation matrices. We form am-times larger
LDPC code by replacing each element of Hb with a m �mmatrix. ¿e 0 elements
of Hb are replaced with the zero matrix, denoted 0. ¿e 1 elements of Hb are each
replaced with a matrix from P . By this means we “li ” an LDPC code to one m
times larger.

H =
�
�
�

P2 0 0 P3
0 P4 P5 0
P1 P2 P3 P4

�
�
�
.

For the speci�c case depicted in Figure 7.32, Pi corresponds to a cyclic permutation
of the set �1,� ,m� with shi i − 1: the columns correspond to the variables and
the rows to the checks. E.g., P1 denotes the identity matrix and

P2 =

�
������
�

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

�
������
�

,

which means that variable 11 is connected to check 12 and variable 12 is connected
to check 13 and so on until �nally variable 15 is connected to check 11. If we write a
codeword of the li ed code in the form

x = (x11,x12,� ,x1m,x21,� ,x2m,� ,xmm),

then the code is de�ned by the standard condition HxT = 0T . For our example the
condition implied by the �rst row of the parity-check matrix is x15 + x44 = 0.

¿e permutations are in general chosen according to their suitability with re-
spect to the implementation of the encoder and decoder. E.g., if we are interested in
a hardware implementation then wemight pick permutations that are supported by
an Ω-network. Such a network accomplishes a permutation on 2k elements, k > N.
To see what such a network looks like consider the Ω-network for k = 3, i.e., for 8
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Figure 7.34: Ω-network for 8 elements. It has log2(8) = 3 stages, each consisting of
a perfect shu�e.

elements, as shown in Figure 7.34. It has log2(8) = 3 = k stages, each consisting of a
perfect shu�e. A perfect shu�e of the numbers 0 to 2k − 1 is most easily described
by representing these numbers in binary form with the le most bit being the most
signi�cant one: a perfect shu�e corresponds to mapping the number i (represented
in binary form) into the number which results by performing a cyclic le shi of the
bits, i.e. a shi where the most signi�cant bit becomes the least signi�cant one. E.g.,
the number 3 has binary representation 011 and it is mapped to the number 6 since
this has binary representation 110. ¿ere is also a visual representation of this per-
mutation from which the name “perfect shu�e” derives. To be concrete, consider
the case k = 3. ¿ink of the numbers 0 up to 7 as 8 ordered cards stacked on top of
each other, with 0 being the bottom card. Split the deck into two equal sized stacks
– the cards 0 to 3make up one stack and the cards 4 to 7 are contained in the other
stack. Lay down the two stacks side by side andmerge them.¿is means we take the
bottom card of the �rst stack (this is the card 0) and put on top of it the bottom card
of the second stack (this is the card 4), then we put on top of this the second card of
the �rst stack and so on.

Each box in Figure 7.34 represents a binary switch. ¿e two inputs are either
forwarded to the output straight or they are exchanged. For each setting of the 2k−1k
switches we get a di�erent permutation. Without proof we state that for a proper
position of the switches an Ω-network can accomplish permutations of the form
i ( pi + c mod 2k, where p, c > N and p is odd.

§7.3.2. Matched Liftings

Matched li ings are characterized by requiring that the set of permutations used in
the li ing form a group of order m, the size of the li ing. In this case a simplify-
ing mathematical structure emerges which can be exploited in both encoding and
decoding. We begin by discussing the underlying structure.
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Group Rings

Rather than starting withm permutations and requiring that this set forms a group
(under composition), take a group G of order m. Let G = �g1, ...,gm�. By conven-
tion, g1 is the identity element.

A fundamental theorem of group theory, known as Cayley’s theorem, states
that any group G with m elements can be represented as a sub-group of the sym-
metric group Σm, the group of permutations on m elements. Let �π1, ...,πm�, πi �
�1,� ,m�� �1,� ,m�, denote the set ofm permutations which represent G. How
do we �nd this subgroup given G? Here is how it works: set πi(u) = v if gigu = gv.
Let us check that �π1, ...,πm� faithfully represents G under composition of maps.
More precisely, we need to check that if gigj = gk then πi X πj = πk. Note that
πj(u) = v if gjgu = gv. Further, pi(v) = w if gigv = gw. ¿erefore, (πi X πj)(u) = w
if gigjgu = gw. Since, πk(u) = w if gkgu = gw we conclude that we must have
gigj = gk, as claimed.

A permutation onm elements can also be represented by am�m permutation
matrix. Let P1,P2, ...,Pm denote them permutation matrices, where

Piπi(l),l = 1, l = 1,� ,m,

and all other entries are 0. ¿e permutation πi on a vector x of length m is then
e�ected by the multiplication PixT .

Let us summarize. ¿e group G is represented either by its elements gi, by per-
mutations πi, or by permutation matrices Pi, and we have

gigj = gk � πi X πj = πk � PiPj = Pk.

Consider again the Tanner graph representation. We described the li ing con-
struction earlier, starting with m copies of the base graph. Label those copies with
the elements of the group g1, ...,gm. Prior to permuting within the edge clusters, a
variable node in copy gk connects only to a check node in copy gk. Suppose that
to each edge cluster we now associate an element gi of the group G, with the pre-
scription that in this edge cluster the variable node in copy gk connects to the check
node in copy gigk via its edge in the given edge cluster. From the parity checkmatrix
perspective, the permutation matrix representing this li ed edge cluster is Pi.

Using such a group one can de�ne a ring, the so-called group ring F2[G] whose
elements can be represented as binary vectors of length m.1 Here, a binary vector
u = (u1, ...,um) is identi�ed with a formal sum Pmi=1 uigi. Let us specify the rules
of addition and multiplication in this ring. Addition is straightforward. Given two

1 Actually, since F2 is a �eld, this is a group algebra.
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binary vectors u and v the sum u + v is de�ned as component-wise addition of u
and v over F2. ¿e multiplication u ċ v is de�ned by

�
m
Q
i=1
uigi��

m
Q
j=1
vjgj� =

m
Q
i=1

m
Q
j=1
uivjgigj =

m
Q
k=1
� Q
(i,j)�gigj=gk

uivj�gk

=

m
Q
k=1
� Q
(i,j)�πi(j)=k

uivj�gk =
m
Q
k=1
�
m
Q
i=1
uivπ−1i (k)�gk,

where the arithmetic in �P(i,j)�gigj=gk
uivj� is over F2 .

By the correspondence of gi with Pi (a m �m permutation matrix) we can in-
terpret the sumPmi=1 uigi also as a matrix sumM(u) = Pmi=1 uiPi.Here,M(u) is a
matrix over F2 .¿is sum is invertible, i.e.,Pmi=1 uiPi uniquely determines u (in fact
a single column or row determines u). By assumption g1 is the identity element so
thatM(e1) = I, where e1 = (1,0, . . . ,0) and I is them �m identity matrix.

Given two binary vectorsu and v, representing elements ofF2[G], their product
w = uċv then corresponds to the regularmatrix productM(w) = M(u)M(v). Note,
moreover, that wT = M(u)vT . Indeed,

(M(u)vT)k =
m
Q
i=1
ui(PivT)k =

m
Q
i=1
ui

m
Q
j=1
Pikjvj =

m
Q
i=1
uivπ−1i (k).

Matched Lifted LDPC Codes

We are now ready to describematched li ed LDPC codes. To continue our example,
assume at �rst that the base graph does not have multiple connections. In this case
start with the binary parity-checkmatrix of the base code, call itHb. To be concrete,
considerHb as given in (7.33). Now replace each element ofHb with a binary vector
of lengthm.More precisely, replace 0with the the all-zerom-tuple, and each element
1with a binarym-tuple which contains exactly one 1. For our running example and
a speci�c choice of binary vectors we get the matrix

�
�
�

(0,1,0,0,0) (0,0,0,0,0) (0,0,0,0,0) (0,0,1,0,0)
(0,0,0,0,0) (0,0,0,1,0) (0,0,0,0,1) (0,0,0,0,0)
(1,0,0,0,0) (0,1,0,0,0) (0,0,1,0,0) (0,0,0,1,0)

�
�
�
.

Now apply to each component (i.e., vector) of this matrix the map M(ċ) to get the
parity-checkmatrix of the li ed code. Assume that the underlying permutationma-
trices Pi correspond to cyclic permutations, where P1 is the identity matrix and Pi
corresponds to a cyclic permutation with shi i−1. ¿ese matrices form a group as
required. In this case the li ed code corresponds to the code described on the right
of Figure 7.32.
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Let us now li the restriction that the base graph cannot have multiple edges.
In the general case, start with a matrix H with elements over F2[G]and apply to it
the mapM(ċ) to get the parity-check matrix of the li ed code.¿e matrixM(H) is
a block matrix with each block of the formM(Hi j) where Hi j is a binary vector of
lengthm.¿eweight ofHi j,wHi j is equal to the number of edges between variable
node jand check node i in the base graph. As an example, consider the matrix

�
�
�

(0,1,1,0,0) (0,0,0,0,0) (0,0,0,0,0) (0,0,1,0,0)
(0,0,0,0,0) (0,0,0,1,0) (0,0,0,0,1) (0,0,0,0,0)
(1,0,0,0,0) (0,1,0,0,0) (0,0,1,0,0) (0,0,0,1,0)

�
�
�
,

which di�ers from our previous example only in the top-le most entry which has
now weight 2. ¿is corresponds to the base graph shown on the le of Figure 7.35. It
has a double edge between variable 1 and check 1. ¿e li ed graph is shown on the
right of Figure 7.35.

1 2 3

1 2 3 4

base graph with one multiple edge
1112131415 2122232425 3132333435

11121314
15

21222324
25 3132333435 4142434445

li ed base graph

Figure 7.35: Le : Base graph with a multiple edge between variable node 1 to check
node 1; Right: Li ed graph;

¿e resulting li ed binary LDPC code is the set of solutions x to the equation
M(H)xT = 0T . Writing x = (x1, ...,xN)T where each xi is a binary vector of length
m, we can also write this equation as HxT = 0T , where now each xi is interpreted
as an element of F2[G]. ¿us, the binary LDPC code associated to M(H) can be
identi�ed with the LDPC code over F2[G] associated to H.

Encoding

One of the most useful aspects of the matched li ing structure is the general encod-
ing method it supports.

We use the general encoding method discussed in Chapter A but, in e�ect, we
perform the approximate upper-triangulation on the base parity-check matrix. ¿e
encoding is then performed by interpreting matrix operations as arithmetic over
F2[G] rather than as binary arithmetic. In practical settings, where the size of the
li ing is su�ciently large, one can usually enforce g = 1 with no discernible loss
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in performance. In this case the matrix ϕ = ET−1A + C is an element of F2[G],
and, since it is invertible, so is ϕ−1. To keep complexity small, diagonal elements
of T should have weight 1, i.e., correspond to single (not multiple) edges in the
base graph. In this case one can assume without loss of generality that the diagonal
elements are each the identity.

In the natural parallel implementations of the encoder, one implements the per-
mutations associated to G directly. ¿us, the complexity of performing a multipli-
cation u ċ v depends on the weight of u.Most elements of H will typically have low
weight, e.g., 1.¿e element ϕ−1, on the other hand, is typically dense having weight
nearm~2.O en, however, dense elements can be decomposed so that fewer parallel
operations are required.

Let us describe a parallel encoder in a little more detail. Letm be the size of the
li ing. Input bits are stored in amemory con�gured as an L�m array of bits for some
L.Each column ofm bits can be interpreted as an element of F2[G]. Whenmemory
is accessed, it is accessed a column at a time, thus, in e�ect, elements of F2[G] are
read from memory. Multiplication of such a vector by an element of weight 1 in
F2[G] amounts to performing a permutation from G on the vector. Multiplication
of such a vector by an element of weightw of F2[G] amounts to performingw per-
mutations on the vector and XORing the results bitwise. ¿us, multiplication by el-
ements of the ring and addition of elements in the ring is easily implemented given
a device for performing the permutation associated to G on m-bit vectors and a
parallel accumulator for performing in parallelm XOR operations.

Decoding

Message-passing decoding of LDPC codes consists of passing messages along the
edges of the graph representing the code and performing computations based on
those messages at the nodes of the graph.

Given a “li ed” LDPC code one can vectorize (parallelize) the decoding process
as follows.Decode the base LDPCcode in an edge serial fashion but, instead of single
edges, process m parallel edges and/or nodes at once. Each parallel path requires
identical execution. ¿e paths mix only in the permutation within edge clusters.

Invariance

¿e group structure of matched li ings guarantees certain invariance. Consider the
parity check structure as de�ned over F2[G]. If we have

Hy = s

and u > F2[G] then
Hyu = su .
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When w(u) = 1 then multiplying a binary vector of length m on the right by u
simply permutes the vector. Note that if G is Abelian then the permutation is one of
the li ing permutations and if G is not Abelian then the permutation need not be
(it corresponds to right multiplication in the group rather than le multiplication).
¿ere arem such permutations.

¿e presence of the group structure in the graph facilitates optimization of the
graph. Neighborhood structure is repeatedm times so, in examining the graph, one
obtains a speed-up of a factor ofm.

Product Liftings

Suppose the li ing group is a product group G1 � G2.¿en the graph li ing may
be interpreted as a li ing of G1,G2, or G1 � G2.¿is can be quite useful in practice
when di�erent terminals in a communications system operate at di�erent speeds or
with di�erent throughputs.

For example with m = 64 we can use the product of 2 � 4 � 8 and there are
then factor groups of size 2,4,8,16,32,64, any of whichmay be used for parallelism
in an implementation. At the same time, the graph description always enjoys the
compression of 64 times parallelism.

§7.4. Non-Binary Codes
So far we have been concerned exclusively with binary codes.¿eoretically this is all
that is needed. Assuming we have mastered the binary case, more general scenarios
can typically be dealt with by using binary codes as building blocks in conjunction
with suitable mappers as we have discussed in Section 5.4.

In some cases it is simply more natural to apply non-binary codes directly. Also,
as we will see now, employing non-binary codes can lead to improved performance
even when transmitting over binary channels. ¿is improved performance though
comes at the cost of increased complexity. ¿is section assumes that you are famil-
iar with the basic material on �nite �elds as it is described in most classical cod-
ing books. ¿ere are many possible ways of viewing non-binary codes. We could
describe them within the framework of matched li ings discussed in the previous
section. To keep things simple we start from scratch. Also, as a main di�erence to
the previous section we focus now on the question of an e�cient implementation of
non-binarymessage-passing schemes, whereas in the previous section we used the
structure only to simplify the scheduling and processing of the messages while still
considering the code as a binary code.

Consider transmission using an element of the ensemble LDPC (n, λ, ρ) over
Fq. ¿is ensemble is de�ned in an analogous way as in the binary case except that
the non-zero entries of the parity-check matrix H are chosen uniformly at random
from F�q , the non-zero elements of Fq. Figure. 7.36 shows the FSFG of a simple code
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over F4 together with its corresponding parity-check matrix. If we are interested

x1 = (x11,x21)

x2 = (x21,x22)

x3 = (x31,x32)

x4 = (x41,x42)
H3,4

H2,4

H2,3

H3,2

H1,2H3,1

H1,1

1�H1,1x1+H1,2x2=0�

1�H2,3x3+H2,4x4=0�

1�H3,1x1+H3,2x2+H3,4x4=0�

=

=

=

=

H =
�
�
�

H1,1 H1,2 0 0
0 0 H2,3 H2,4
H3,1 H3,2 0 H3,4

�
�
�

=

�
�
�

1 1 + z 0 0
0 0 z z

1 + z z 0 1

�
�
�

Figure 7.36: FSFG of a simple code over F4 and its associated parity-checkmatrixH.
¿e primitive polynomial generating F4 is p(z) = 1 + z + z2.

in transmission over a BMS channel it is natural to assume that Fq = F2m . Let x =
(x1,� ,xn) denote the codeword overF2m . Sincewe can think of each symbol ofF2m

as a binarym-tuple, we can equivalently think of the codeword as a binary codeword
of length nm, x = (x11,� ,x1m,� ,xn1,� ,xnm). In fact, we can also translate the

x11
x12
x21
x22

x31
x32
x41
x42

1�x11+x21+x22=0�

1�x12+x21=0�

1�x32+x42=0�

1�x31+x32+x41+x42=0�

1�x11+x12+x22+x41=0�

1�x11+x21+x22+x42=0�

=

=

=

=

=

=

=

=

H =

�
��������
�

1 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1
1 1 0 1 0 0 1 0
1 0 1 1 0 0 0 1

�
��������
�

Figure 7.37: FSFG of a simple code over F4 and its associated parity-check matrixH.
¿e primitive polynomial generating F4 is p(z) = 1 + z + z2.

constraints over F2m into binary constraints. As example, consider the constraint,
x1 + (1+ z)x2 = 0 over F4, assuming that the primitive polynomial generating F4 is
p(z) = 1+ z+ z2. Write x1 = x11 + x12z and x2 = x21 + x22z so that x1 + (1+ z)x2 = 0
becomes (x11 + x12z)+ (1+ z)(x21 + x22z) = 0. Expand out this expression and use
the relationship z2 = 1 + z which is implied by the primitive polynomial p(z). We
get (x11 + x21 + x22) + (x12 + x21)z = 0. We conclude that the original constraint
x1+(1+z)x2 = 0 overF4 is equivalent to the two binary constraints x11+x21+x22 = 0
and x12 + x21 = 0. ¿e binary FSFG and the binary parity-check matrix are shown
in 7.37.
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Assume that the binary components are transmitted over a BMS channel and
that the received word is y = (y11,� , y1m,� , yn1,� , ynm). Given the received
word y we can use this binary FSFG to perform iterative decoding. It is not sur-
prising though that we do signi�cantly better if we perform the message-passing
algorithm on the non-binary FSFG. A er all, the non-binary graph contains in gen-
eral many fewer loops. ¿e di�erence will be the more pronounced the larger we
choose the �eld size.

In the sequel it is more convenient to talk about the message-passing algorithm
on the standard FG instead of on the FSFG. If we apply message-passing directly
on the non-binary FG, the messages are vectors of length q, (µ(x = α0),� , µ(x =
αq−1)), where the αi denote the �eld elements. At a variable node the message pass-
ing rule expressed in (2.21) calls for a pointwise multiplication. ¿is causes no fur-
ther headaches and the decoding complexity scales linearly with the alphabet size
q.

¿e next component in the decoder is to take into account the e�ect of the edge
labels.¿is leads to a permutation of the components of the vector.More precisely, if
the edge label is the �eld element α, then the message vector (µ(x = α0),� , µ(x =
αq−1)) gets permuted to the message vector (µ(x = α−1α0),� , µ(x = α−1αq−1)).
¿is is true since the message which relates to a speci�c �eld element β corresponds
a er the multiplication with the label α to the message which corresponds to the
�eld element αβ. ¿is transformation applies in both directions.

Finally, let us consider a check node. To start, consider a check node of degree
three. Let x, y, and z be the connected variables and consider the outgoing message
along the edge to z as a function of the incoming messages along the edges of x and
y. ¿e outgoing message towards variable z is then

µz(z = γ) = Q
α,β>Fq

1�α+β+γ=0�µx(x = α)µy(y = β)

= Q
α>Fq

µx(x = α)µy(y = −γ − α).(7.38)

In a brute force manner, the above evaluation (for all values γ > Fq) can be accom-
plished with complexity O(q2). But one can do much better. Note that µz(z = −γ)
is given in terms of a convolution of two message vectors, where the index calcu-
lations are done with respect to the additive group of Fq. It should therefore not
be surprising that we can use Fourier transforms to accomplish this convolution
in an e�cient manner. Since q = pm for some prime p and natural number m, the
Fourier transform is particularly simple. Let ξ be a p-th root of unity, e.g., ξ = e2πj~p.
Write an element of Fq as anm-tuple with components in Fp, α = (α1,� ,αm). Let
x = (xα)α>Fp, denote a vector, whose components are indexed by the elements ofFp,
taking values in C, and let X = (Xα)α>Fp denote its Fourier transform. ¿e Fourier
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transform pair is

Xα =Q
β
xβξ−αβ

T
, xα =

1
pmQβ

Xβξαβ
T
.

In words: arrange the input vector in an m-dimensional box of side length p ac-
cording to α = (α1,� ,αm) (the i-th component αi gives the position in the i-th
dimension).¿e Fourier transform is then the conventionalm-dimensional Fourier
transform, taking the standard cyclic Fourier transform of length p along each di-
mension. We see that we can accomplish the convolution in (7.38) by taking the
Fourier transform of both µx(x = α) and µy(y = α), multiplying the result and
taking the inverse Fourier transform.¿e result of this operation equals µz(z = −γ).
¿is means that we need to rearrange the vector to get µz(z = −γ) (if the �eld has
characteristic 2 we are done since in this case γ = −γ.)

Example 7.39 (Fourier Transform over F4). ¿e case F = F2m is particularly
simple since then ξ = −1. Consider, e.g., the Fourier transform over F4. Arrange the
input vector (x(0,0),x(1,0),x(0,1),x(1,1)) into a square box of side length two,

� x(0,0) x(0,1)
x(1,0) x(1,1)

� .

Running a two-point Fourier transform on each row results in

� x(0,0) + x(0,1) x(0,0) − x(0,1)
x(1,0) + x(1,1) x(1,0) − x(1,1)

� .

Weget the desired Fourier transformbynext running a two-point Fourier transform
on each column,

� x(0,0) + x(0,1) + x(1,0) + x(1,1) x(0,0) − x(0,1) + x(1,0) − x(1,1)
x(0,0) + x(0,1) − x(1,0) − x(1,1) x(0,0) − x(0,1) − x(1,0) + x(1,1)

� .

Figure 7.40 shows the performance of the (2,3) ensemble over F2m , for m =
1,2,3,4, over the BAWGNC(σ). In order to arrive at a fair comparison the binary
length of each code was �xed to 4320. We see that the performance improves dra-
matically as the alphabet size is increased. From this �gure onemight get the impres-
sion that increasing the alphabet size always results in increased performance. ¿is
is unfortunately not the case. For the (3,6) ensemble the performance gets strictly
worse if we go to a non-binary alphabet.

Let us now consider the analysis. It is the task of Problem 7.2 to show that if
the transmission takes place over a BMS channel then one can assume the all-zero
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Figure 7.40: Le : Performance of the (2,3) ensemble over F2m , m = 1,2,3,4 of
binary length 4320 over the BAWGNC(σ). Right: EXIT curves for the (2,3)-regular
ensembles over F2m form = 1,2,3,4,5 and 6 and transmission over the BEC(є).

m єBP єMAP єSta

1 0.5000 0.5000 0.5000
2 0.5775 0.5775 0.5811
3 0.6183 0.6209 0.6510
4 0.6369 0.6426 0.7075
5 0.6446 0.6540 0.7518

Table 7.41:¿resholds for the (2,3)-regular ensemble over F2m form = 1,2,3,4 and
5 for transmission over the BEC(є).

codeword for the analysis. For the case of transmission over the BEC the density
evolution equations can again be written down in analytic form. Consider the result
of the density evolution analysis for e.g. the cycle-code ensemble LDPC �n,x,x2�
of rate one-third. In the binary case the threshold is given by the stability condition
and is equal to one-half. Table 7.41 shows the evolution of this threshold as a func-
tion of the alphabet size. Also shown are the thresholds that one would get from
the stability condition which is discussed below. As we can see, the thresholds im-
prove signi�cantly and, for higher alphabet sizes, they are no longer given by the
stability condition.¿e EXIT curves of the overall code for various choices ofm are
shown on the right in Figure 7.40. ¿e MAP threshold was computed according to
the principle of ¿eorem 3.121. As we can see from this data, the MAP threshold
seems to converge to the Shannon threshold at the speed O(2−m). ¿e BP thresh-
old, on the other hand, �rst quickly increases towards the Shannon threshold but
it actually peaks for some value of m and later starts decreasing again. E.g., the BP
threshold form = 15 is only 0.616.

For the general case, an analysis in terms of density evolution is in principle
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possible but practically di�cult. Even for codes over F4 densities already “live” in
R3.¿e BP threshold can still be computed numerically byMonte Carlomethods in
the same way as this is done for computing the density evolution for convolutional
codes.

Analytically, we can determine at least the stability condition. You are asked in
Problem 7.3 to verify that the generating function counting the number of minimal
codewords in the limit of in�nite blocklengths is equal to

P̃(x) = −1
2
log�1 − λ′(0)ρ′(1)(1 + x)

m
− 1

2m − 1
� .(7.42)

Arguing as in the case of turbo codes (see Section 6.6) we arrive at the following
conjecture.

Conjecture 7.43 (StabilityCondition forNon-Binary Ensembles). Consider
the ensemble LDPC (n, λ, ρ). Assume that transmission takes place over a BMS
channel with L-density a and associated Bhattacharyya constant B(a). ¿en the
�xed point corresponding to correct decoding is stable if and only if

λ′(0)ρ′(1)(1 +B(a))m − 1
2m − 1

< 1.

§7.5. Low-Density Generator Codes and Rate-Less Codes
§7.5.1. Low-Density Generator Codes

Most of this book is dedicated to low-density parity-check codes. Why have we not
considered low-density generator-matrix (LDGM) codes so far, i.e., codes that are
de�ned by a random sparse generatormatrix? An immediate answer is that LDGM
codes necessarily exhibit large error �oors. To be more precise, assume that all rows
of G have degree d and that the codeword X is generated by X = UG, where U de-
notes the information word. Assume further that X is sent over a BMS channel with
L-density aBMSC. We want to �ndU given Y, the observation at the channel output.
Without loss of generality assume that we want to estimate U1 and that X1,� ,Xd
are the d codebits connected to information bit U1. We get a lower bound on the
probability of error of estimating U1 if we assume that U�1 is known perfectly and
that in addition we have the observations Y1,� ,Yd. If the code is proper (so that
none of the components of the codeword are known a priori with certainty) we get
the lower bound E(aedBMSC).

So why would we nevertheless discuss LDGM codes? As we will see in the next
section, the error-�oor problem is easily solved if we apply precoding techniques,
i.e., if we pick the information word to be itself an element of a (very high rate)
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code which can be used to “clean-up” the error �oor. More importantly, as we will
discuss shortly, by choosing a speci�c degree distribution we can use LDGM codes
in a rate-less fashion in a way that allows a receiver to accumulate simultaneously
information from a variety of uncoordinated transmitters. ¿is degree of freedom
allows many new transmission scenarios which cannot be addressed with standard
codes.

§7.5.2. Analysis of LDGM Ensembles

In Example 7.13 we introduced LDGMensembles as a special case ofmulti-edge type
LDPC ensembles. We gave expressions for the generic degree distribution and for
density evolution. Rather than proceeding along these lines, it is more convenient
to revert to a more traditional notation and to introduce a standard degree distri-
bution pair (λ, ρ), where λ(x) is the degree distribution (from an edge perspective)
corresponding to the information bits and ρ(x) is the degree distribution (from an
edge perspective) corresponding to the generator nodes counting only the edges to-
wards the information variable nodes. E.g., for the example shown in Figure 7.15 we
have

λ(x) = x2, ρ(x) = 1
4
+

1
2
x +

1
4
x2.

¿e design rate of the ensemble is r = R λ
R ρ
. For our speci�c example we get r =

1
3

1
4+

1
4+

1
12
=

4
7 . Recall that all information bits are punctured and that the codebits are

sent through a BMS channel with L-density aBMSC. Let aℓ denote the variable-to-
generator density emitted in the ℓ-th iteration and let bℓ denote the generator-to-
variable density emitted in the ℓ-th iteration. ¿en we have b0 = ∆0, and for ℓ C 1

aℓ = λ(bℓ−1), bℓ = aBMSC � ρ(aℓ),

where λ(b) = Pi λibe(i−1) and ρ(a) = Pi ρia�(i−1). In summary, bℓ = aBMSC �
ρ(λ(bℓ−1)). Remark: If you look at the equations carefully you will see that the pro-
cess never gets started, i.e., all densities are ∆0. We will soon discuss this in more
detail and see how to eliminate this problem.

Example 7.44 (Density Evolution for BEC). Let xℓ denote the erasure probabil-
ity of the variable-to-generator messages and let yℓ denote the erasure probability
of the generator-to-variable messages. ¿en we have y0 = 1, and for ℓ C 1

xℓ = λ(yℓ−1), yℓ = 1 − (1 − є)ρ(1 − xℓ),

so that yℓ = 1 − (1 − є)ρ(1 − λ(yℓ−1)).
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Assume that we make the following change of variables: we exchange the roles
of λ and ρ, we let є( 1 − є, x ( 1 − y and y( 1 − x. ¿en the above equations are
transformed to: x0 = 0, and for ℓ C 1

yℓ = 1 − ρ(1 − xℓ−1), xℓ = єλ(yℓ),

so that xℓ = єλ(1− ρ(1− xℓ−1)). ¿ese are the standard density evolution equations
except that here x0 = 0 instead of x0 = є, re�ecting the fact that for LDGMensembles
the recursion proceeds “backwards.” ¿e close connection is not really surprising:
we know that a generator matrix is the dual of a parity-check matrix and we have
seen in ¿eorem 3.78 that the dual of the channel BEC(є) (in the sense of going
from the L-distribution to the G-distribution) is the channel BEC(1 − є).

Given this observation we might hope that the design of good degree distribu-
tions for LDGM ensembles amounts to not much more but translating results we
have obtained for LDPC ensembles. ¿is is unfortunately not quite true, although,
as we will see shortly, at least when it comes to capacity-achieving ensembles we
do not have to start from scratch. To see what goes wrong note that the standard
�xed-point condition for LDPC ensembles

x C єλ(1 − ρ(1 − x)), x > (0,1),

translates via the previous transformation into the condition

y B 1 − (1 − є)ρ(1 − λ(y)), y > (0,1).

Unfortunately, the inequality in the condition goes in the wrong direction. n

EXIT Charts

Let us visualize density evolution in terms of EXIT charts. To simplify matters we
focus on the case of transmission over the BEC. To apply EXIT charts to general
BMS channels just follow the steps outlined in Section 3.14.

Consider a degree distribution pair (λ, ρ). As we have just discussed, the condi-
tion for successful decoding (in the asymptotic limit) reads y C 1−(1−є)ρ(1−λ(y)),
y > (0,1). Recall that ρ(x) has an inverse (since it is a power series with non-
negative coe�cients) so that we can rewrite this condition as 1 − ρ−1((1 − y)~(1 −
є)) C λ(y), y > (0,1). Here, the le side represents the “action” of the generator
nodes, whereas the right side represents the “action” of the variable nodes.

Example 7.45 (EXIT Chart). Pick λ(x) = 1
2x

4
+

1
2x

5 and ρ(x) = 2
5x +

1
5x

2
+

2
5x

8. ¿e design rate of this ensemble is R λ
R ρ
=

33
56 � 0.59. De�ne v(y) = λ(y) and

g−1є (y) = 1 − ρ−1((1 − y)~(1 − є)). Figure 7.46 shows v and g−1є where є = 0.35.
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Figure 7.46: EXIT chart for the LDGM ensemble with λ(x) = 1
2x

4
+

1
2x

5 and ρ(x) =
2
5x +

1
5x

2
+

2
5x

8 and transmission over the BEC(є = 0.35).

A few remarks are in order. First consider the start of the decoding process. ¿is
corresponds to the right and topmost point on the plot. Aswe can see, without some
help the process never starts since y = 1 is a �xed-point of density evolution. ¿is
phenomenon is true for all LDGMensembles that do not have degree-one generator
nodes. Fortunately it is easily overcome by leaving a strictly positive but arbitrarily
small fraction of the information bits unpunctured.

Next note that close to y = 1 the “tunnel” between the two curves initially
widens. For y = 1 the derivative of the curve v(y) equals λ′(1), whereas the deriva-
tive of the curve g−1є (y) is seen to be equal to 1~((1 − є)ρ′(0)). Since v(1) = 1 =
g−1є (1) the condition for an initial widening of the tunnel reads (g−1є )′(1) < v′(1)
which translates to (1−є)λ′(1)ρ′(0) A 1. We will see in Section 7.5.2 that this is the
stability condition for the special case of transmission over the BEC.

Finally, observe that the two curves cross again at some point.¿is is not due to
a bad choice of the degree distribution: a little thought shows that a crossing must
occur for some 0 < y < 1. To see this, �rst note that v(y) = λ(y) is strictly positive
for all y A 0. On the other hand, a direct check shows that gє(є) = 0, so that there
must be a crossing for some y C є. By a proper choice of the degree distributions
though one can make the probability of error of the �nal decision very small. n

Capacity-Achieving Degree Distributions for the BEC

When we consider capacity-achieving LDGM ensembles we can reuse our knowl-
edge gathered during the construction of capacity-achieving LDPC ensembles: the
starting point is a pair of (unnormalized) degree distributions which ful�ll density
evolution with equality (so that the dual equations are also ful�lled with equality).
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Lemma 7.47 (Capacity-Achieving LDGM Ensembles). Consider transmission
over the BEC(є). Let N > N and µ A 0 and set

α =
µ +H(N) + 1

1 − є
.(7.48)

¿en, in the limit of in�nite blocklengths, the ensemble LDGM �n, λα(x), ρ(N)(x)�,
where

λα(x) = e−α(1−x), ρ(N)(x) =
µ +PN

i=2
xi−1
(i−1) +

(N+1)xN
N

µ +H(N) + 1 ,

enables transmission at rate r = (1−є) 1−e−α1+µ with a bit error probability not exceed-
ing 1

N−1 .

Proof. We start with the heavy-tail Poisson distribution from Example 3.91,

λα(x) = e−α(1−x), ρ(x) = − ln(1 − x) =
ª

Q
i=1

xi

i
,

where we have exchanged the roles of λ and ρ as compared to the original example.
¿e variable degree distribution is already normalized (but of course it contains

degrees of all orders). But the generator degree distribution has in�nite mean. Let
us therefore consider the modi�ed degree distribution

ρ(N)(x) =
µ +PN

i=2
xi−1
(i−1) +

(N+1)xN
N

µ +H(N) + 1 ,

where H(N) = PN
i=1

1
i , the N-th Harmonic number. ¿is is a well-de�ned degree

distribution since all coe�cients are non-negative and ρ(N)(1) = 1. ¿ere are two
modi�cations with respect to the original degree-distribution. First, the degree of
ρ(N)(x) is bounded. Second, ρ(N)(x) contains a small fraction of degree-one nodes.
¿is second modi�cation is related to the stability problem at the begin of the de-
coding process. ¿e design rate is quickly determined to be

r = R λ
R ρ
=
(µ +H(N) + 1)(1 − e−α)

α(µ + 1)
(7.48)
= (1 − є)1 − e

−α

µ + 1
.

¿erefore, if we let µ tend to zero and let N tend to in�nity (so that 1−e−α tends to
one), thenwe can achieve rates arbitrarily close to capacity. Note that if 0 B x < 1− 1

N ,
then

ª

Q
i=N+1

xi

i
<

1
N + 1

ª

Q
i=N+1

xi =
1

N + 1
xN+1

1 − x
< xN ,
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where the last step follows by explicitly calculations, taking into account the given
range of x. It follows that for 0 B x < 1 − 1

N

ρ(N)(x) = µ − ln(1 − x) + x
N
−Pªi=N+1 x

i

i
µ +H(N) + 1 A

µ − ln(1 − x)
µ +H(N) + 1 .

Write the density evolution equations in terms of x (the erasure probability from
the variable to the generator nodes) instead of y. We have for 1

N B x B 1

λα(1 − (1 − є)ρ(N)(1 − x)) = e−α(1−є)ρ(N)(1−x) B e−α(1−є)
µ−ln(x)

µ+H(N)+1

(7.48)
= e−µx < x.

We see that the density evolution equations are ful�lled in this range.
It remains to check the implied bound on the probability of bit erasure. ¿e

normalized (to one) degree distribution from the node perspective of the variable
nodes is

λα(x) − e−α
1 − e−α

(7.48)
B

N
N − 1

λα(x).

¿e claim now follows by observing that the density evolution recursion is valid at
least until λα(y) B 1

N .

Stability Condition

Let us consider the stability condition for LDGM ensembles. Whereas the stability
condition for LDPC ensembles concerns the end of the decoding process, the stabil-
ity condition for LDGM ensembles relates to the beginning of the decoding process.
To render the system stable at the beginning we have essentially two options.We can
either “move” the curves: e.g., if we add some degree-one generator nodes the curve
g−1є no longer goes through the point (1,1) and the system is stable at the begin-
ning.¿e other option is to adjust the “slopes” of the two EXIT curves. A real system
likely involves a combination of the two methods – add some degree-one nodes to
ensure that the system gets started and control the “slopes” to ensure that the two
EXIT curves do not cross right away.¿e following theorem is concerned only with
the slopes, i.e., we assume that there are no degree-one generator nodes.

Theorem 7.49 (Stability Condition for LDGM Ensembles). Assume we are
given a degree distribution pair (λ, ρ), where ρ contains no degree-one nodes, and
assume that transmission takes place over a BMS channel characterized by its L-
density aBMSC with D-meanD(aBMSC) (see De�nition 4.57).
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Let a0 be a symmetric L-density, and for ℓ C 1, de�ne aℓ = aBMSC � ρ(λ(aℓ−1)).
Assume thatD(aBMSC)λ′(1)ρ′(0) < 1. ¿en there exists a strictly positive constant
ξ = ξ(λ, ρ,aBMSC) such that ifE(a0) C 1

2 − ξ thenE(aℓ) converges to 1
2 for ℓ tending

to in�nity.
If D(aBMSC)λ′(1)ρ′(0) A 1, then there exists a strictly positive constant ξ =

ξ(λ, ρ,aBMSC) such that if E(a0) < 1
2 then lim inf ℓ�ªE(aℓ) B 1

2 − ξ.

Proof. Recall that the Bhattacharyya constant played a key role in the derivation of
the stability condition for LDPC ensembles. ¿e equivalent role for LDGM ensem-
bles is played by theD-meanD(aBMSC). Recall from Lemma 4.61 that theD-mean is
multiplicative at check nodes. Further, in Problem 4.62 we saw that for small values
of the D-mean we have tight upper and lower bounds on the D-mean at the out-
put of a variable node. Let a0 be a symmetric L-density at the output of the variable
nodes and consider the evolution of the density under density evolution, where aℓ
denotes the densities at the output of the variable nodes and bℓ denotes the densities
at the output of the generator nodes. Let xℓ =D(aℓ) and yℓ =D(bℓ).

¿en by the multiplicativity of the D-densities at check nodes and the bounds
at the variable nodes we have

yℓ = ρ(xℓ−1)D(aBMSC), ℓ C 1,
1
2
(1 − λ(1 − 2yℓ)) B xℓ B 1 − λ(1 − yℓ).(7.50)

¿is implies that

xℓ B 1 − λ(1 − ρ(xℓ−1)D(aBMSC)) = λ′(1)ρ′(0)D(aBMSC)xℓ−1 +O(x2ℓ−1).
¿erefore, if λ′(1)ρ′(0)D(aBMSC) < 1 then there exits a strictly positive constant
ξ′ so that if x0 = D(a0) < ξ′ then limℓ�ª xℓ = limℓ�ªD(aℓ) = 0. For any strictly
positive ξ′ there exists a strictly positive ξ so that ifD(a0) < ξ′ then E(a0) A 1

2 − ξ.
Combining the two above statements shows that E(aℓ) converges to 1

2 .
¿e converse follows by essentially the same argument if we use the lower bound

in (7.50) instead of the upper bound. We skip the details.

§7.5.3. Rate-Less Codes: LT-Codes and Raptor Codes

Assume that we make the special choice λ(x) = elavg(1−x), i.e., we pick the variable
degree distribution to be the Poisson one. Strictly speaking this degree distribution
falls outside the validity of our analysis since λ(x) is not bounded. But we will take
a short-cut and simply assume that our analysis remains valid. In the Notes we list
some references inwhich you can�nd amore careful analysis.¿e�nal results agree.

Consider the ensemble LDGM �m, λ(x) = elavg(1−x), ρ�. By our standard as-
sumption elements of the ensemble are created by �rst generating m variable and
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n generator nodes (both with the right degree distribution) with labeled sockets.
As a second step the connections are chosen according to a random permutation
on Λ′(1) elements. To create a codeword, we choose the source word u and create
from this the codeword w.

We get to the punch line. Rather than creating a codeword by �rst creating the
whole code and then perform the encoding, we can create for a given source word
u a code and the resulting codeword w one bit at a time. Further, we do not need
to decide on the length of the codeword in advance but we simply continue the
procedure as long as we please.

Let us look at this procedure in detail. We are given the lengthm, a source word
u of length m, and the desired degree distribution pair (λ, ρ), where λ is a Poisson
with average degree lavg. ¿is average degree lavg is only de�ned a-posteriori once
we decide how many codebits we generate from the given source bits. To create the
k-th bit of the codeword proceed as follows. Pick a generator degree according to the
distribution ρi

iPjρj~j. If the chosen degree is d pick an d-tuple of bits from u.¿is can

be done either by picking one of the �nd� distinct d-tuples or by picking d elements of
them-tuple u with repetitions. For any reasonable lengthm the di�erence between
these two models is negligible and we will therefore ignore it in the sequel. Now
encode your choice of positions (i1,� , id) and send this information together with
the resulting k-th bit of the codeword wk = ui1 +� + uid to the receiver.

¿ere are several obvious questions that arise. First, from the above description
it seems doubtful that the scheme is of much use since for every bit we need to con-
vey the choice of d-tuple. ¿is requires on the order of lavg log(m) bits in average.
¿is problem is easily �xed by, e.g., breaking up the data into many blocks and en-
coding several blockswith the same choice of combinations. In this case the overhead
of lavg log(m) is amortized over many codewords and by choosing the number of
blocks large enough we can make the overhead negligible. Alternatively, sender and
receiver can use a shared source of randomness or use pseudorandom generators.

¿e second question concerns the relationship between this ensemble and the
ensemble LDGM �m, λ(x) = elavg(1−x), ρ�. Since for every codebit we choose the
degree independently according to the node-degree distribution we see that for in-
creasing blocklengths the generator degree distribution converges to ρ(x). Further,
the variable node degree distribution is the result of throwing nravg balls into m
boxes, where the choices are independent and where 1~ravg = Rρ. In average there
are therefore n

mravg balls in each box. In other words, lavg =
n
mravg. Since the choice

of each box is made independently, the resulting degree distribution converges to a
Poisson distribution with mean lavg.

If we choose lavg to be a constant (lets say lavg = 4) and increase the blocklength
m then there is a positive probability that a given source bit is not covered by any of
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the linear combinations. For m increasing to in�nity, this probability converges to
the probability that a Poisson random variable with mean lavg takes on the value 0,
i.e., it converges to e−lavg . ¿is implies a high error �oor. One solution is to choose
lavg as a function of n. A necessary and su�cient growth is lavg(n) = c log(n),
where c is a strictly positive constant. Codes generated in thisway are calledLT codes
and they represent the historically �rst class of rate-less codes. It is hopefully clear
at this point why the codes are called rate-less. ¿e rate of the code is not speci�ed a
priori but is only �xed once the transmission for a particular block stops. Di�erent
data blocks encoded by the same procedure might end up being transmitted using
a di�erent code rate.

An even better solution is to keep lavg constant but to precode the information
vector u (e.g., with an LDPC code). If u denotes the original information vector
and if ũ is the result of the precoding then we proceed as follows. We �rst try to
recover ũ using the LDGM code. Since lavg is a constant we know that there will
be a fraction of the bits in ũ that we cannot recover. By choosing lavg su�ciently
large we can make this un-recovered fraction as small as desired. We can now use
the error correcting capability of the precode to “clean up” the error �oor. For the
speci�c instance in which the precoding is done using an LDPC code the resulting
rate-less codes are called Raptor codes.

¿e real power of rate-less codes appears once we realize that it is not necessary
that the information is received from the same transmitter. Consider a broadcasting
scenario where a large amount of data needs to be broadcast to a large set of users
that “see” channels of highly varying conditions.We can imagine scenarios in which
many transmitters (maybe satellites) broadcast the same information in a rate-less
fashion.¿e receiver can then accumulate information from any of the transmitters
that are “within reach”. ¿e receiver can even switch on and o� as he wishes. ¿e
only condition for success at the end is that the total amount of information that
he has received su�ces for decoding. Since the equations (code bits) generated at
di�erent transmitters are independent the received information is additive at the
receiver.

Notes

Multi-edge type LDPC ensembles appeared in the paper by Richardson andUrbanke
[55].¿e de�nition and parametrization of these ensembles (Section 7.1.2) as well as
their asymptotic analysis (Section 7.2) is taken from this paper. ¿e proof of the
stability condition follows closely the proof for standard irregular LDPC ensembles
which was given by Richardson and Urbanke [54].

Repeat-accumulate codeswere introduced byDivsalar, Jin, andMcEliece [11] as a
slimmed down version of turbo codes to facilitate their analysis. (Chains of degree-
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two nodes appear also in the construction of Kanter and Saad [26].) Surprisingly,
despite their simple structure these codes themselves are quite good and their basic
structure in turn has been generalized ad in�nitum. If you are interested in �nding
outmore on the cycle-distribution of random permutations a good reference isWilf
[71]. We have discussed irregular repeat-accumulate codes introduced by Jin, Khan-
dekar, andMcEliece [24]. In the same paper it was shown that, at least for the binary
erasure channel, this class of ensembles is su�ciently powerful to achieve capacity.
It was shown by P�ster, Sason, andUrbanke [49] that by a proper selection of the de-
gree distribution the capacity of the BEC can be achieved with bounded complexity,
i.e., a �xed number of computations per information bit. ¿is is in contrast to stan-
dard LDPC ensembles where we proved in¿eorem 3.86 that to achieve capacity the
number of required operations must tend to in�nity at least as the log of the gap to
capacity. Accumulate-repeat-accumulate codes were invented by Abbasfar, Divsalar,
and Kung [1, 2]. It was shown by P�ster and Sason [48] that their asymptotic analysis
can be reduced to the asymptotic analysis of IRA ensembles. ¿e chain of general-
izations of RA codes does not stop here. To mention just one such generalization
which we have not discussed in this book, there are accumulate-repeat-accumulate-
accumulate codes (see Divsalar, Dolinar, and¿orpe [10]).

Let usmention a few further classes of codes. Concatenated tree (CT) codeswere
proposed by Ping [50]. Boutros, Pothier, and Zémor showed that a random graph
whose local codes are Hamming codes are asymptotically good and they simulated
the performance of such codes under iterative decoding [6]. ¿e same result was
shown by Lentmaier and Zigangirov [33]. More general, it was shown by Barg and
Zémor that random graph with component codes whose minimum distance is at
least 3 are asymptotically good [4]. A fairly general construction using base codes
was put forth by Tillich [64] with follow-up work by Andriyanova, Tillich, and Car-
lach [3]. ¿is construction contains as special cases many of the codes discussed in
this book. Low-density convolutional codes were introduced by Engdahl and Zi-
gangirov [15]. In a similar spirit, braided block codes where proposed by Truhachev,
Lentmaier, and Zigangirov [65].

Low-density generator codes were already known to Gallager [19]. At �rst, these
codes appeared more as a mathematical curiosity. But with the advent of rate-less
codes and the interest in the source coding problem this class has become of much
interest on its own.

MN codes were introduced in [41] byMacKay and Neal. ¿is is also the origin
of the name MN. ¿ere are several variations on the theme and we only discussed
one particular �avor. Properties of these codes were discussed by MacKay [39] as
well as Kanter and Saad [26]. ¿e same basic structure is not only of interest for
the channel coding problem but seems also well suited for the source coding prob-
lem (or a combination thereof). We refer the reader to the work of Martinian and
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Wainwright [43, 42], as well as Dimakis, Wainwright, and Ramchandran [9].
¿e idea of using a li ing for LDPC codes was �rst presented by Tanner [62].

A patent was granted to Richardson [52, 53]. An important aspect of li ed codes
is that one performs the encoding operation essentially on the base graph by as-
suming that encoding takes place over F2[G] rather than as binary arithmetic. Very
similar to li ings is the idea of protographs put forward by ¿orpe, Andrews, and
Dolinar [63]. Protographs with linear minimum distance were constructed by Di-
vsalar, Jones, Dolinar, and¿orpe [12]. ¿e idea of li ing is also strongly connected
to a graph cover, a standard concept in graph theory. Such graph covers in turn play
an important role in the analysis of pseudo codewords as was pointed out by Kötter
andVontobel [31]. Also the class of non-binary ensembles as discussed in Section 7.4
can be seen as a li ing of the underlying binary graph.

A good reference for Ω networks, or more generally, non-blocking switching
networks is the book by Hwang [23] (see also Knuth [30]).

All ensembles discussed so far are based on a small number of constraints (de-
gree distributions and edge types) and a large amount of randomness. On the other
end of the spectrum there are constructions of sparse graph codes which contain
no or little randomness. ¿e �rst such constructions are due to Tanner [62]. Codes
based on �nite-geometries were discussed by Kou, Lin, and Fossorier [32]. Combi-
natorial code designs were put forth by Vasic and Milenkovic [67], Djordjevic and
Vasic [14, 13], as well as Vasic, Kurtas, and Kuznetsov [66]. Other constructions are
by Smarandache and Vontobel [59], Greferath, O’Sullivan, and Smarandache [21],
and Sridhara, Kelley, and Rosenthal [61].

¿e aforementioned ensembles contain many good codes. ¿e main reason we
have excluded these ensembles from our description is that with the methods de-
scribed in this book it seems di�cult to analyze the behavior of these codes under
message-passing decoding. An analysis under MAP decoding is of course always
possible using weight distributions, but this is of less interest in our context. As a
�rst logical step one can investigate the pseudo codeword distribution. ¿is is the
appropriate measure under linear-programming decoding but it also has some rel-
evance to message-passing decoding as was shown by Vontobel and Kötter [69].
Such investigations have been undertaken by Kashyap and Vardy [28], Vontobel,
and Kötter [68], Kelley, Sridhara, Xu, and Rosenthal [29], Vontobel, Smarandache,
Kiyavash, Teutsch, andVukobratovic [70], Schwartz andVardy [56], and Etzion [18].

¿e question of how to accomplish an e�cient decoding in quasi-cyclic con-
structions with high redundancy was addressed by Johnson and Weller [25] as well
as Li, Chen, Zeng, Lin, and Fong [34].

In his thesis Gallager already mentioned the possibility of non-binary codes
[20] which is the topic of Section 7.4. ¿e fact that by using non-binary alphabets,
the performance of LDPC codes over BMS channels can be improved was �rst re-
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ported byDavey andMackay [8].¿ey showed by speci�c examples that non-binary
LDPC codes can perform signi�cantly better than their binary counterparts for the
BMS channels. Another reference on non-binary codes from the same time period
is the one by Berkmann [5].¿e �rst explicit mentioning of the use of Fourier trans-
forms to perform the check node computation e�ciently can be found in the article
by Mackay and Davey [40]. ¿is approach has since been rediscovered a countless
number of times. Hu showed that even the performance of cycle codes can be im-
proved considerably with non binary alphabets [22]. In [60], Sridhara and Fuja have
designed codes over certain rings and groups for coded modulation based on the
principle of non-binary LDPC codes. Much of the material presented in Section 7.4
is taken from Rathi and Urbanke [51]. In this paper it is shown that the analysis is
simpli�ed if the edge labels are taken from the set of invertible m � m binary ma-
trices (rather than the subset of these matrices that represent �nite �eld elements in
F2m).

Mitzenmacher as well as Luby and Mitzenmacher proposed to use codes over
large alphabets as veri�cation codes [46, 38]. Such codes are well suited if we consider
instead of bits packets of bits. To seewhat a veri�cation code is, consider transmission
over a q-ary symmetric channel, where q denotes the alphabet size. Assume that
for a particular check the sum of its neighbors is zero. ¿en, by the symmetry of
the channel, the probability that the received value of any of the involved packets
(variable nodes) is incorrect is at most 1~q, a negligible value for any reasonable
packet size (if the packet consists of b bytes then q = 8b). We then say that these
variable nodes have been veri�ed. In a similar way we can correct and verify a node
if all of its neighbors (with respect to a particular check) have already been veri�ed.
¿is gives rise to a decoding algorithm reminiscent of the erasure decoder.

¿e �rst mentioning of rate-less codes is due to Byers, Luby, Mitzenmacher, and
Rege [7]. ¿e �rst explicit constructions of rate-less rates are due to Luby and are
named LT-codes (Luby transform codes) in his honor [35, 36, 37]. As only brie�y
mentioned in this text, these are essentially LDGM codes with an average degree
which grows logarithmically in the blocklengths. ¿is logarithmic growth is neces-
sary to ensure that all input bits are “covered” at least once (are part of at least one
linear combination). But this logarithmic growth causes two problems. First, it in-
creases the complexity, and second, we can no longer apply our standard analysis
which assumes that the degrees are �xed and that the length tends to in�nity. (Al-
though, surprisingly, a formal such application of the standard techniques does give
the right result.) To remedy these problems, Shokrollahi introduced Raptor codes
[57, 58]. Lemma 7.47 is taken from the journal paper. ¿e idea of Raptor codes is
to precode the information word. ¿e LDGM part of the code is used to bring the
error probability down to a small number. It is then the task of the code used in the
precoding to eliminate the remaining errors. (See also the papers by Maymounkov
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[44] as well as Maymounkov and Mazieres [45].)
¿e stability condition presented in Section 7.5.2 is due to Etesami and Shokrol-

lahi in [17]. We have not presented a �nite-length analysis of LT codes. But such
an analysis has been accomplished by Karp, Luby, and Shokrollahi [27]. ¿e use of
Raptor codes on symmetric channels was investigated by Etesami, Molkaraie, and
Shokrollahi [16] as well as Palanki and Yedidia [47].

Several standards have already adopted Raptor codes and this number is likely
to increase further in the future.

Problems
7.1 (Socket Count Equality Constraint). Consider the RA ensemble discussed
in Example 7.6. Check that the socket count equality constraints are ful�lled.

7.2 (All-One Codeword for Non-Binary Case). Consider transmission over a
BMS channel using a non-binary LDPC ensemble and BP decoding. Prove that the
error probability is independent of the transmitted codeword so that in the analysis
we can make the all-one codeword assumption.

7.3 (Minimal Codewords for Non-Binary Codes). Show that the generating
function counting the number of minimal codewords in a non-binary LDPC en-
semble in the limit of in�nite blocklengths is given by (7.42).
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Chapter 8

E X PA N D E R C O D E S A N D F L I P P I N G
A L G O R I T H M

Rather than looking atmessage-passing decoders and density evolution, one can use
the expansion of a bipartite graph to guarantee an error correcting capability of the
associated code. One advantage of this approach is that it applies directly to �nite
size graphs. On the negative side, the bounds derived by this method are typically
pessimistic and do not re�ect the true error correcting potential observed in prac-
tice. ¿e most prominent decoder used in conjunction with expansion arguments
is the �ipping algorithm.

§8.1. Building Codes from Expanders
It is said that one has towork in probability theory for at least 20 years before coming
across the name Chebyshev spelled in exactly the same way twice. In a similar way,
hardly any two authors agree on a de�nition of the expansion of a graph. Intuitively,
in a graphwith large expansion a subset of nodes has a large set of neighbors. Degree
distributions play a minor role in our present investigation since the (analytically
predictable) performance is only a function of the lowest and highest degree. We
therefore consider (l,r)-regular ensembles.
Definition 8.1 (Expansion of Bipartite Graph). Let G be a (l,r)-regular bipar-
tite graph with n variable nodes of degree l and l

r
n check nodes of degree r. We say

that G is an (l,r,α,γ) expander if for every subset V of at most αn variable nodes,
the set of check nodes which are connected to V is at least γSV Sl.

¿e idea is clear. A setV of variable nodes has SV Sl outgoing edges and can hence
be connected to at most SV Sl check nodes. ¿erefore, γ represents the minimum
such fraction which is achieved by the given graph (where the minimum is over all
non-empty sets V of cardinality at most αn.) If the expansion is su�ciently large,
the minimum distance of the associated code is a linear fraction of the blocklength.

Theorem 8.2 (Expansion and Minimum Distance). Let G be an (l,r,α,γ) ex-
pander with γ A 1

2 . ¿en the associated code has minimum distance greater than
αn.

Proof. We proceed by contraposition. We assume that γ A 1
2 and that there exists

a non-zero codeword of size at most αn. Let V denote the set of variable nodes
corresponding to the non-zero positions of this codeword. ¿e constraints require

433
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that each check-node neighbor of V is connected to V an even number of times. In
particular, each such neighbormust be connected at least twice.¿us, the number of
neighbors is atmost 12 SV Sl. Since the graph is a (l,r,α,γ) expander it follows on the
other hand that the number of neighbors is at least γSV Sl.¿is leads to 1

2 SV Sl C γSV Sl,
a contradiction since γ A 1

2 .

§8.2. Flipping Algorithm
¿e �ipping algorithm is the algorithm of choice if we consider codes built from
expanders. It comes in many �avors. We limit our discussion to its generic version
– the so-called sequential �ipping algorithm.

Definition 8.3 (Sequential FlippingAlgorithm). Associatewith every variable
node a current estimate of the corresponding bit. Initially this estimate is equal to
the received value. In each iteration exactly one of these estimates is �ipped until
either a valid codeword is reached or until the decoding procedure stops. To decide
which estimate to �ip one proceeds as follows. Given the current estimates, call a
check node satis�ed if themodulo two sum of the estimates of its connected variable
nodes is zero and unsatis�ed otherwise. Choose a variable node that is connected
to more unsatis�ed constraints than satis�ed constraints and �ip its estimate. If no
such variable node exists stop.

Remark: By �ipping such a variable node we strictly decrease the number of
unsatis�ed check nodes.

For graphs with su�cient expansion the �ipping algorithm corrects a linear
fraction of errors.

Theorem8.4 (ExpansionandDecodingRadius). LetG be a (l,r,α,γ) expander
with γ A 3

4 . ¿en the sequential �ipping algorithm correctly decodes all error pat-
terns of weight up to α

2n.

Proof. We call a variable node good if its current estimate is correct and bad other-
wise. Let bℓ denote the number of bad variable nodes at the beginning of the ℓ-th
iteration. Let sℓ and uℓ denote the number of satis�ed and unsatis�ed check nodes
which are connected to bad variable nodes in the ℓ-th iteration. Note that every unsat-
is�ed check node is connected to at least one bad variable node. Since by de�nition
of the algorithm the number of unsatis�ed check nodes is strictly decreasing it fol-
lows that the sequence uℓ is strictly decreasing until the algorithm terminates. By
assumption the number of errors in the received word is at most α2n, i.e.,

b1 B
α
2
n.
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We now show that if 0 < bℓ < αn then the algorithm �ips a variable node in the ℓ-th
decoding step and that 0 B bℓ+1 < αn. Since uℓ is strictly decreasing (and �nite), it
follows that the algorithm does not terminate until uℓ has reached zero. To see this
claim assume that 0 < bℓ < αn. From the expansion property we know that

sℓ + uℓ A
3
4
lbℓ.

Further, a check node which is connected to a bad variable node but which is sat-
is�ed must be connected to at least two bad variable nodes. Since there are exactly
lbℓ edges emanating from the set of bad variable nodes, it follows that

2sℓ + uℓ B lbℓ.

Combining the last two inequalities we conclude that

uℓ A
l

2
bℓ.(8.5)

In words, the average number of unsatis�ed check nodes which are connected to a
bad variable node is bigger than l

2 . We conclude that that there must exist at least
one (bad) variable node which is connected to more unsatis�ed check nodes than
satis�ed check nodes. It follows that in the ℓ-th step the algorithm �ips a variable
node.

Let us now show that 0 B bℓ < αn throughout the whole decoding process.
Using again (8.5) and the fact that uℓ is strictly decreasing we conclude that l

2bℓ <
uℓ < u1 B lb1 B lα

2 n. ¿is shows that bℓ < αn.
It remains to check that the algorithm converges to the correct codeword. With-

out loss of generality we may assume that the zero codeword was sent. As we have
seen, at no point in the algorithm does bℓ exceed αn. But from ¿eorem 8.2, we
see that there are no codewords of weight less or equal to αn, so that the codeword
found by the algorithm must indeed be the correct one.

§8.3. Bound on Expansion of a Graph
In the previous section we have seen how the error correction capability of a code
can be lower bounded in terms of the expansion of its associated bipartite graph.
Unfortunately, the problem of determining the expansion of a given bipartite graph
is hard (NP-complete to be precise).

We therefore limit ourselves to stating a lower bound on the expansion of a given
bipartite graph which can be determined e�ciently. Unfortunately, as we will see,
this bounding technique is limited to proving expansions of at most 1

2 .
Let G be a (l,r)-regular bipartite graph with n variable nodes and l

r
n check

nodes. Without essential loss of generality we assume that the graph contains no
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multiple edges. LetH be the incidencematrix of this bipartite graph, i.e.,Hi j is equal
to one if the i-th check node is connected to the j-th variable node and zero other-
wise. In other words,H is the parity-check matrix of the associated binary code but
considered as a �0,1�matrix over the reals.¿ematrixHTH is a n�n real symmet-
ric non-negative de�nite matrix. It is therefore diagonalizable and it has real non-
negative eigenvalues and orthogonal eigenvectors. Let λ1 C λ2 C � C λn denote its
ordered eigenvalues and let e1,� , en denote its associated orthogonal eigenvectors.

Theorem 8.6 (Tanner’s Lower Bound on Expansion via Eigenvalues). Let
G have second largest eigenvalue λ2. ¿en for any α > R+, G is an (l,r,α,γ(α))
expander with

γ(α) C l

(lr − λ2)α + λ2 .

Proof. Let V denote a subset of the variable nodes and C denote that subset of check
nodes that are connected to nodes in V . Let x denote the characteristic vector asso-
ciated toV , i.e., x is a �0,1�-valued vector of length nwhich is 1 at position i if i > V ,
and 0 otherwise. De�ne z = HxT . By de�nition, z has exactly SCS non-zero entries
and the sum of its entries is SV Sl. Hence, by convexity of the function f(x) = x2, we
have

YzY22 =
n
Q
i=1
SziS2 C �

n
Q
i=1

zi
SCS �

2
SCS = (SV Sl)

2

SCS .

It follows that SCSSV Sl C
SV Sl
YzY22

. ¿erefore, if we can �nd an upper bound on YzY22 then we
have a lower bound on the expansion. Since every row ofH contains exactly r ones
and every column of H contains exactly l ones we conclude that

(HTH)(1,� ,1)T = HT(H(1,� ,1)T) = HT(1,� ,1)Tr = (1,� ,1)Tlr.
In other words, (1,� ,1) is an eigenvector of HTH with eigenvalue lr. We claim
that no eigenvalue can be larger: each row and column of HTH has L1 norm lr. It
follows that for any vector x we have

Y(HTH)xTY1 BQ
i
Q
j
S(HTH)i jxjS =Q

j
�Q

i
(HTH)i j�SxjS =Q

j
lrSxjS = lrYxY1,

from which the claim follows. ¿erefore we have e1 = (1,� ,1)~ºn and λ1 = lr.
Expand x, the characteristic vector associated to V , in terms of the orthogonal basis
spanned by the eigenvectors, x = Pni=1 єiei. ¿en we have (HTH)xT = Pni=1 λiєieTi .
Multiply the last equality from the le by x = Pni=1 єiei. By using the orthogonality
of the eigenvectors, we have

YzY22 = x(HTH)xT =
n
Q
i=1
λiє2i
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= lr
SV S2
n
+

n
Q
i=2
λiє2i B lr

SV S2
n
+ λ2

n
Q
i=2
є2i

= (lr − λ2) SV S
2

n
+ λ2YxY22 = (lr − λ2)

SV S2
n
+ λ2SV S.

Minimizing over all non-empty sets V such that SV Sn B α, the expansion satis�es

γ(α) = min
V

SCS
SV Sl C min

V

SV Sl
(lr − λ2) SV S2n + λ2SV S

= min
V

l

(lr − λ2) SV Sn + λ2
C

l

(lr − λ2)α + λ2 .

§8.4. Expansion of a Random Graph
Let us state here without proof that the above eigenvalue argument can assert an
expansion of at most 1

2 . Unfortunately this is not su�cient to prove good distance
properties of a code (and far from su�cient to show that the code can correct a
linear fraction of errors). But as we will see, in suitably chosen ensembles of graphs
almost every element has large expansion.

Theorem 8.7 (Expansion of Ensembles). Let G be chosen uniformly at random
fromLDPC �n,xl−1,xr−1�. Choose γ > [0,1−1~l). Let αmax be the positive solution
of the equation

l − 1
l

h2(α) − 1
r
h2(αγr) − αγrh2� 1γr� = 0.

¿en for 0 < α < αmax and β = l(1 − γ) − 1
P�G is an (l,r,α,γ) expander� C 1 −O(n−β).

Discussion: As discussed in Problem8.2, it is straightforward to see that a (l,r)-
regular graph can not have expansion exceeding 1 − 1~l. ¿e theorem asserts that
with high probability a random graph has expansion close to this upper bound.

If l C 3 then (since 1
2 < 1− 1~l = 2~3) with probability one (in the limit of large

n) a random graph has expansion strictly bigger than 1
2 for some strictly positive

α (and therefore the associated code has linear minimum distance). If l C 5 then
(since 3

4 < 1−1~l = 4~5) with probability one (in the limit of large n) a randomgraph
has expansion strictly bigger than 3

4 for some strictly positive α (and therefore the
associated code has a linear error correcting radius under the �ipping decoder).

Example 8.8. Figure 8.9 shows α as a function of γ for l = 2, 3, 4, and 5 and r = 6.
n
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0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

l = 2

l = 5

γ

α

Figure 8.9: Value of α as a function of γ for l = 2, 3, 4, and 5 and r = 6.

Proof. Consider a set of variable nodes V of size v. ¿ere are �nlvl� distinct ways of
choosing the vl check sockets to which the edges emanating from V connect. We
claim that atmost �n l

r
vlγ��vlγrvl � of those are expanding by γor less: a setV of size v that

expands by at most γ is connected to at most vlγ distinct check nodes. ¿erefore,
choose vlγ out of all nl

r
check nodes.¿is accounts for the �rst factor. Now choose

the vl sockets out of the available vlγr. ¿is is represented by the second factor.
Note that some constellations are counted repeatedly, so that the above expression
is an upper bound. Since all constellations in the ensemble LDPC �n,xl−1,xr−1�
are equally likely, the probability that a random constellation on v variable nodes is
expanding by at most γ is upper bounded by �n l

r
vlγ��vlγrvl ��nlvl�

−1. Since there are �nv�
subsets of variable nodes of size v, an application of (the Markov inequality) (C.2)
and the bounds (1.58) as well as (1.59) shows that the probability

P�G contains V � SV S = v and SCS B vlγ�

is upper bounded by

�n
v
�� n

l
r

vlγ
��vlγr

vl
��nl
vl
�
−1

(8.10)

B(nl + 1)2−nl� l−1l h2(v~n)− 1
r
h2((v~n)γr)−(v~n)γrh2� 1

γr��(8.11)

=(nl + 1) exp�−nl[β
l

v
n
ln
n
v
+O(v~n)]�.(8.12)

Fix 0 B γ < 1 − 1~l so that β = l(1 − γ) − 1 A 0. We see from (8.12) that there exists
a positive range for v~n such that the exponent in the bound is positive. ¿e exact
range is determined by (8.11): we get v~n < αmax.

Fix α < αmax and sum (8.10) for v = 1,� ,αn. We want to show that this sum
tends to zero as n tends to in�nity. ¿is is best done in two steps. For small v we
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bound (8.10) using (1.56) and (1.57) by

� v
cn
�
βv
e

v2l
n ,(8.13)

where c is a strictly positive constant, c = c(l,r,γ). Set δ = β
2(1+β) . ¿e sum over

(8.13) for v = 1,� ,nδ can be bounded by

nδ

Q
v=1
� v
cn
�
βv
e

v2l
n B en

2δ−1l
nδ

Q
v=1
� v
cn
�
βv nC 1

c
B en

2δ−1l(cn)−β�1 + nδβ
nδ

Q
v=2
� v
cn
�
β(v−1)

�
(i)
B (cn)−βen2δ−1−l �1 + nδβ+δ−β(2~c)β� B O(n−β),

where in step (i) we assumed that n C ( 1c)
1

1−δ so that v
cn B 1. ¿is implies that

� vcn�
β(v−1)

takes on its maximum value for v = 2. For the sum v = nδ,� ,αnwe use
(8.12), which leads to the bound

O(exp(−β(1 − δ)nδ logn)) B O(n−β).

Example 8.14 (Expansion of (5,6)-Regular Ensemble). According to ¿eo-
rem 8.7

P�G is an (l = 5,r = 6,α = 0.0302946,γ = 1
2
) expander� C 1 −O(n− 1

4 ).

Let us combine this with ¿eorem 8.2 taking into account that the relationship be-
tween α and γ is continuous, so that a small increase in γ only requires a small
decrease in α. ¿erefore, a randomly chosen element G from the (5,6)-regular en-
semble has a minimum distance of (at least) 3 percent of the blocklength with high
probability. If we are asking for an expansion of γ = 3

4 then the corresponding α
is less than 3.375 ċ 10−11, and by ¿eorem 8.4 the guaranteed error correcting ra-
dius under the sequential �ipping algorithm is half of this amount. Fortunately, in
practice the observed performance is considerably better than that. ¿e �ipping al-
gorithm is in general not as good as the BP algorithm but it typically can correct a
reasonable fraction of the errors that the BP can correct. n

Notes
¿e �ipping algorithm was introduced by Gallager [7]. ¿e �rst analysis of this al-
gorithm is due to Pinsker and Zyablov [16].¿e analysis of the �ipping algorithm in
terms of the expansion of the underlying Tanner graph as stated in¿eorem 8.2 and
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¿eorem 8.4, is due to Sipser and Spielman [14]. Improved constants were given by
Burshtein [5].

¿e lower bound on the expansion based on the eigenvalue separation of the
associated adjacency matrix is due to Tanner [15]. It was shown by Kahale in his
thesis [10] that the eigenvalue method can certify an expansion of at most 1

2 . ¿is
is unfortunately not good enough to assert that there are expander codes of good
minimum distance and it is far from su�cient to assert a good performance under
the �ipping algorithm.

¿e fact that suitable randombipartite graphs are expanders with high probabil-
ity was discovered independently by several authors. Such a statement is contained
in the thesis of Spielman, where the key idea is attributed to Alon. A slightly di�er-
ent proof was given by Luby, Mitzenmacher, Shokrollahi, Spielman, and Stemann
[11]. ¿eorem 8.7 and its proof are taken from Burshtein and Miller [6].

Although we have only considered random graphs, it is possible to explicitly
construct expanders to guarantee a certain error correcting radius. ¿e �rst such
construction is due to Margulis [12]. For the binary case, the construction of ex-
pander codes with the currently largest minimum distance as a function of the rate
is due to Barg and Zémor [3, 4]. ¿e expanders with the largest error exponent for
large rates as well as low rates (over the BSC) are also due to these authors [2, 3]. For
non-binary alphabets, nearly-MDS expander codes (which also admit a linear-time
encoding) were presented by Guruswami and Indyk [8] as well as Roth and Skachek
[13]. For a comparison of various constructions in terms of decoding characteristics
versus gap to capacity see the paper by Ashikmin and Skachek [1].

If you are looking for a survey on expander graphs seeHoory, Linial, andWigder-
son [9].

From the material we presented it might appear that there are two completely
separate (coding) universes: amessage-passing one and an expanding one which we
use when analyzing the �ipping algorithm. It is possible to analyze message-passing
decoders in terms of expansion of the underlying Tanner graph. ¿is surprising
result is due to Burshtein and Miller [6]. More precisely, if the underlying Tanner
graph has expansion exceeding 3

4 then suitably quantized versions of the BP decoder
have a strictly positive error correcting radius and, hence, also an associated strictly
positive error exponent.

Problems

8.1 (Tanner’s Lower Bound on Expansion: Special Case). Consider the bound
in¿eorem 8.6. What happens if for a (l,r)-regular graph G you have λ2 = λ1?
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8.2 (Upper Bound on Expansion). Consider a (l,r)-regular graph. Show that its
expansion is at most 1− 1~l+ 1

lvk
for sets of cardinality vk, where vk = 1+Pk

i=1(l−
1)i−1(r − 1)i, k > N.

Hint: First consider the node-perspective computation graph of depth ℓ = 1
of a variable node. Show that its expansion is at most 1+(l−1)(r−1)

1+l(r−1) = 1 − 1~l +
1

l(1+l(r−1)) = 1 − 1~l + 1
lv1 . ¿en generalize.

8.3 (Expansion of aGraph). Consider the Tanner graph of a (l,r)-regular LDPC
code of length n. Show that if G is a (l,r,α,γ) expander with γ A 1

2 then the graph
does not contain stopping sets of size αn or smaller.
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Appendix A

E N C O D I N G L OW - D E N S I T Y
PA R I T Y - C H E C K C O D E S

LDPC codes are unusual in that their encoding method is not an intrinsic part of
their de�nition. In this chapter we discuss how to e�ciently encode generic LDPC
codes. ¿e method we present is general, applicable to any LDPC code. In practice,
an LDPC code is o en constrained further to yield a simple encoding. ¿e general
method presented here can always be used as a starting point in such constructions
- controlling the complexity of the resulting encoder.

§A.1. Encoding Generic LDPC Codes
Assume we are given an LDPC code of length n and dimension k speci�ed by its
(n−k)�n parity-checkmatrixH, i.e., the code consists of the set of n-tuples x such
that

HxT = 0T .

Assuming that H has full row rank, we can accomplish the encoding if we can �nd
a decomposition (permuting columns of H if necessary)

H = �Hp Hs�

such thatHp is square and invertible. Split the vector x into a systematic part s, s > Fk,
and a parity part p, p > Fn−k2 , such that x = (p, s). To encode we �ll s with the k
desired information bits, and solve for pusing HppT = HssT .

A straightforward construction of such an encoder is to use Gaussian elimi-
nation and column permutations to bring H into an equivalent1 upper triangu-
lar form as shown in Figure A.1. In this way we not only �nd the decomposition
H = �Hp Hs�, but we in e�ect premultiplyH so thatHp is upper-triangular. Using
this equivalent form, we can solve for p, the (n − k) parity-check bits, using back
substitution. More precisely, for l > [n − k], starting with l = n − k, set

pl = −
n−k
Q
j=l+1

Hl,jpj−
k
Q
j=1
Hl,j+n−k sj.

1We say equivalent because Gaussian elimination is right multiplication by an invertible matrix,
hence the code is unchanged.

443

Preliminary version – October 18, 2007



444 encoding low-density parity-check codes

0

1
1

1
1
1

n − k k

n
−
k

Figure A.1: H in upper triangular form.

What is the complexity of such an encoding scheme? Gaussian elimination with
column swapping to bring the matrix H into the desired form requires O(n3) op-
erations. Since this need only be done once, the result being usable in all encodings,
we view this as preprocessing. ¿e number of operations required for each encod-
ing isO(n2) since, in general, a er the preprocessing the matrix is no longer sparse.
More precisely, we expect that we need about n2 r(1−r)2 operations to accomplish this
encoding, where r is the rate of the code.

Given that the original parity-check matrix H is sparse, of O(n) density, one
might wonder if encoding can be accomplished in complexityO(n). As we will see,
for codes that allow transmission at rates close to capacity, linear time encoding
is indeed possible. And for those codes for which the following encoding scheme
leads to quadratic encoding complexity, the constant factor in front of the n2 term is
typically small so that the encoding complexity stays manageable up to large block-
lengths.

0

1
1

1
A B

E C D g

n
−
k
−
gn − k − g g k

Figure A.2: H in approximate upper-triangular form.

¿e general encoder is motivated by the above example. It is not restricted to the
case F2. We therefore keep track of signs. ¿e �rst step is to manipulate the parity-
check matrix using row and column permutations only (but no algebraic operations)
to put H into the form indicated in Figure A.2 and expressed in the equation

(A.3) �T A B
E C D� .

Preliminary version – October 18, 2007



encoding generic ldpc codes 445

¿is is the decomposition H = �Hp Hs� with Hp = �T A
E C� , and the special

requirement that T be square and upper-triangular. We say that H is in approx-
imate upper-triangular form. ¿is is important: since this transformation was ac-
complished solely by permutations, the matrix is still sparse. Hence, if we can make
T to be of dimension n − k then encoding with complexity O(n) is possible. More
generally, as we will show in the sequel, if we canmake T of dimension n−k−g then
we can encode with complexity O(n+ g2). Our goal in constructing such a decom-
position is therefore to make the dimension of T as close to n − k as possible. ¿e
height of �E C D� is called the gap and it is denoted by g. ¿is parameter mea-
sures the distance of H from an upper-triangular decomposition. ¿e dimensions
of the various sub-matrices are as follows:

T � (n − k − g) � (n − k − g), A � (n − k − g) � g,
B � (n − k − g) � k, E � g� (n − k − g),
C � g� g, D � g� k.

Assuming that we have brought our parity-check matrix H into the form (A.3), en-
coding consists of solving the system of equations H(p, s)T = 0T for p, given s.
Multiply H from the le by

� I 0
−ET−1 I� .(A.4)

¿is yields

�T A B
0 C − ET−1A D − ET−1B� .

In words, by premultiplying we have eliminated E, e�ectively performing the �rst
step of Gaussian elimination. Rather than completing Gaussian elimination, we
solve the implied system directly. Decompose x = (p, s) further into x = (p1, p2, s),
where p1 and p2 combined denote the parity part; p1 has length (n− k− g), and p2
has length g. ¿e equation HxT = 0T splits into two equations, namely

TpT1 + Ap
T
2 + Bs

T
= 0T , and(A.5)

(C − ET−1A)pT2 + (D − ET−1B)sT = 0T .(A.6)

De�ne ϕ = C − ET−1A, and assume for the moment that ϕ is invertible. ¿is is
equivalent to assuming that Hp is invertible. From (A.6)

pT2 = −ϕ
−1(D − ET−1B)sT .
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Operation Complexity
BsT O(n)
T−1 �BsT� O(n)
−E �T−1BsT� O(n)
DsT O(n)
�DsT� − �ET−1BsT� O(n)
−ϕ−1 �DsT − ET−1BsT� O(g2)

Table A.7: E�cient computation of pT2 = −ϕ−1(D − ET−1B)sT .

Operation Complexity
ApT2 O(n)
BsT O(n)
�ApT2 � + �BsT� O(n)
−T−1 �ApT2 + BsT� O(n)

Table A.8: E�cient computation of pT1 = −T−1(ApT2 + BsT).

Hence, if we precompute the g�kmatrix −ϕ−1(D−ET−1B) then the determination
of p2 can be accomplished in complexity O(g � k) by performing a multiplication
with this (generically dense) matrix. ¿is complexity, however, can be further re-
duced as shown in Table A.7. Rather than precomputing −ϕ−1(D − ET−1B) and
then multiplying with sT , we precompute ϕ−1, which is g � g. ¿en we determine
p2 by �rst computing (D−ET−1B)sT and then by multiplying with −ϕ−1. We claim
that the �rst step can be done in O(n) operations: we �rst determine BsT , which
has complexity O(n) since B is sparse. Next, we multiply the result by T−1. Since
T−1[BsT] = yT is equivalent to the system [BsT] = TyT , this can also be accom-
plished in O(n) by back-substitution (recall that T is upper triangular and sparse.)
¿e remaining steps are fairly straightforward. It follows that the overall complex-
ity of determining p2 is O(n + g2). In a similar manner, noting from (A.5) that
TpT1 = −(ApT2 +BsT), we can solve for p1 in complexityO(n) as shown step by step
in Table A.8.

A summary of the proposed encoding procedure is given in Table A.9. It entails
two steps: a preprocessing step and the actual encoding step. In the preprocessing step
we �rst perform row and columnpermutations to bring the parity-checkmatrix into
approximate upper-triangular form with g as small as possible. We will see in the
next section how this can be accomplished e�ciently. Next we pre-multiply from the
le by thematrix given in (A.4) to �nd ϕ. As discussed above, this premultiplication
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is most e�ciently done by running the Gaussian elimination algorithm to clear the
matrix E. At this point we see the matrix ϕ. In order to check whether ϕ is singu-
lar we continue Gaussian elimination until the diagonal has been extended over all
n − k rows. ¿ree cases can arise. First, Gaussian elimination succeeds without the
need for column permutations. In this case we know that ϕ is non-singular. Second,
Gaussian elimination succeeds but requires some column permutations. In this case
we apply these column permutations to the matrix in approximate upper-triangular
form. ¿is guarantees that in this new (and equivalent) matrix ϕ is non-singular.
Finally, if no column permutation exists so that Gaussian elimination succeeds then
the original matrix did not have full rank.

¿e actual encoding entails the steps listed in Tables A.7 and A.8. Note that the
preprocessing step need only be carried out once and that the result can be used for
all subsequent encodings.

Example A.10 (Parity-Check Matrix of (3,6) regular code of length 12).
Assume we are given the parity-check matrix

1 4 10 3 5 6 7 8 9 2 11 12

2

1

4

3

5

6

�
��������
�

1 1 0 0 0 1 1 0 1 0 1 0
0 1 1 1 0 1 0 1 0 0 1 0
0 0 1 1 1 0 1 0 1 1 0 0
0 0 0 1 0 1 1 1 0 1 0 1
1 1 0 0 1 0 0 1 1 0 0 1
1 0 1 0 1 0 0 0 0 1 1 1

�
��������
�

.

(¿ismatrix is the result of a reordering of the rows and columns of the parity-check
matrix H discussed in the subsequent Example A.12. ¿e original row and column
labels have been maintained.) ¿e gap is g = 2. Let us �nd ϕ. We perform Gaussian
elimination to set E to zero. ¿e result is

1 4 10 3 5 6 7 8 9 2 11 12

2

1

4

3

5+2

6+2+1+3

�
��������
�

1 1 0 0 0 1 1 0 1 0 1 0
0 1 1 1 0 1 0 1 0 0 1 0
0 0 1 1 1 0 1 0 1 1 0 0
0 0 0 1 0 1 1 1 0 1 0 1
0 0 0 0 1 1 1 1 0 0 1 1
0 0 0 0 1 1 0 0 1 0 1 0

�
��������
�

.

We see that ϕ = � 1 1
1 1 �, which is singular. In order to make ϕ invertible we swap

columns 6 and 7 so that ϕ becomes � 1 1
1 0 �. ¿erefore, the appropriate approxi-
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Preprocessing:

In: Non-singular parity-check matrix H.

Out: An equivalent parity-check matrix of the form � T A B
E C D � such that C −

ET−1A is non-singular.

1. [Triangulation] Perform row and column permutations to bring the parity-
check matrix H into approximate upper triangular form

H = � T A B
E C D � ,

with as small a gap g as possible.

2. [Check Rank] Use Gaussian elimination to perform the pre-multiplication

� I 0
−ET−1 I ��

T A B
E C D � = �

T A B
0 C − ET−1A D − ET−1B � .

Check that ϕ = C − ET−1A is non-singular – perform further column per-
mutations if necessary to ensure this property. (Singularity ofH is detected at
this point.)

Encoding:

In: Parity-check matrix of the form � T A B
E C D � such that C − ET

−1A is non-

singular and a vector s > Fk.

Out: ¿e vector x = (p1, p2, s), p1 > Fn−k−g, p2 > Fg, such that HxT = 0T .

1. Determine p2 as shown in Table A.7.

2. Determine p1 as shown in Table A.8.

Table A.9: Summary of the proposed encoding procedure. It entails two steps: a
preprocessing step and the actual encoding step.
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mate upper-triangular matrix for the encoding is

1 4 10 3 5 7 6 8 9 2 11 12

2

1

4

3

5

6

�
��������
�

1 1 0 0 0 1 1 0 1 0 1 0
0 1 1 1 0 0 1 1 0 0 1 0
0 0 1 1 1 1 0 0 1 1 0 0
0 0 0 1 0 1 1 1 0 1 0 1
1 1 0 0 1 0 0 1 1 0 0 1
1 0 1 0 1 0 0 0 0 1 1 1

�
��������
�

.

Assume we choose s = (1,0,0,0,0,0). To determine p2 we follow the steps listed
in Table A.7 (keep in mind for the sequel that we work in F2 so that signs do not
matter). We get BsT = (1,1,0,1)T , T−1[BsT] = (0,1,1,1)T , E[T−1BsT] = (1,1)T ,
DsT = (0,0)T , [DsT]+[ET−1BsT] = (1,1)T , and ϕ−1[DsT +ET−1BsT] = (1,0)T =
pT2 . In a similar manner we execute the steps listed in Table A.8 to determine p1.
We get ApT2 = (0,0,1,0)T , [ApT2 ] + [BsT] = (1,1,1,1)T , and T−1[ApT2 + BsT] =
(1,0,0,1)T = pT1 . ¿erefore, the codeword is

x = (p1, p2, s) = (1,0,0,1,1,0,1,0,0,0,0,0).

A quick check veri�es that HxT = 0T , as required. n

§A.1.1. LDPC Codes over Rings

LDPC codes may be de�ned over arbitrary �elds, or, more generally over rings. In
Chapter 7 we saw how certain structured LDPC codes, matched li ings, can be in-
terpreted as LDPC codes over rings. ¿e encoding procedure described here uses
only linear algebra so it generalizes to LDPC codes over rings.¿e only point which
needs to be emphasized is that diagonal elements of T need to be invertible (in the
case of matched li ings the diagonal elements should have weight 1) and invertibil-
ity of ϕ is over the ring.

§A.2. Greedy Upper Triangulation
In the preceding sectionwe have shown how to encode once the parity-checkmatrix
H is in approximate upper-triangular form. In this section we address the problem
of �nding column and row permutations to bring H into such a form. ¿e goal is
to make the gap g small. We address the problem in the context of irregular LDPC
ensembles.

In general one could ask the problem: given H what is the smallest possible g?
We do not know how to solve this problem e�ciently in general, and it is likely to be
NP-complete. In practice, however, it is virtually always possible to �nd a su�ciently
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small g.¿e algorithm we use in this chapter is simple and greedy and the analysis
is stochastic, much like the analysis of the decoding process.

¿e algorithm operates on H, permuting rows and columns. We introduce t
and g, two integer parameters that are initially set to 0 and increase as the algo-
rithm proceeds. ¿e parameter t represents time (measured in the number of steps
the algorithm has taken) and also the dimensions of the t � tmatrix T as it is con-
structed. ¿e parameter g represents the number of rows of the matrix assigned to
the gap and increases to reach the actual gap at the end of the algorithm. Let Ht
denote the matrix a er step t with H0 = H. At the end of the algorithm we have
t + g = n − k. ¿is assumes that H has full row rank (we always assume this in
the sequel). ¿e sub-matrix of Ht consisting of row range [t + 1,n − k − g] and
column range [t + 1,n] will be referred to as the residual parity-check matrix and
the corresponding Tanner graph as the residual graph. If a column of the residual
parity-checkmatrix contains exactly d non-zero elements then we say that the asso-
ciated variable node has residual degree d. ¿eminimum residual degree at time t is
the minimum nonzero degree of all variable nodes if at least one node has nonzero
residual degree, and it is zero otherwise.2 ¿e algorithm is listed in Table A.11.

At the completion of the above algorithm, the top le -most t � t sub-matrix of
Ht, call it T, is upper-triangular with non-zero elements along the diagonal.

Example A.12 (Encoder Construction). Let H0 = H be as given below.

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

�
��������
�

0 0 1 1 0 1 0 1 0 1 1 0
1 0 0 1 0 1 1 0 1 0 1 0
0 1 1 0 0 1 1 1 0 0 0 1
0 1 1 0 1 0 1 0 1 1 0 0
1 0 0 1 1 0 0 1 1 0 0 1
1 1 0 0 1 0 0 0 0 1 1 1

�
��������
�

In the description of the general algorithm it was convenient to refer to the columns
and rows ofHt in their natural order (the physical position if we write down thema-
trix). For the example, however, it is more convenient to label the rows and columns
once and for all and to always refer to the original labels.

At the beginning of the algorithm t = g = 0. ¿erefore, the residual degree of all
variable nodes is equal to their original degree. For our example all variable nodes
have (residual) degree 3 (at time t = 0). We proceed to step Choose. We choose a
column at random. Assume we pick column 1. ¿is column has 1’s in rows 2, 5, and

2In fact, one can check that if the matrix H0 has full rank then the minimum residual degree at
time t < n − k − g is never zero.
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Initialize: Set H0 = H and t = g = 0. Go to Continue.

Continue: If t = n−k−g then stop and outputHt. Otherwise, if theminimum
residual degree is one go to Extend, else go to Choose.

Extend: Choose uniformly at random a column c of residual degree one in
Ht. Let r be the row (in the range [t + 1,n − k − g]) of Ht that
contains the (residual) non-zero entry in column c. Swap column
cwith column t+1 and row rwith row t+1. (¿is places the non-
zero element at position (t + 1, t + 1), extending the diagonal by
one.) Call the resulting matrix Ht+1. Increase t by one and go to
Continue.

Choose: Choose uniformly at randoma column c inHt withminimumpos-
itive residual degree, call the degree d. Let r1,r2, . . . ,rd denote the
rows ofHt in the range [t+1,n−k−g]which contain the d residual
non-zero entries in column c. Swap column c with column t + 1.
Swap row r1 with row t + 1 and move rows r2,r3, . . . ,rd to the
bottom of the matrix. Call the resulting matrix Ht+1. Increase t by
one and increase g by d − 1. Go to Continue.

Figure A.11: Greedy algorithm to perform approximate upper triangulation.

6. Since the chosen column is already in the le -most position we do not need to
swap it. Next we swap row 2 with row 1. Rows 5 and 6 are already at the bottom of
the matrix. ¿e parameters are now t = 1 and g = 2 and the resulting matrix H1 is

1 2 3 4 5 6 7 8 9 10 11 12

2

1

3

4

5

6

�
��������
�

1 0 0 1 0 1 1 0 1 0 1 0
0 0 1 1 0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1 0 0 0 1
0 1 1 0 1 0 1 0 1 1 0 0
1 0 0 1 1 0 0 1 1 0 0 1
1 1 0 0 1 0 0 0 0 1 1 1

�
��������
�

.

Returning to stepContinue, we see that the minimum residual degree inH1 is one
(recall that for the residual degree we consider only the rows in the physical range
[t+ 1,n− k− g]; these are the rows between the two horizontal bars). ¿e columns
with this property are 4, 5, 9, 11, and 12.We therefore go to stepExtend. Assumewe
select column 4. To bring the 1 in column 4 into the right position along the diagonal
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we swap column 4 with column 2. We are lucky, no row swaps are necessary. ¿e
parameters are now t = 2 and g = 2 and the resulting matrix H2 is

1 4 3 2 5 6 7 8 9 10 11 12

2

1

3

4

5

6

�
��������
�

1 1 0 0 0 1 1 0 1 0 1 0
0 1 1 0 0 1 0 1 0 1 1 0
0 0 1 1 0 1 1 1 0 0 0 1
0 0 1 1 1 0 1 0 1 1 0 0
1 1 0 0 1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 0 0 1 1 1

�
��������
�

.

¿e minimum residual degree in H2 is again one. ¿e columns with this property
are 5, 6, 8, 9, 10, and 12. Assume we select column 10. To get the 1 into the right
position we swap columns 10 and 3 and then rows 3 and 4. ¿e parameters a er
this step are t = 3 and g = 2 and the resulting matrix H3 is

1 4 10 2 5 6 7 8 9 3 11 12

2

1

4

3

5

6

�
��������
�

1 1 0 0 0 1 1 0 1 0 1 0
0 1 1 0 0 1 0 1 0 1 1 0
0 0 1 1 1 0 1 0 1 1 0 0
0 0 0 1 0 1 1 1 0 1 0 1
1 1 0 0 1 0 0 1 1 0 0 1
1 0 1 1 1 0 0 0 0 0 1 1

�
��������
�

.

We perform one more step. We see that the minimum residual degree is once more
one.¿e columns with this property are 2, 6, 7, 8, 3, and 12. ¿e algorithm asks that
we choose one of those columns with uniform probability. Assume that we choose
column 3. Swapping columns 2 and 3 and increasing t by one gives us the matrix
H4

1 4 10 3 5 6 7 8 9 2 11 12

2

1

4

3

5

6

�
��������
�

1 1 0 0 0 1 1 0 1 0 1 0
0 1 1 1 0 1 0 1 0 0 1 0
0 0 1 1 1 0 1 0 1 1 0 0
0 0 0 1 0 1 1 1 0 1 0 1
1 1 0 0 1 0 0 1 1 0 0 1
1 0 1 0 1 0 0 0 0 1 1 1

�
��������
�

.

Since t + g = n − k = 6 the upper-triangulation procedure is complete and we see
that the �nal gap is g = 2. n
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If you sensed something familiar in the encoder construction it is because it
is erasure decoding (in the sense of the peeling decoder) in disguise: the roles of
check nodes and variable nodes are simply reversed. We refer to this as dual erasure
decoding. ¿is connection is the key to our analysis of the algorithm. To illustrate
the connection let us look again at the example but this time from the Tanner graph
perspective.

Figure A.13 shows the Tanner graph corresponding to H0. Let us consider the

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6

Figure A.13: Tanner graph corresponding to H0.

�rst step, consisting in selecting variable (column) 1 in stepChoose. Let us represent
that step by splitting that node into 3 (the degree of the node) degree-one nodes as
illustrated in Figure A.14: node 1 is split threefold and is now represented by nodes
1a, 1b, and 1c. ¿e check nodes attached to nodes 1b and 1c correspond to the two

1a 1b 1c 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6

Figure A.14: Tanner graph a er splitting of node 1.

rows which were placed at the bottom of the matrix (increasing the gap by 2). ¿e
check node attached to node 1a corresponds to the row which was placed at the top
of the matrix and the connected edge corresponds to the 1 which became the �rst
diagonal element of T.

As t is increased by one and g is increased by two, the nodes 1a, 1b, and 1c and
their neighboring check nodes, nodes 2, 5, and 6 are e�ectively removed from H.
Note that this is equivalent to performing one step of dual erasure decoding on the
graph in Figure A.14. More precisely, we assume that degree-one variable nodes
transmit known messages to their neighbors which in turn become known. ¿e
known nodes are removed from the graph. ¿e remaining residual graph is shown
in Figure A.15. ¿is is the graph corresponding to the residual matrix, i.e., the sub-
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1a 1b 1c 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6

Figure A.15: Tanner graph a er one round of dual erasure decoding.

matrix of H1 which lies between the two horizontal lines and is to the right of the
vertical line (physical columns 2 till 12 and physical rows 2 till 4).

We now repeat stepsContinue andExtend of the algorithm.As long as there is
a degree-one variable node in the residual graph, one such node becomes known and
its neighbor becomes known as well. All known nodes and their connected edges are
eliminated. In the next iteration of our example, variable node 4 becomes known
and it is peeled o� together with its neighboring check node 1 and all the edges that
are connected to either of these two nodes.¿is process continues until there are no
more degree-one variable nodes in the residual graph.¿atmay happen because the
residual graph becomes empty or because the algorithm gets stuck in the maximum
dual stopping set. When the latter happens, the algorithm returns to step Choose
and the process re-initiates.

We have described the algorithm in a serial fashion (in the sense of the peeling
decoder).¿e �nal point is the same, however, if we perform parallel erasure decod-
ing. More precisely, in the phases in which the graph contains degree-one variable
nodes we can perform the processing in a parallel fashion. In that case it is more
di�cult to keep track of the time t. However, it su�ces to keep track of the gap g
throughout the whole procedure, since we know that at the end of the algorithm we
have t = n− k− g. ¿us, the algorithm can be analyzed from the perspective of dual
erasure decoding.

§A.3. Linear Encoding Complexity
We are now ready to give a su�cient condition on a degree distribution pair (λ, ρ)
to give rise to linear encoding complexity. We start with ensembles that contain
degree-one variable nodes.

TheoremA.16 (EnsembleswithLinearEncodingComplexity). Let (λ, ρ) be a
degree distribution pair satisfying 1− z− ρ(1− λ(z)) A 0 for z > [0,1) (this implies
λ1 A 0) and rmin A 2. Let G be chosen uniformly at random from the ensemble
LDPC (n, λ, ρ). ¿en, the gap is zero with probability 1 −O(1~n).
Proof. Consider dual erasure decoding. ¿e update equations follow directly from
the standard density evolution equations by exchanging the roles of the variable and
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check nodes. Let zℓ denote the fraction of known check-to-variable messages at the
ℓ-th iteration. ¿en

(A.17) zℓ+1 = 1 − ρ(1 − λ(zℓ)), z0 = 0.

Recall that for dual erasure decoding the roles of λ and ρ are exchanged. Consider
therefore the “dual” ensemble LDPC (n(1 − r), ρ, λ).

By assumption we have λ1 A 0. ¿e upper-triangulation process therefore starts
by itself (without having to enter the Choose step). Further, by assumption, 1− z−
ρ(1−λ(z)) A 0 for all z > [0,1). We therefore know form the analysis of the peeling
decoder in Section 3.19 that the process continues until the graph has shrunk to a
size less than ηn (where η is an arbitrary strictly positive constant) with probability
at least 1 − e−c

º
n. Here, c is some strictly positive constant.

Further, from our analysis of the weight distribution of LDPC ensembles in Sec-
tion 3.24, in particular the arguments in the proof of Lemma 3.167, we know that if
rmin A 2 then there exists a strictly positive constant η so that a randomly chosen
element from this ensemble has no stopping sets of size less than ηnwith probability
converging to 1 at the speed 1~n.

¿is means that typical elements from this ensemble have a linear erasure cor-
recting radius. We conclude that if λ1 A 0, then with probability converging to 1
the matrix can be completely upper triangulated, i.e., we conclude that typically
g = 0.

Theorem A.18 (Ensembles with Linear Encoding Complexity). Let (λ, ρ) be
a degree distribution pair satisfying 1 − z − ρ(1 − λ(z)) A 0 for z > (0,1) (here
we allow equality at 0), rmin A 2, and the strict inequality λ′(0)ρ′(1) A 1. Let G be
chosen uniformly at random from the ensemble LDPC (n, λ, ρ). ¿en, there exists
a strictly positive number c such that for each k > N the probability that g B k is
asymptotically (in the block-length) lower bounded by 1 − (1 − c)k.

Proof. Our above discussion started with the assumption that λ1 A 0. ¿is condi-
tion guaranteed that the upper-triangulation process starts. We know already from
Chapter 3 (see Problem 3.6) that good irregular ensembles do not ful�ll this con-
dition. What happens if λ1 = 0? In this case we see from the update equations that
the upper-triangulation process does not start by itself. But since by assumption
λ′(0)ρ′(1) A 1, the �xed-point z = 0 is unstable and a small “nudge” gets the process
started. More precisely, consider the subgraph induced by the degree-two variable
nodes. Since by assumptionwe have λ′(0)ρ′(1) A 1, this subgraph contains a “giant”
(linear-sized) connected component (see the discussion in Section C.5 and in par-
ticular Lemma C.38). Assume we choose one of those degree-two nodes in the �rst
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step Choose. ¿e process then continues until at least all variable nodes in this gi-
ant component have been upper-triangulated. If we wait until a linear-sized portion
of the graph has been processed then we can use the technique of density evolution
to show that the process continues with high probability until the residual graph
has reached size essentially zero. It follows that in such a case we have achieved an
approximate upper triangulation with g = 1. Assume now that we proceed as stated
in the algorithm and choose nodes of minimum residual degree (which in the be-
ginning is degree two) at random in step Choose. ¿en at each such step we have
a non-zero chance of choosing such a degree-two node which is part of this linear-
sized giant component. Let this linear fraction be denoted by c. If we do, which
happens with probability c, then we increase the gap by one and we are done with
high probability. If not, then we also increase the gap by one but most likely the
process stops a er a �nite number of steps. Since in the latter case we only touch
a �nite number of nodes and edges, a �nite number of consecutive trials behave
asymptotically like independent trials.

In the above statement we can relax the condition rmin A 2 to λ′(1)ρ′(0) < 1.
In this case we know from our analysis of the error �oor in Chapter 3 that most
codes only contain a small number of low weight (sublinear-sized) stopping sets.
Optimized degree distributions tend to ful�ll the conditions of ¿eorem A.18.

Example A.19 (Ensemble with Linear Encoding Complexity). Consider the
degree distribution pair

λ(x) = 0.272536x + 0.237552x2 + 0.070380x3 + 0.419532x9,
ρ(x) = 0.7x6 + 0.3x7.

¿e ensemble LDPC (n, λ, ρ) is of rate one-half and has a BP threshold of σBP �

0.25 0.5 0.75 1.0

0.1

0.2

0.0

Figure A.20: 1 − z − ρ(1 − λ(z)).

0.9564880 for transmission over the BAWGNC(σ). ¿is is less than 0.2 dB away
from capacity. Figure A.20 shows that the function 1 − z − ρ(1 − λ(z)) is strictly
positive for z > (0,1). Further, λ′(0)ρ′(1) = 1.71694 A 1 and rmin = 7 A 2. ¿ere-
fore, if we apply the greedy algorithm to a su�ciently long randomly chosen element
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from this ensemble we expect to see a small gap. Figure A.21 shows the result of ap-
plying the greedy algorithm to a randomly chosen element of length 1024. Indeed,
the resulting gap is one. n

Figure A.21: Element chosen uniformly at random from LDPC (1024, λ, ρ), with
(λ, ρ) as describe in Example A.19, a er the application of the greedy algorithm.
For the particular experiment we get g = 1. ¿e non-zero elements in the last row
(in the gap) are drawn larger to make them more visible.

Example A.22 (Gap of Finite-Length Experiment). Although optimized en-
sembles tend to ful�ll the conditions of¿eoremA.18, it is easy to construct ensem-
bles which do not. A simple such case is the (3,6)-regular ensemble. Figure A.23
shows the result of applying the greedy algorithm to an element chosen uniformly
at random from LDPC �2048,x2,x5�.¿e result is g = 39.¿is corresponds to a rel-
ative gap of 39~2048 � 0.019. ¿is is quite close to the asymptotic value of 0.01709,
which we compute in the next section. n

g

Figure A.23: Element chosen uniformly at random from LDPC �2048,x2,x5� a er
the application of the greedy algorithm. ¿e result is g = 39.

Preliminary version – October 18, 2007



458 encoding low-density parity-check codes

§A.4. Analysis of Asymptotic Gap
So far we have focused on cases where the asymptotic gap is zero. How can we de-
termine the asymptotic gap in the general case?

Consider an easier-to-analyze variation of the greedy upper-triangulation algo-
rithm. ¿e di�erence is in step Choose: instead of choosing a single variable node
we choose a fraction ωiє of the residual variable nodes of residual degree i. Here
the ωi are arbitrary non-negative constants and є represents a small step size. Each
chosen variable node of degree i is split into i nodes of degree one (with i − 1 of
them going into the gap). Next, we run the dual erasure decoder until it gets stuck
andwe iterate these two steps until thematrix has been brought into an approximate
upper-triangular form.

For typical examples the whole process has two phases. In the �rst phase the
process proceeds in small steps and iterates between CHOOSE and EXTEND. If we
let the step size in this phase tend to zero we can describe the behavior of the system
by a di�erential equation. At the beginning of the second phase the residual degree
distribution has been transformed to one which has (essentially) zero expected gap
and the algorithm �nishes in one giant step. We know from our previous discus-
sion that such a giant step appears if the parameter λ′(0)ρ′(1) takes on the critical
value 1 (or exceeds it). Of course, there are degree distribution pairs that exhibit a
more complicated behavior and in which we have several of the above two phases
interlaced. But in the sequel we limit our discussion to the simplest case.

¿e analysis is most easily expressed from the node perspective of the residual
graph. We use the notation ċ̃ to indicate quantities associated to the residual graph.
Let n denote the number of variable nodes in the original graph and let L̃kn be the
number of variable nodes of degree k in the residual graph. ¿us, initially L̃k = Lk.
Similarly, let R̃kn be the number of check nodes of degree k in the residual graph.
Initially we have R̃k = (1 − r)Rk. Note that we normalized both the number of
variable and the number of check nodes to the length of the original code n (this
is why we have the extra factor (1 − r) in the previous equality). ¿is slight devia-
tion from our usual notation is convenient since we consider a sequence of residual
graphs whose lengths and rates are changing.¿e polynomials L̃(x) = Pk L̃kxk and
R̃(x) = Pk R̃kxk are de�ned as before. Further, we have the standard relationship
to the degree distribution pair from an edge perspective, namely

λ̃k =
kL̃k
L̃′(1) , ρ̃k =

kR̃k
R̃′(1) .

Initially, when the residual graph is the entire graph, we have λ̃ = λ and ρ̃ = ρ.

Lemma A.24 (Asymptotic Gap of Greedy Algorithm). Assume we apply the
greedy upper-triangulation algorithm to an element G chosen uniformly at random
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from the ensemble LDPC (n, λ, ρ) where λ′(0)ρ′(1) < 1. Let �ωi�i, 2 B i B lmax,
denote some �xed set of positive real numbers. De�ne

r(u) = e
−uρ′(e−u)
ρ(e−u) .

Consider the solution to the following system of di�erential equations

dL̃k
du
= −

ωkL̃k(L̃′(1) − 2L̃2r)
PjC2 jωjL̃j

+ r�(k + 1)L̃k+1 − kL̃k�, k C 2,

dg
du
=

(PjC2(j− 1)ωjL̃k)(L̃′(1) − 2L̃2r)
PjC2 jωjL̃j

,

with the boundary condition L̃k(0) = Lk. Let u� be the smallest uwhere λ̃′(0)r = 1.
If the resulting solution (λ̃(u�), ρ̃(u�)) satis�es the conditions of ¿eorem A.18
except that, here, λ̃′(0)ρ̃′(1) = 1, then the gap concentrates (up to order n) around
the solution g(u�) of this system.
Proof. ¿e basic idea of the proof is to take tiny steps in the greedy algorithm and
take the limit as the step size goes to 0, arriving at the given di�erential equation.We
are quite casual in our analysis. Strictly speaking we should proceed as follows. We
are given a degree distribution pair (λ, ρ), a set of weights �ωi�i, and a small step
size є. ¿e algorithm proceeds in small phases. ¿e �rst phase consists of choosing
a random subset of the variables which are then split. ¿e second phase consists
of running the dual erasure decoder. ¿ese phases alternate until the whole matrix
has been processed. Each phase can be analyzed separately by theWormaldmethod
discussed in Section C.4 and we get the overall solution by pasting the individual
solutions together. We consider right away the behavior of the system for the limit
in which we let the step size approach zero.

Let us track the evolution of the residual variables at each of the steps. At the
beginning of a cycle the number of degree-one variable nodes in the residual graph
is zero. Indeed, this is the reason why we perform a Choose step. In the Choose
step each chosen variable node of degree k is split into k nodes of degree one. As
a result, the number of degree-one variable nodes becomes PkC2 kL̃kωkє. Further,
for k C 2, L̃k is decreased to L̃k(1 − ωkє). Note that nL̃′(1) is the number of edges
in the graph and that this number is not altered in the Choose step. Hence, λ̃1 is
linear in є and

dλ̃1
dє
=
Pk kωkL̃k
L̃′(1) .(A.25)
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Nowconsider running dual erasure decoding until a �xedpoint zof (A.17) is reached.
Just before the Choose step we had z = 0. Further, in the Choose step ρ̃ stays un-
changed and the coe�cients of λ̃ change proportional to є as we have just discussed.
Since the step size is very small we can expand the right-hand side of the �xed-point
equation z = 1 − ρ̃(1 − λ̃(z)) in a series keeping only the terms linear in є and z to
get

z = ρ̃′(1)dλ̃1
dє

є+ ρ̃′(1)λ̃′(0)z +O(є2).(A.26)

From this we conclude that

dz
dє
=

ρ̃′(1)
1 − λ̃′(0)ρ̃′(1)

dλ̃1
dє

.(A.27)

At the �xed point the probability of an edge carrying a knownmessage into a vari-
able node is z. ¿ese edges are removed from the residual graph (see descriptions of
Figures A.13-A.15). A variable node of degree k in the residual graph receives a sin-
gle known message (and therefore its degree is decreased by one) with probability
kz(є) +O(є2) and more than one with probability O(є2).¿erefore, for k C 2,

dL̃k
dє
= −ωkL̃k´¹¹¹¹¹¸¹¹¹¹¹¹¶

Choose

+ �(k + 1)L̃k+1 − kL̃k�dzdє´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Extend and Continue

.

¿e probability of carrying a knownmessage into a check node is

dλ̃1
dє

є+ λ̃′(0)z(є) +O(є2) (A.26)= z
ρ̃′(1) +O(є

2).

We conclude that a check node of degree k receives a known message with proba-
bility kR̃k

z(є)
ρ̃′(1) +O(є2) and such a check node is removed. Hence,

dR̃k
dє
= −

kR̃k
ρ̃′(1)

dz
dє

.

It is convenient to switch the independent variable to z. We get

dL̃k
dz
= −ωkL̃k

dє
dz
+ �(k + 1)L̃k+1 − kL̃k�,(A.28)

dR̃k
dz
= −

kR̃k
ρ̃′(1) ,(A.29)
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where

dє
dz
=
1 − λ̃′(0)ρ̃′(1)

ρ̃′(1)
L̃′(1)
Pk kωkL̃k

=
(L̃′(1) − 2L̃2r)
PjC2 jωjL̃j

,(A.30)

which we get by combining (A.25) and (A.27). ¿e gap g is a derived variable, its
rate of growth is given by

dg
dz
=Q

k
(k − 1)ωkL̃k dєdz .

¿e rate of growth of the gap g plus the rate of growth of the size of the triangular
system t equals in magnitude the rate at which check nodes are removed. Hence

d(g+ t)
dz

= −Q
k

dR̃k
dz

.

Now, we can simplify the equations and solve for R̃ in closed form by expressing the
equations in terms of a new parameter u de�ned by du

dz =
1

ρ̃′(1) , so that

dR̃k
du

(A.29)
= −kR̃k.

¿e solution to this di�erential equation is R̃k(u) = e−kuR̃k(0). We can now write
down ρ̃′(1) in terms of R̃ if we recall that ρ̃j = (jR̃j)~(Pk kR̃k). ¿is gives

ρ̃′(1)(u) = Pk k(k − 1)e−kuR̃k(0)
Pk ke−kuR̃k(0)

=
Pk(k − 1)e−kuρk
Pk e−kuρk

=
e−2uρ′(e−u)
e−uρ(e−u) = r(u).

We have already an explicit solution of R̃k in terms of u. It remains to rewrite the
solution of L̃k given in (A.28) in terms of u. ¿is can be done by multiplying both
sides of (A.28) by dz

du and using (A.30) as well as the relationship
du
dz =

1
ρ̃′(1) . ¿is

gives the equation stated in the theorem.
Once the point where λ̃′(0)ρ̃′(1) = 1 has been reached, a tiny Choose step

gives us λ1 A 0 and the conditions of ¿eorem A.16 are met. ¿us the gap increases
by only an arbitrarily small fraction therea er.

Example A.31 (Asymptotic Gap of (3,6) Ensemble). For the regular (3,6) en-
semble the initial condition is L̃3(0) = 1. To mimic the behavior of the greedy algo-
rithm we choose ω2 = γ and ω3 = γ2 for a small positive γ and consider the solution

Preliminary version – October 18, 2007



462 encoding low-density parity-check codes
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Figure A.32: Evolution of the di�erential equation for the (3,6)-regular ensemble.
For u� � 0.0247856 we have λ̃′(0)r = 1, L̃2 � 0.2585, L̃3 � 0.6895, and g � 0.01709.

as γ tends to zero. We have r(u) = 5. Figure A.32 shows the solution of the di�er-
ential equation. As we can see, we have u� � 0.0247856, i.e., for this u� we have
λ̃′(0)r = 1. Further, the resulting degree distribution at this point is

λ̃(x) = 0.2x + 0.8x2, ρ̃(x) = x5.

Since for this residual degree distribution x < ρ̃(1− λ̃(1−x)) on (0,1), the assump-
tions of LemmaA.24 are ful�lled.¿erefore, the asymptotic gap is g(u�) � 0.01709.
n

Notes

¿e material presented in this chapter �rst appeared in the paper by Richardson
and Urbanke [4]. ¿is paper also contains the description and analysis of several
variants of the greedy upper-triangulation process. ¿ere are many concerns which
bear on practical implementations of the above algorithm. For example, variable
nodes which are selected in theChoose step end up as parity bits. Typically, degree-
two nodes have the highest bit error rate. ¿us, it is o en preferable to use as many
low-degree variable nodes for parity bits as possible. ¿erefore, it may be preferable
to select nodes in the Choose step whose original degree is minimal.

MacKay, Wilson, and Davey proposed in [3] to rede�ne the ensemble to consist
only of codes that have a parity-checkmatrix in approximate upper-triangular form.
In a similar spirit, Freundlich, Burshtein, and Litsyn proposed an ensembles of ir-
regular LDPC codes that have a linear encoding complexity and that asymptotically
have the same performance as standard irregular LDPC ensembles [1]. Alternatively,
Sipser and Spielman [5] as well as Luby, Mitzenmacher, Shokrollahi, Spielman, and
Stemann [2] used a cascaded graph which leads to a linear-time encoding complex-
ity as well.
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Problems
A.1 (Encoding Example). Consider the code of Example A.10. Compute the code-
word that corresponds to s = (0,1,0,0,0,0) according to the recipe described in
Table A.9. n

A.2 (Asymptotic gap for (3,5)Ensemble). Proceed as in ExampleA.31 and show
that the asymptotic gap for the (3,5)-regular ensemble is approximately 0.0275113.
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Appendix B

E F F I C I E N T I M P L E M E N TAT I O N O F
D E N S I T Y E V O L U T I O N

Density evolution plays a fundamental role in the analysis of iterative systems; it is
also a valuable tool in the design of such systems. Actual computation of density
evolution for LDPC codes requires an algorithmic implementation. Finding an ef-
�cient such implementation is a challenging problem. In this section we show how
this can be done.

When implementing density evolution one may or may not assume symmetry
of the densities. Working directly in the space of symmetric distributions yields the
most e�cient implementations. ¿e interaction of the symmetry with the practical
constraints of �nite support typically leads to optimistic predictions of the thresh-
old. On the other hand, sometimes one is interested speci�cally in consequences
of non-symmetry. Moreover, by allowing densities to be non-symmetric one can
compute density evolution for a message-passing decoder which corresponds to a
quantized version of belief propagation. Since belief propagation is optimal, thresh-
olds computed this way are lower bounds on the true belief propagation threshold.
We will not assume strict symmetry in general, but we will assume that densities are
“nearly” symmetric.

We use the notation � to denote standard convolution overR,Z, orZ ~NZ – the
ring of integers modulo N. Variable node domain convolution, which we have de-
noted by e, is standard convolution but we shall use � to emphasize computational
aspects.

In our discussions of density evolution we focus on pair-wise convolutions of
two densities. What we typically need in an implementation of density evolution,
however, is the computation of λ(a) for a given polynomial λ(x) and a given density
a (and the equivalent operation at the check node side). Consider the case λ(x) =
λ2x+ λ3x2 + λ6x5 + λ13x12,where λi A 0 for each given i. What is the most e�cient
way of computing λ(a) using only pair-wise convolutions? We can, e.g., compute,
in the stated order,

a�2 = a � a, a�3 = a � a�2, a�5 = a�2 � a�3,

a�6 = a�3 � a�3, a�12 = a�6 � a�6,

which requires �ve convolutions. If we are interested in computing e�ciently a sin-
gle, lets say d-fold, convolution by means of pair-wise convolutions, then the prob-
lem is identical to the well-studied problem of how to e�ciently compute a given

465
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integer power of a number. It is known that the minimum number of required pair-
wise convolutions is at least �log2 d� (with equality if d is a power of two) and at
most 
log2 d�+ ν(d)−1, where ν(d) denotes the number of ones in the binary rep-
resentation of d. ¿e latter upper bound is achieved by the so-called binary method
(see Problem B.1). ¿e actual optimal value (and the corresponding sequence of
pair-wise convolutions) has been tabulated for numbers up to several hundred. For
density evolution we are usually required to compute a set of powers, so our prob-
lem is a littlemore general. Evenmore generally, formulti-edge type graphs the same
exponent realization problem arises but now over integer vectors rather than over
integers. A viable (suboptimal) strategy consists of determining the required pow-
ers of each type (component of the vector), �nding the optimal computation path
for each type, and taking the union. Regardless of the decomposition, the computa-
tional e�ciency ultimately rests on that of the pairwise convolutions. In the sequel
we therefore focus on the e�cient computation of pair-wise convolutions.

§B.1. Quantization

Choosing a density representation suitable for computation is an important aspect
of the implementation problem. When discussing EXIT charts (see Sections 3.14,
4.10, and 6.7) we already introduced the simplest approach: assume that all inter-
mediate message densities are Gaussian. In this case, and under the symmetry as-
sumption, the space of densities is parameterized by a single real parameter and
density evolution collapses to a one-dimensional recursion.

We are now interested in implementing generic density evolution, makingmin-
imal a priori assumptions on the form of the message densities. As a �rst practical
step we restrict ourselves to densities that are supported on (�nitely many) discrete
points. Attempting to choose a discretization “optimally” is challenging and am-
biguous. A practical solution which yields good results, and is o en applied in the
implementation of message passing decoders, is to space the samples uniformly in
the log-likelihood domain. More precisely, we consider L-densities that are sup-
ported on the set δZ, where δ denotes the quantization step-size. We will carry the
constant δ throughout this chapter. We will also allow the densities to have point
masses at +ª. Symmetric densities can have point masses at +ª but not at −ª.
Moreover, the target of density evolution is usually the density ∆+ª.

§B.2. Variable-Node Update via Fourier Transform

Since log-likelihood ratios add at variable nodes under BP decoding, the convolu-
tion in the variable node domain is relatively straightforward. In practice, however,
we must restrict ourselves to �nitely supported densities. ¿is restriction creates a
computational problem in that the restricted space of densities is not invariant un-
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der convolution. ¿us, some approximation, projecting onto the �nitely supported
space, is required.

Let us consider the support set of the densities to be δ[−N,N]Z 8 �+ª�. Put
di�erently, we consider densities with point masses on the points −δN,−δ(N −
1), . . . ,δN, together with +ª. Given a density a supported on this set, let ai de-
note the value of the density at the point iδ > δ[−N,N]Z and let aª denote the
magnitude of the point mass at +ª. ¿us, a = PN

i=−N ai∆δi + aª∆+ª. ¿en

ae b = �
N
Q
i=−N

ai∆δi� � �
N
Q
i=−N

bi∆δi� + (aª + bª − aªbª)∆+ª.

In general, (PN
i=−N ai∆δi) � (PN

i=−N bi∆δi) is supported on δ[−2N,2N]Z. In the
symmetric case (i.e., if ai = a−ie

δi), the total probabilitymass on δ[−2N,−(N+1)]Z
is upper bounded by e−(N+1)δ so, if (N + 1)δ is su�ciently large, this probability
is negligible. In a practical implementation one can choose to either to neglect this
mass or to gather it and place it at −Nδ.

¿e probability mass on δ[N + 1,2N]Z, on the other hand, is potentially quite
large. In a practical implementation we gather this mass and place it either at +ª or
at δN.¿e latter choice corresponds with placing themass from δ[−2N,−(N+1)]Z
at −δN.¿is is the choice one shouldmake if it is desired to implement density evo-
lution in such a way that, up to numerical precision, the algorithm corresponds ex-
actly with density evolution for a message passing algorithm (a quantized version of
BP in which message magnitudes are saturated at δN at variable nodes). In practice
it is simpler and nearly equivalent to take the alternative approach.

¿e calculation of (PN
i=−N ai∆δi) � (PN

i=−N bi∆δi) can be e�ciently performed
using the FFT (Fast Fourier Transform). But in order to move the mass from δ[N +
1,2N]Z to δN or+ªweneed to transform the result back into the real domain.¿is
implies that each pair-wise convolution requires three FFTs – two forward (one for
each of the two densities) and one reverse. It would be preferable to work entirely
in the Fourier domain, returning to the real domain only at the end of the update
(a er all powers have been computed). It turns out that one can exploit symme-
try, or approximate symmetry, to circumvent the need to return to the real domain
prematurely.

Let a be a symmetric density on δZ8�+ª�, a = Pi ai∆iδ + aª∆+ª. For i > Z
de�ne â by âi = e−

1
2 iδai. ¿is makes â even, âi = â−i. ¿e densities â (no longer

probability densities) still convolve at variable nodes, i.e., (â � b̂)i = (a � b)ie− 1
2 iδ.

Since the total mass of a is 1, the value of aª can be recovered from â. Let PT(â)
denote the projection of â onto functions supported on Z ~TZ, the ring of integers
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modulo T. We de�ned it by

PT(â)i = Q
k>Z

âi+Tk.

Note that

PT(â � b̂) = PT(â) � PT(b̂),

where the second convolution is over the integers modulo T. In practice we choose
T = 2n so that PT(â) � PT(b̂) can be e�ciently computed using the FFT.

¿e key observation, and the motivation for scaling a by e−
1
2 x, is that aliasing

is very small and that when N  T~2 we can accurately recover the density a in
δ[−N,N]Z from PT(â). Indeed,

ai B e
1
2 δiPT(â)i = Q

k>Z
e

1
2 δiâi+Tk = ai + Q

k>Z �0
e−

1
2 δTkai+Tk

= ai +Q
kA0

e−
1
2 δTkai+Tk +Q

kA0
e

1
2 δTkai−Tk

= ai +Q
kA0

e−
1
2 δTkai+Tk +Q

kA0
e−

1
2 δ(Tk−2i)aTk−iby symmetry

B ai +
e−

1
2 δT + e−

1
2 δ(T−2i)

1 − e−
1
2 δT

.

Notice that only the penultimate step invokes symmetry. For the bound to be good it
is not necessary that strict symmetry holds, the actual requirement is thate

1
2 δTkai−Tk

be small for positive k and i in the desired range.¿e above bound shows that ai can
be accurately recovered from PT(â)i for i > δ[−N,N] provided that 1

2δ(T − 2N) is
su�ciently large.

In summary, the method is the following. Given an incoming density a we
�rst form PT(â) by zero-padding. Next we perform the FFT to obtain the Discrete
Fourier transform of PT(â). Pair-wise convolution is performed by point-wise mul-
tiplication of the Fourier transforms. If we need to compute higher powers of a den-
sity we can also do so directly. Only once all powers have been computed do we
perform the inverse FFT to go back to the real domain. We then recover the density
on δ[−N,N]Z directly (a er scaling) and at +ª from the total sum.

§B.3. Check-Node Update via Table Method
¿e �rst method we present to perform check-node updates is conceptually simple
and can be implemented using look-up tables. Suppose we have two L-densities a
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and b supported on δ[−N,N]Z,

a =
N
Q
k=−N

ak∆kδ, b =
N
Q
k=−N

bk∆kδ.

For the moment we assume that there is no mass at +ª. We want to approximate
the result of the check-node domain convolution a�b with a density supported on
δ[−N,N]Z.

Consider a (degree three) check-node update with incoming messages iδ and
jδ. Let us focus on i, jC 0, i x j. Under BP the outgoing message is

2 tanh−1(tanh(1
2
iδ) tanh(1

2
jδ)).

Given incoming densities a and b, such a message has probability

aibj+ ajbi + a−ib−j+ a−jb−i =
1
2
(a+i b+j + a+jb

+

i ) +
1
2
(a−i b−j + a−jb

−

i ),

where we de�ne a+ and a− supported on δ[0,N]Z by a+i = ai + a−i (a+0 = a0)
and a−i = ai − a−i (a−0 = 0). In a similar manner, the probability of observing
−2 tanh−1(tanh( 12 iδ) tanh( 12 jδ)) is given by

a−ibj+ a−jbi + aib−j+ ajb−i =
1
2
(a+i b+j + a+jb

+

i ) −
1
2
(a−i b−j + a−jb

−

i ).

Since 2 tanh−1(tanh( 12 iδ) tanh( 12 jδ)) is typically not an element of δ[−N,N]Z we
need to relocate its associated probability mass. ¿us, for i, j C 0 let us de�ne the
quantizer map

Q(i, j) = 
2 tanh−1(tanh( 12 iδ) tanh( 12 jδ))~δ + 1
2�.

We have Q(i, j) B min�i, j�, so that Q(i, j) > [0,N]Z if i, j> [0,N]Z. Now, de�ne
the approximate convolution of a and b as the density c supported on δ[−N,N]Z as
follows. Set

c+k =Q�a+i b+j S �i, j� � Q(i, j) = k�, c−k =Q�a−i b−j S �i, j� � Q(i, j) = k�.

Recover c by c0 = c+0 , ci =
1
2(c+i + c−i ) for i A 0, and ci =

1
2(c+−i − c−

−i) for i < 0.
A signi�cant reduction in complexity can be extracted from the observation

that Q(i, j) = min�i, j� in most cases and that the di�erence between these two
quantities cannot be too large. More precisely, by Problem B.2 we have

min�i, j� −Q(i, j) < δ−1 ln(2) − 1
2
.(B.1)
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By computing the cumulative distributions of a+, a−, b+, and b− we can compute
the contribution to c+i for all pairs a+i b

+

j and b−i a
−

j for �xed i and all j C i in about
2�δ−1 ln(2)� multiplications and subtractions. Letting L = Nδ denote the maxi-
mum log-likelihood magnitude, we see that the number of operations is of order
(2 ln 2)Lδ−2 .¿is is quite a bit better than the order L2δ−2 operations required by
the naive approach.

Including the point mass atª is very simple: extend the de�nition of Q so that
Q(ª, i) = Q(i,ª) = i.

We now summarize the method. Given the density a compute

a+i = ai + a−i, a−i = ai − a−i,

A+i = aª +
N
Q
j=i

a+j , A−i = aª +
N
Q
j=i

a−j ,

for i > [0,N] (with the special convention that a+0 = a0 and a−0 = 0). Set A+N+1 =
A−N+1 = 0. Compute the equivalent quantities for b.

Initially set c+ = c− = 0. Set c+
ª
= c−

ª
= aªbª. ¿en, for i > [0,N] and

k > [0, �δ−1 ln(2) − 1
2�], perform

c+i−k += a+i (B+TQ(i,k) −B+TQ(i,k−1)) + b+i (A−TQ(i,k) −A−TQ(i,k−1)),
c−i−k += a+i (B+TQ(i,k) −B+TQ(i,k−1)) − b+i (A−TQ(i,k) −A−TQ(i,k−1)),

where, for k C 0, TQ(i, k) is de�ned as

TQ(i, k) = min�jC i � Q(i, j) C i − k�

and TQ(i,−1) = N + 1. It is e�cient to store the values of TQ in a table.
Once c+ and c− are computed we recover c. Note that it is not necessary to re-

cover c until the end of the check-node update. In other words, one can remain in
the Fourier domain over F2 until the end of the check-node update.

Since the convolution in the variable node domain can be computed nearly ex-
actly while, with the table approach, the check-node computation introduces quan-
tization noise with each pairwise convolution, it is sensible to oversample for the
check-node convolutions, re-quantizing only at the completion of the message den-
sity calculation. ¿is of course increases complexity.

§B.4. Check-Node Update via Fourier Method
¿e second method we discuss to perform check-node updates operates entirely
in the check-node Fourier domain. ¿e convolution operations are exact in the
sense that no quantization noise is introduced. At the end of the check-node update,

Preliminary version – October 18, 2007



check-node update via fourier method 471

however, we must approximate the L-density with one supported on δ[−N,N]Z 8
�+ª�. In this method we combine the quantization with the inverse Fourier trans-
form to obtain the quantized approximation directly.

At check nodes BP reduces to addition over F2 �[0,ª]. To avoid introducing
further notation, here, and throughout this section, we will reinterpret the group
operation in F2 as addition over �0,1� (modulo 2) rather than as multiplication
over �1,−1�.

Let a denote an L-density and let X be a random variable with density a. Let
(S,Y) = (H (X), ln coth(X~2)) (as de�ned in (4.20) but with range of H now
�0,1�) be the corresponding random message represented in the G-domain, i.e.,
in F2 �[0,+ª]. In this representation, messages add at check nodes under BP and,
therefore, the densities convolve under density evolution. ¿e Fourier transform in
the G-domain can be written as (see De�nition 4.53)

Ga(µ,ν) = E[e−µS−νY],
where µ > �0, iπ� and ν is in the right half of the complex plane.

¿is appears to give a direct and simple way to compute the evolution of the
densities at the check nodes, namely pointwise multiplication of the Fourier trans-
form. Computing the transform is problematic though because the random variable
Y is not supported on uniformly spaced points when X is. Indeed, note that ln 1+u

1−u =

ln(1+u)−ln(1−u) has the expansion 2PiC0
u2i+1
2i+1 .¿e function ln coth(x~2) there-

fore has the expansion

ln coth(x~2) u=e−x= ln
1 + u
1 − u

= 2Q
iC0

u2i+1

2i + 1
u=e−x
= 2Q

iC0

e−(2i+1)x

2i + 1
.(B.2)

Assuming that we choose a uniform spacing δ[−N,N]Z of the samples in the L-
domain, the support in the G-domain is not uniformly spaced, rather it is approx-
imately exponentially spaced. Unfortunately, we can therefore not directly apply
standard discrete Fourier methods.¿e implementation problemwe address is how
to perform theG-domain Fourier transform of densities that are uniformly sampled
in the L-domain.

With a little algebra we can represent the Fourier transform directly in the L-
domain, where the sampling is uniform,

Ga(µ,ν) = S
ª

−ª

e−µS(x)−νY(x)a(x)dx = S
ª

−ª

e−µH (x)−ν ln coth(x~2)a(x)dx

= S
ª

0
tanhν�x~2�(a(x) + eµa(−x))dx.(B.3)

If a is symmetric then Ga(0,ν) = Ga(iπ,ν− 1).We will not assume or exploit sym-
metry, although it is possible to do so.
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Our method for check node density evolution is the following. We compute
Ga(µ,ν) for a �nite set of ν (and both values of µ). ¿en, check-node convolu-
tion consists of point-wise multiplication of these functionals. A er performing the
point-wise multiplication we �nd a density that, approximately, has the given trans-
form at the given points.

At the beginning of the update incomingdensities are supported on δ[−N,N]Z 8
�+ª�.At the end of the true density evolution update the underlying density is dis-
crete but in general it is supported on arbitrary points in the real interval [−Nδ,Nδ]8
+ª.When we invert the transform at the end of the update, we seek an approxima-
tion on δ[−N,N]Z 8 �+ª�, so some quantization is inevitable. ¿ere are imme-
diately two fundamental problems: how do we compute Ga(µ,ν) e�ciently for in-
coming densities and how do we compute the approximate inverse. Related to these
two fundamental problems is the question of choosing appropriate values for ν.

¿e following result, whose proof is le as Problem B.3, hints at a convenient
solution:

(B.4) lim
α�ª

tanhe
α�x + α

2
� = e−2e−x .

Let us put ν in the form ν = eα(1 + iω).¿e above result says that if we �x ω then
for large enough α (it need not be very large) we have

tanhν(x~2) � e−2e−(x−α)(1+iω).(B.5)

¿us, in this representation, the integration kernel tanhν(x~2) e�ectively trans-
lates by α. Since log-likelihood samples are uniformly spaced, it appears that a δ-
uniformly spaced α will be a good choice. Moreover, the computation of the trans-
form almost takes the form of a convolution, suggesting a method for e�cient cal-
culation.

It is perhaps unfortunate that the approximation (B.5) is not exact since then the
desired calculation would in fact be a convolution. With a certain trick, however,
we can still convert the calculation to a convolution. A naive approach would be to
approximate and simply replace tanhν(x~2)with e−2e−(x−α)(1+iω) in (B.3). Although
this is not our approach it is very closely related. ¿e equations resulting from the
substitution turn out to be the density evolution for an approximation to BP that we
will call AppBP. ¿is approximation corresponds to a practical decoding algorithm
whose performance is very close to that of BP. To understand the solution for density
evolution of BP it is simplest to �rst understand the density evolution for AppBP.

§B.4.1. Approximating Belief Propagation: AppBP

¿e AppBP algorithm is very similar to BP. ¿e only di�erence is that it replaces
the function (H(x), ln coth( SxS2 )) with (H(x),2e−SxS) as the quantities to be added

Preliminary version – October 18, 2007



check-node update via fourier method 473

at check nodes. In order for this to have a well-de�ned inverse we also saturate the
sum of the second component (the terms corresponding to 2e−SxS) at 2.¿e approxi-
mation of ln coth( SxS2 ) by 2e−SxS comes directly from the expansion (B.2). Under this
update rule, if a1, . . . ,ad−1 are incoming L-messages to a degree d check node, then
the outgoing L-message on the d-th edge has magnitude

�− ln P
d−1
i=1 2e−SaiS

2
�
+

= �− ln(
d−1
Q
i=1

e−SaiS)�
+

where (x)+ equals x for x C 0 and is equal to 0 for x B 0. As we see by looking
at the right term of the above expression we could have used the function e−SxS in-
stead of 2e−SxS, the �nal result is the same. We use 2e−SxS in order to emphasize the
relationship to true BP.

Theorem B.6 (BP versus AppBP). Let a1, . . . ,ad−1 be positive reals. ¿en

�− ln(1
2

d−1
Q
i=1

2e−ai)�
+

B 2 tanh−1�
d−1
M
i=1

tanh
ai
2
�.

Proof. Problem B.4.

¿us, the above approximation has the e�ect of reducing the magnitudes of check-
to-variable messages as compared to belief propagation.

Consider again the L-density a and let X be a random variable with density a.
De�ne

(S,Y) = (H (X),2e−SXS) .
Note that this random variable is supported in the G-domain, i.e., in F2 �[0,+ª].
Under check-node updates in AppBP, incoming messages are added. As in the BP
case, the desired Fourier transform in the G-domain can be written as

Ga(µ,ν) = E[e−µS−νY],

where µ > �0, iπ� and ν is in the right half of the complex plane. In the L-domain
this takes the form

Ga(µ,ν) = S
ª

−ª

e−µS(x)−νY(x)a(x)dx = S
ª

−ª

e−µH (x)−ν2e−SxSa(x)dx

= S
ª

0
e−ν2e

−x(a(x) + e−µa(−x))dx .(B.7)

Since the sum of the incoming messages of the form 2e−SxS can exceed 2 (so that
the outgoing value, which is − ln(ċ~2) of this sum, can be negative) it is convenient
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to extend the above de�nition to allow for this. ¿us, for a density (not necessarily
a probability density) f whose support might extend to the negative real axis and
include a point mass at +ª let

(B.8) Hf(ν) = S
ª

−ª

e−ν2e
−x
f(x)dx .

¿en

Ga(0,ν) =Ha+(ν), Ga(iπ,ν) =Ha−(ν) ,
where a�(x) = a(x)�a(−x) for x C 0 and zero otherwise. Let us set ν = eα(1+ iω)
and �x ω. Abusing notation, we have

(B.9) Hf(α) = S
ª

−ª

e−2(1+iω)e
α−x
f(x)dx.

We observe thatHf is the convolution of f(x) and

Ψ(x) = e−2(1+iω)ex .
If f is discretely supported, on δZ say, Hf(α) for α > δZ+δ′ can be computed
using the discrete Fourier transform to perform the convolution. Note that while
limx�ªΨ(x) = 0,wehave limx�−ªΨ(x) = 1.Because of this e�ective non-locality
of Ψ, in practice we convolve with e�ectively locally supported

ψ(x) = Ψ(x) −Ψ(x + δ)
rather than with Ψ(x).

Let A1 and A2 be independent real random variables with probability densities
g1 and g2, and de�ne the random variable B by

e−B = e−A1
+ e−A2 .

¿is is how themagnitudes of the log-likelihood ratios are combined at check nodes
under AppBP. Solving for the density of B is the key problem for implementing den-
sity evolution for AppBP. We have

P�B B x� = P�e−A1
+ e−A2

C e−x� = S P�e−A1
C e−x − e−y�g2(y)dy

= S P�A1 B − ln(e−x − e−y)�g2(y)dy.

Taking the derivative with respect to x we see that the density of B is the “convolu-
tion”

(B.10) (g1ãg2)(x) = S
ª

x

1
1 − ex−y

g1(x − ln(1 − ex−y)) g2(y)dy .
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Let us discuss some basic properties of ã. Let g1, . . . , gd be non-negative den-
sities supported on �−ª� 8 [z1, z2] 8 �+ª� for some real z1, z2 and de�ne

f = g1ãg2ã� ãgd.

¿en

S f =M
i
S gi,

�S f − f(−ª)� =M
i
�S gi − gi(−ª)�,

f(+ª) =M
i
gi(+ª),

f is supported on �−ª� 8 [z1 − lnd, z2] 8 �+ª� .

¿e�rst three equations tell us how the total mass of the result, as well as the masses
located at �ª, can be computed from the corresponding quantities of the operands.
We soon make use of these facts.

Consider a check node of degree d and let a1, . . . ,ad−1 be incoming L-densities
on d − 1 of the edges. De�ne the densities

ã+ = a+1 ã . . . ãa+d−1, ã− = a−1 ã . . . ãa−d−1.

Since the densities a�i are supported on [0,+ª], the densities ã� are supported on
[− ln(d − 1),+ª]. ¿e densities a� associated to the outgoing L-density a under
AppBP are obtained from ã� by moving the mass on [− ln(d − 1),0] to �0�.¿is
is the density evolution analogue to the (ċ)+ operation in the check-node update
under AppBP.

From our earlier analysis (see also Problem B.6) we know that in the Fourier
domain we can compute the densities ã� as

Hã+(α) =
d−1
M
i=1
Ha+i
(α), Hã−(α) =

d−1
M
i=1
Ha−i
(α).(B.11)

Let us address the question of how to e�ciently computeHa�i
(α) forα > δZ+δ′.

Assume the parameters δ,δ′, and ω are �xed. Recall that it is more convenient to
�rst convolve with ψ and then later to recover from this the convolution with Ψ.
¿erefore, de�ne

ψi = ψ(iδ + δ′) .
Assume incoming L-densities ai are supported on [−N,N]Z 8 �+ª�, so that a�i is
supported on [0,N]Z 8 �+ª�. To simplify notation, let us take a positive density
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g supported on [0,N]Z 8 �+ª�; we want to computeHg using the FFT. First, we
zero-pad g to [−T′,T]Z 8 �+ª�, setting gi = 0 for [−T′,T]Z�[0,N]Z. We choose
T − T′ = 2n − 1 for some n to allow computation using the FFT. Next we con-
volve �gi�Ti=−T′ with �ψi� (with support suitably truncated) using the FFT to obtain
�hi�Ti=−T′ . Note that gª does not a�ect hi for i > [−T′,T]Z.We should choose T′
and T su�ciently large to avoid aliasing under the desired precision. Fortunately
ψ(x) � 0 like ex for x � −ª and like e−ex for x � ª. Choose N′ A N so that
ψ(x) � 0 for x C (N′ − N)δ. Let us now recover the convolution with Ψ from the
convolution with ψ. Call the resultH. SetHN′ = Hª = gª and for i > [−T′,N′ − 1]
set Hi = Hi+1 + hi.As a result, we have, up to numerical precision

Hi =Hg(iδ + δ′)
for i > [−T′,N′]Z 8 �+ª�. Furthermore, for i A N′, we have Hi = HN′ = gª and
we assume that the total mass of g is computed.¿ese quantities are thenmultiplied
pointwise, in accordance with (B.11). (¿e total massesmultiply too.)¿e remaining
question is how to recover ã� from (the total masses and) the products formed in
(B.11).

To avoid notational clutter, let us assume that the densities ã�i are supported on
δZ (and not only on a �nite set of points). If we knew that the densities ã� were
supported on δZ then we could recover them from Hã�(α),α > δZ+δ′, using
a discrete inverse convolution. Unfortunately this is not the case and applying the
discrete inverse convolution produces unusable results. Understanding this is key
to understanding the method.

Let us consider the general inverse problem: assume that we have a positive den-
sity g supported on (−ª,ª). We know the total mass R g and we are given

Hj = S
ª

−ª

Ψ(jδ + δ′ − x)g(x)dx, j> Z .

We want to approximate g by a density of the form P gj∆jδ, where the coe�cients
gj, j> Z, are non-negative. First we form

hj = Hj−Hj+1 = S
ª

−ª

ψ(jδ + δ′ − x)g(x)dx .

Second, we want to obtain the sequence gi as a convolution of the sequence hj.
(¿is ensures an e�cient implementation using FFTs.) If we assume that g(x) is
supported on δZ, i.e., if g = P gi∆iδ, then the sequence �hj� is the discrete convo-
lution of the sequence �ψi� with the sequence �gi�,

hj = S
ª

−ª

ψ(jδ + δ′ − x)�Q
i
gi∆iδ(x)�dx =Q

i
giψ((j− i)δ + δ′) =Q

i
giψj−i .
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Assuming invertibility of the convolutionwith �ψi�, we can recover gby performing
the inverse convolution. Consider, though, what happens if the support of g is not
restricted to δZ . Let �ψ̂i� denote the inverse convolution sequence (assuming it
exists) to �ψi�, i.e.,

Q
j
ψ̂jψi−j =Q

j
ψ̂i−jψj = 1�i=0� .

¿en, assuming that we still perform the inverse convolution operation, we have
de�ned gi by

(B.12) gi = S
ª

−ª

�Q
j
ψ̂i−jψ(jδ + δ′ − x)�g(x)dx.

Now, the function Pjψ̂−jψ(jδ + δ′ − x) restricted to δZ is equal to 1 at x = 0 and
is equal to 0 elsewhere. If, however, g(x) is not supported on δZ then we need to
be concerned about Pjψ̂−jψ(jδ + δ′ − x) for x not in δZ . ¿is function is not
real in general and the real part is not non-negative so that even for a positive den-
sity g (which is the case of interest) we may obtain a negative value for gi; this is
highly undesirable given the intended use of the inverse. In equation (B.12) the ker-
nelPjψ̂jψ(x − jδ− δ′) “accumulates” mass from g.More generally, we may choose
a kernel K de�ned by

(B.13) K(x) = ReQ
j
βjψ(x − jδ − δ′),

and obtain

(B.14) gi = S
ª

−ª

K(iδ − x)g(x) .

¿is approach is attractive because it leads to a linear inverse operation that can
be easily computed using the FFT (convolve �βi� with �hi�.) Other approaches,
non-negative least squares, linear programming, etc., are possible but none of these
approaches can yield the desired e�ciency.

How shall we chooseK? As we discussed, the choice βi = ψ̂i results in aKwhich
is the indicator function on δZ. ¿is, however, is not actually the most desirable
property to require of K. Perhaps the ideal target for K is the quantizer function
1[δ~2,δ~2](x): in this case we have gi = R (i+

1
2)δ

(i− 1
2)δ

g(x)dx and if g = Pi gi∆i then
gi = gi.Unfortunately, this will not be achievable in general.¿e following are some
desirable properties for K �

P1 K(x) C 0.
P2 Pi K(x − iδ) = 1.
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If these two conditions aremet, then a er the inversion we end upwith a probability
density (an L-density) and the resulting density evolution is the exact density evo-
lution for somemessage passing algorithm that approximates BP (see Problem B.8).

An approach we have found e�ective for constructing K is to

minimize:S
ª

−ª

x2K(x)dx,

under the constraints P1 and P2. From (B.13) we have

(B.15) Q
i

K(x − iδ) =Q
j
Re(βj)

(see ProblemB.5) so P2 is a linear condition on �βj�.¿eentire setup is a linear pro-
gramming (LP) problem and that the ideal quantizing function 1[δ~2,δ~2](x) would
be the optimal solution if it were a feasible solution of the LP; unfortunately, it is not.
Up to now we have not discussed the choice of ω or δ′. For a given δ one should
select these parameters for the numerical properties inherent in the inverse prob-
lem. Choosingω too small tends tomake the inverse problem numerically unstable,
especially for small δ, and choosing it too large tends to make it di�cult to control
K.A practical rule of thumb that we have found e�ective is to set ω � 1~(2δ).
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Figure B.16: Le : Example K(x),δ = 0.125. Right: Logarithm (base 10) K(x).

Let us now focus on the inverse problem for the �nitely supported case and
describe the approach in a little more detail. Assume we are given

Hi =Hg(iδ)
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for i > [−T′,N′]Z together with R g and that g is a positive density supported on
[−δT′′,δN]8+ªwhere, typically,T′′ < T′ will be quite small. In the case of AppBP,
δT′′ will be approximately − ln(d−1)where d is the maximum check node degree.
We set hi = 0 for i = N′,N′ + 1, . . . ,T and otherwise for i > [−T′,T] de�ne hi =
Hi+1 −Hi.We compute

�g̃i� =R(�hi�a �βi�)
using the FFT and set g̃ª = HN′ . Finally, we de�ne �gi�, i > [0,N]Z 8 �+ª� by
setting gi = g̃i for i > [1,N − 1]Z 8 �+ª� and setting

gN =
N+K
Q
i=N

g̃i, g0 = S g− (
N
Q
i=1
gi + gª),

where K is chosen large enough so that we may assume K(x) � 0 for x A K.Using
this calculation (twice) we obtain a� for an outgoing density a.

§B.4.2. Check-Node Update for Belief Propagation

We now return to the original problem of performing check-node updates for BP.
We shall reuse the method developed for AppBP by applying a slight reparameteri-
zation. Recall that for BP the appropriate Fourier transform is given by

Ga(µ,ν) = S
ª

0
tanhν(x~2) ( a(x) + eµ a(−x) )dx,

where a is an L-density, whereas for AppBP we have (for incoming densities)

Ga(µ,ν) = S
ª

0
�e−2e−x�ν ( a(x) + eµ a(−x) )dx .

For x C 0 de�ne x̃(x) implicitly by exp(−2e−x̃) = tanh(SxS~2).¿is is equivalent to
2e−x̃ = ln coth(SxS~2) so that, by de�nition, the quantities 2e−x̃ are added at check
nodes under BP. Now consider the attendant implications to the computation of
density evolution. For an incoming L-density ai we �rst form a�i and then make a
change of variables from x to x̃.¿is amounts to re-sampling or re-quantizing the
densities. ¿e resulting densities are then ã convolved. A reverse change of vari-
ables, performed by re-sampling, from x̃ to x then gives a� for the outgoing density
a.¿e re-sampling is done so as to preserve the total mass of the density.

Under the proposed change of variables we have

x̃(0) = −ª, x̃(δ) � − ln(−1
2
ln
δ
2
).

Hence, the mass at x = 0 needs special handling, we will return to that. Ignoring
the mass at x = 0 for the moment, the �rst step is to take incoming densities g over
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δ AWGN BSC
BP AppBP BP AppBP

1/2 0.5726 0.5733 0.5864 0.5868
1/4 0.5715 0.5720 0.5845 0.5846
1/8 0.5710 0.57172 0.5839 0.5843
1/16 0.5709 0.57167 0.5837 0.5842

Table B.17: Computed thresholds (expressed in channel capacity) for the (3,6) regu-
lar degree distribution.

[1,N]Z 8 �+ª� and redistribute the gi over [−S,N]Z 8 �+ª� where δS � x̃(δ)
to form the re-sampled density g̃. For i su�ciently large we will have g̃i � gi.Note
that for small i the sampling resolution increases a er the re-sampling so this step
does not result in any signi�cant loss of information about g. Once the incoming
densities a�i have been thus re-sampled, they are ã convolved using the method
described for AppBP. As a result one obtains

Hã�i
(α) = Ga(ω,ν)

with ν = eα(1 + iω). A er forming the products of the transforms of the incom-
ing densities we obtainHg̃(α) for densities supported on [−S′δ,Nδ] 8 +ª,where
S′ C S depends on the maximum check node degree. Here g̃ represents ã� for some
outgoing density a.We compute the approximate inverse exactly as in the AppBP
case.¿e resulting discrete density �g̃i� is then re-sampled back to [0,N]Z 8 �+ª�
using the inverse change of variables.¿is yields a� from which a is easily obtained.

¿e problematic mass at x = 0 can be handled separately, treating it as a point
mass at x̃ = −ª. Since we track the total mass, it can simply be ignored and we can
recover the mass at x = 0 by the imposing correctness of the total mass.

Table B.17 shows thresholds computed using the method described herein for
BP and AppBP decoding of the regular (3,6) graph structure for various values of
δ. For δ = 1~2k a 64 ċ 2k point FFT was used for computing the check-node update
and twice as many points are used for the variable node update.

§B.4.3. An Example and Some Final Tips

Table B.18 lists parameters used for one case associated to the results in Table B.17.
¿e le picture in Figure B.16 plots the quantization function K obtained for this
example. ¿e right picture shows K on a log scale to indicate the achieved e�ective
localization of the quantization function.

Some of the parameters in Table B.18 have been discussed and others refer to
further details of the implementation beyond what has been discussed so far. In
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parameter value parameter value parameter value
δ 0.125 FFT(check) 512 cf 9.18
δ′ 0.0225 FFT(variable) 1024 N 311
ω 4.8 T’ 80 N’ 334

Table B.18: Parameters used in a particular implementation

this section we describe some of the �ner points of implementing this approach to
density evolution.

¿e check node domain transform values are maintained on δ-sample points
ν = eδk(1 + iω) for

k = −T′,−T′ + 1, . . . ,−1,0,1, . . . ,N,N + 1, . . . ,N′.

¿e values of T′ and N′ < T should be large enough to support accurate inversion.
¿e choice of N′ is relatively simple since probability mass moves to the le under
check node domain convolution and the forward transformkernel decays like e−2ex .
We simply need to choose N′ large enough so that e−2(1+iω)ex−Nδ

� 0 for x C N′δ.
¿e selection of T′ is more involved.

When we perform the inversion to obtain the probability mass at x = δ, we,
approximately, recover mass for x > [δ~2,3δ~2]. Since for small values of x we have

x̃(x) = − ln(−1
2
ln tanh

x
2
) � − ln(−1

2
ln
x
2
)

it follows that the le most point x̃ at which we want to compute the convolution
R K(x̃ − u)ã(u)du is approximately x̃ = − ln(− 1

2 ln
δ
4). For our example δ = 0.125

this evaluates to −0.54 or about −4.4δ. ¿us, in our example, we want to choose
T′ large enough so that the inverse convolution is accurate down to about −5δ. For
incoming densities the le most location of positive mass is about − ln(− 1

2 ln δ~2)
which is about−0.33 � −2.6δ. If themaximumdegree is d then the le most location
of positive mass in the transform to be inverted will be −0.54− ln(d). For d = 1000
this is approximately −60δ. In our example we chose T′ = 80.We use an additional
trick to make the e�ective T′ even larger.

¿e forward transform ψ decays like Cex, where C is a complex constant, for
negative x of large magnitude. ¿us, if T′ is su�ciently large compared to S′ then
the transform value decays exponentially for for i < −T′.¿at is, for i < −T′ we
have hi � e(i+T

′)δh−T′ .Now, it turns out that the constructed sequence �βi� decays
exponentially to the right, i.e., like Ce−ai for some positive a. Consider the convo-
lution of �βi� and hi evaluated at jQ −T′,

Q
i
βj−ihi
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¿e contribution for i B T′ can be evaluated

−T′

Q
i=−ª

βj−ihi =
−T′

Q
i=−ª
(ea(i+T′)βj+T′)(ei+T′h′T) = cfβj+T′h′T

for some constant cf independent of j.¿us, if, prior to performing the convolu-
tion, we multiply hT′ by cf, then accuracy is increased. With this additional trick
choosing T′ = 80 is quite adequate.

Numerical experiments show that, even if we put all of the probability mass
near −T′δ, the inverse is still accurate to about 10−5. In practice degrees of 1000
are never needed and, even if they were, the probability mass at this extreme values
would actually be very small. So accuracy is ensured for arbitrary degrees.

Finding K

¿e linear programming problem used to de�ne K is in principle in�nite and, once
sampled, tends to be numerically unstable. In this section we give some suggestions
for dealing with this problem.

Given a real function f and a discrete sequence ci we call the functionPi f(x−
iδ)ci the pseudo-convolution of fwith �ci�.For convenience let us assume that δ′ =
0. Note that K is a sum of pseudo-convolutions of ψR = R(ψ) and ψI = I(ψ) and
that this space is closed under pseudo-convolution and linear combination. ¿us,
instead of using ψR and ψI directly as the basis for the LP, we can use any pseudo-
convolutions whose shi s span the same space.

One way to reduce the di�culty of the LP is to use a pseudo-convolution that
is already close to the optimal solution. Let γ be a positive constant and consider
ψR + iγψI. Let �ψγi � be this function sampled on δZ and let �ψ̂γi � be the discrete
inverse convolution of �ψγi �.Let Fγ(x) be the pseudo-convolution ofψR+ iγψI and
�ψ̂γi �. Both the real and imaginary parts of Fγ are pseudo-convolutions of ψR and
ψI. Restricted to δZ, we have R(Fγ) = 1�x=0� and I(Fγ) = 0.¿us, any pseudo-
convolution of I(Fγ) added to R(Fγ) will still be equal to 1�x=0� on δZ .One can
use this, for example, to �nd a candidate function that is equal to 1�x=0� on δZ
and equal to 0 on δZ+δ~2��−δ~2,δ~2�. Such a function tends to be well localized
and is already similar to the optimal K.As another example, one can �nd a pseudo-
convolution of I(Fγ) that is equal to 1 at x = δ~2, equal to −1 at x = −δ~2 and equal
to 0 on δZ8δZ+δ~2��−δ~2,δ~2�.¿e freedom to choose γ can be used to �nd a
numerically stable choice for the above procedure.

Introducing such functions into the LP problem can signi�cantly reduce the
di�culty of solving it. Our example was found this way using γ = 0.5. By using
multiple values for γ, further re�nements are possible.
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Notes
An extensive discussion of how to �nd themost e�cient way to compute the integer
power of a function can be found in the book of Knuth [2] in Section 4.6.3 (see also
Exercise 32 on page 465.)

¿e table method to compute the update at the check nodes is the approach
taken by Chung, Forney, Richardson, and Urbanke in [1]. It leads to a lower bound
on the threshold since it corresponds to a quantized version of BP.¿e considerably
faster method of density evolution which uses the Fourier transform to compute
check-node updates (Section B.4) is due to Richardson and Jin [4].

A systematic study of the relationship of the countless forms of discrete cosine
transforms to the discrete Fourier transforms, in particular the appropriate de�ni-
tion of convolution in each case, was performed by Martucci [3]. We also recom-
mend the overview article by Strang [5].

Problems
B.1 (Efficient Computation via Pair-Wise Convolutions). Explain how to
compute the d-fold convolution aed with at most 
log2 d�+ν(d)−1 pair-wise con-
volutions, where ν(d) denotes the number of ones in the binary representation of
d.

B.2 (Bound on Q(i, j)). Prove (B.1).
B.3 (Limit Form of Tanh). Prove (B.4)

B.4 (BP versus AppBP). Prove¿eorem B.6.

B.5 (Linear Constraint). Prove (B.15) .

B.6 (Efficient Computation of Density). Let A1 and A2 be independent ran-
dom variables supported on δ[T,T], and let B be de�ned by

e−B = e−A1
+ e−A2 .

How can one e�ciently compute a discrete approximation of the distribution of B?

B.7 (B versus e−B). Let B be a real random variable with density g. Let G denote
the density of e−B. Show that

S
ª

0
e−νxG(x)dx = S

ª

−ª

e−νe
−x
g(x)dx .

B.8 (Desirable Properties of K). Explain how choosing K to satisfy P1 and P2
ensures that the resulting density evolution (assuming numerical exactness) gives
rise to a lower bound (in terms of code performance, e.g., thresholds) on the true
BP density evolution.
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Appendix C

C O N C E N T R AT I O N I N E Q UA L I T I E S

Asserting a speci�c property about an individual code is typically a hard task. To
the contrary, it is o en easy to show thatmost codes in a properly chosen ensemble
possess this property. In the realm of classical coding theory an important such in-
stance is theminimumdistance of a code. For Elias’ generator ensembleG a few lines
su�ce to show that with high probability an element chosen uniformly at random
has a relative minimum distance of at least δGV, where δGV is the Gilbert-Varshamov
distance discussed on page 8. But as mentioned on page 33, it is known that the cor-
responding decision problem–whether a given code has relativeminimumdistance
at least δGV or not – is NP-complete.

We encounter a similar situation in the realm of message-passing decoding.¿e
whole analysis rests on the investigation of ensembles of codes and, therefore, con-
centration theorems which assert that most codes in this ensemble behave close
to the ensemble average are at the center of the theory. ¿ere is one big di�erence
though which makes concentrations theorems invaluable for message-passing de-
coding, whereas in the classical setting they only play a marginal role. ¿e main
obstacle which we encounter in classical coding is that a random code (in G) is
unlikely to have an e�cient decoding algorithm, and, therefore, a random code is
unlikely to be of much practical value. In the message-passing world the choice of
the ensemble (e.g., LDPC, turbo, multi-edge, ...) guarantees that every element can
be decoded with equal ease.

We discuss various techniques to show concentration which have proved use-
ful in the context of message-passing. We start with the rather pedestrian, yet quite
useful, �rst and secondmomentmethod. As an application we show that the weight
distribution of codes in G is concentrated. Next we discuss the various versions of
Bernstein’s inequality, leading to Chebyshev’s inequality. We then venture into the
realm of Martingales and discuss the Hoe�ding-Azuma inequality. ¿e basic con-
centration theorem of message-passing decoding, asserting that most codes per-
form closely to the ensemble average, is based on this technique. We continue our
discussion withWormald’s theorem, which asserts that discrete stochastic processes
whose expected behavior can be approximated by a di�erential equation showa con-
centration of the individual behavior around the ensemble average.We demonstrate
this technique by giving a proof of ¿eorem 3.107 which characterizes the behavior
of the peeling decoder.¿eWormald technique is also used in SectionA.4 to analyze
the asymptotic gap of the greedy upper triangulation process. ¿e �nal technique

485
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which we discuss is useful in showing that the distribution of a sequence of random
variables converges to the Poisson one.We use this technique to show that the num-
ber of minimal low-weight codewords of a random element converges to a Poisson
random variable.

In general, it is fair to say that all concentration inequalities which have been
proved in the setting of message-passing decoding so far are rather weak and that a
much stronger concentration can be observed in practice. ¿erefore, to date these
concentration theorems serve mostly as a moral justi�cation of the ensemble ap-
proach.

§C.1. First and Second Moment Method
Lemma C.1 (Markov Inequality). Let X be a non-negative random variable with
�nite mean. For α A 0,

(C.2) P�X C α� = E[1�XCα�] B E [X~α] = E[X]~α.
¿e Markov inequality represents the strongest bound we can assert assuming

we only know E[X] and the fact that X is non-negative. As shown in Problem C.1,
the basic idea of this inequality can be extended beyond recognition. A particularly
important generalization is the following.

Lemma C.3 (Chebyshev’s Inequality). Let X be a random variable with �nite
mean and variance. ¿en for α A 0,

P�SX −E[X]S C α� B E[(X −E[X])2]~α2.
Proof. We have

E[(X −E[X])2] = S (x −E[X])2pX(x)dx

C SSx−E[X]SCα
(x −E[X])2pX(x)dx

C α2 P�SX −E[X]S C α� .
¿e following lemma is a straightforward application of both the Markov in-

equality and the Chebyshev inequality.

Lemma C.4 (Weight Distribution of Codes in the Elias Ensemble G). Let
r > (0,1] and for n > N so that nr > N consider the sequence of ensembles G(n, k =
rn) (see De�nition 1.26). Let C be chosen uniformly at random from G(n, k = rn).
Let A(C,w) denote the number of codewords in C of weight w. De�ne g(r,ω),
ω > [0, 12], g(r,ω) = h2(ω) + r − 1. Given r, let δGV(r) be the unique root in [0, 12]
of g(r,ω) = 0. ¿en
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(i) ¿e rate of C is equal to r with probability at least 1 − 2−n(1−r).

(ii) For ω > (0,1~2],
P�

nω
Q
w=1

A(C,w) C 1� B 2ng(r,ω).

(iii) For ω > (0,1~2] so that nω > N and α A 0,

P�A(C,w)~E[A(C,w)] ~> (1 − α,1 + α)� B 1
α2 E[A(C,w)] .

Proof. From Problem 3.20 we know that the probability that a random binary k�n,
1 B k B n, generator matrix G has (full) rank k is equal to

k−1
M
i=0
(1 − 2i−n) C 1 − 2k−n = 1 − 2−n(1−r),

which proves statement (i). In Problem 1.17 you are asked to show that for w C 1,

E[A(C,w)] = �n
w
�2

nr
− 1

2n
,(C.5)

E[(A(C,w) −E[A(C,w)])2] = E[A(C,w)] − 2nr − 1
22n

�n
w
�
2
.(C.6)

If ω > (0,1~2] then

E�
nω
Q
w=1

A(C,w)� B 2nr − 1
2n

nω
Q
w=0
�n
w
�by (C.5)

B 2n(h2(ω)+r−1) = 2ng(r,ω).by (1.59), Problem 1.25

Statement (ii) now follows by an application of the Markov inequality.
To see the �nal claim let ω > (0,1~2]. ¿en we have

P�A(C,w)~E[A(C,w)] ~> (1 − α,1 + α)�
=P� SA(C,w) −E[A(C,w)] S C αE[A(C,w)]�

B

E[A(C,w)] − 2nr−1
22n �nw�

2

α2 E[A(C,w)]2by (C.6), Lemma C.3

B
1

α2 E[A(C,w)] .
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Note from (C.5) that limn�ª
1
n log2 E[A(C,nω)] = g(r,ω) (for any increasing

sequence of n so that nω > N). We know from Lemma C.4 that most random in-
stances contain no non-zero codewords of weight less than nδGV(r) (and no code-
words of weight exceeding n(1 − δGV(r))). Further, the number of codewords of
weight w so that nδGV(r) B w B n(1 − δGV(r)) concentrates on the average such
number.¿is motivates the introduction of the exponent of the weight distribution:

G(r,ω) =
¢̈̈
¦̈̈
¤
g(r,ω), δGV B ω B 1 − δGV,
0, otherwise.

As an example, Figure C.7 shows G(r = 1~2,ω).

1.0 ωωGV � 0.11 0.5

G
(r
=

1 2
,ω
)

r = 1
2

Figure C.7: ExponentG(r = 1~2,ω) of the weight distribution of typical elements of
G(n, k = n~2) as a function of the normalizedweightω. Forw~n > (δGV,1−δGV) the
number of codewords of weightw in a typical element ofG(n, k) is 2n(G(r,w~n)+o(1)).

Although we have not included an application of the second moment method it
has already proved useful in the realm of message-passing decoding. We therefore
state it for completeness.
Lemma C.8 (Second Moment Method). Assume that E[X]2 C a and E[X2] B b
for some non-negative real numbers a and b. ¿en

P�X = 0� B E[X2] −E[X]2
E[X2] B

E[X2] −E[X]2
E[X]2 B

b − a
a

.

Proof. Recall that the Cauchy-Schwarz inequality applied to random variables Y
and Z reads E[YZ]2 B E[SYZS]2 B E[Y2]E[Z2]. Write the random variable X as
X = X1�Xx0� and apply the Cauchy-Schwarz inequality: E[X]2 B E[X2]P�X x 0�.
¿is is equivalent to the claim.

§C.2. Bernstein’s Inequality
In some instances we want to prove that an event is very unlikely, i.e., that it decays
exponentially (in the size of the underlying parameter). ¿e standard approach is to
apply (a variant of) Bernstein’s inequality.
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Assume we are given a sequence X1,X2,� ,Xn of random variables and that we
want to derive an upper bound on P�Pni=1 Xi C α�, α A 0. If the random variables
are non-negative and have �nite mean, then the Markov inequality gives

P�
n
Q
i=1
Xi C α� B

n
Q
i=1

E[Xi]~α.

¿is bound decreases only linearly in α. ¿e basic trick introduced by Bernstein
reads

P�
n
Q
i=1
Xi C α� = P�s

n
Q
i=1
Xi C sα� = P�esPn

i=1 Xi
C esα�if s A 0

B E�esPn
i=1 Xi�e−sα.by Lemma C.1

An upper bound on E�esPn
i=1 Xi� therefore gives us the desired upper bound on

P�Pni=1 Xi C α�. In a similar manner we get

P�
n
Q
i=1
Xi B α� B E�e−sPn

i=1 Xi�esα.if s A 0

Example C.9 (Tail Bounds for Binary Random Variables). Consider the case
of binary iid random variables X1,� ,Xn with P�Xi = 1� = p= 1−P�Xi = 0�.¿en

E�esPn
i=1 Xi�e−sα = �E�esX1�e−sα~n�

n
= �(1 − p+ pes)e−sα~n�n.

Let α be of the form α = (1 + δ)np. We are free to choose s, s A 0. Some calculus
reveals that the optimal choice is s = ln� p̄(1+δ)

1−p(1+δ)�.With this choicewe get the bound

P�
n
Q
i=1
Xi C np(1 + δ)� B 1

(1 + δ)n�
p̄(1 + δ)

1 − p(1 + δ)�
n(1−p(1+δ))

.

If we use the bound 1 − p + pes = 1 + p(es − 1) sA0
< ep(e

s
−1) and then choose

s = ln(1 + δ), we get the weaker but more convenient form,

P�
n
Q
i=1
Xi C np(1 + δ)� B � eδ

(1 + δ)1+δ �
np
.

In the same manner we get

(C.10) P�
n
Q
i=1
Xi B np(1 − δ)� B � p̄p̄δ̄�

1 − pδ̄
p̄δ̄
�
pδ̄
�
n
B � e−δ

(1 − δ)1−δ �
np
B e−nδ

2p~2.

n

¿e technique extends easily to the case where the variables Xi are no longer
identically distributed, and the same method can handle the case of (weakly) de-
pendent variables as shown in Problem C.2.
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§C.3. Martingales
We get to the heart of this chapter – concentration inequalities for Martingales.

§C.3.1. Basic Definitions

¿e following is probably the simplest de�nition of a Martingale.

Definition C.11 (Martingale: Special Case). A sequence X0,X1,� of random
variables is called aMartingale if for every i C 1 we have

E[Xi SX0,X1,� ,Xi−1] = Xi−1.
¿eprototypical albeit fairly unrealistic example of aMartingale sequence is the

following: assume a gambler is playing in a fair casino, i.e., the expected gain from
each bet is zero. Let Xi, i C 1, denote the wealth of the gambler a er the i-th bet
and let X0 represents the initial wealth. At the i-th bet the gambler may wager any
amount up to Xi−1 and the amount he wagers can be any function of X0,� ,Xi−1.
Because the bet is assumed to be fair, the expected change in wealth at the i-th bet
is zero and, therefore, E[Xi SX0,X1,� ,Xi−1] = Xi−1, i.e., X0,X1,� ,Xn forms a
Martingale.

¿e above de�nition includes Martingales where the “history” can be summa-
rized by the values of the past outcomes. ¿e following is a more general de�nition
which allows formore complex histories. Recall �rst that a σ-�eld (Ω,F) consists of
a probability space Ω and a collection of subsets of Ω, called F such that (i) g > F ,
(ii) E > F � E c > F , and (iii) any countable union of elements of F is again an
element of F . We say that a random variable X is measurable with respect to F if
for any x > R, �ω > Ω � X(ω) B x� > F . For later reference we state the following
two useful properties of conditional expectation.

Fact C.12 (Basic Properties of Conditional Expectation). Let F0 b F1 b �

be a �lterwith respect to a given probability spaceΩ.¿is means that eachFi forms
a σ-�eld (Ω,Fi) with respect to the same probability space Ω and that the Fi are
ordered by re�nement in the sense that each subset of Ω contained in Fi is also a
subset ofFj for jC i. Further,F0 = �g,Ω�. Let X be a random variable in the given
probability space and let Y be Fi-measurable, where i C 0. ¿en for jC 0

(C.13) E �E[X SFi] SFj� = E[X SFmin�i,j�],
and

(C.14) E[XY SFi] = E[X SFi]Y.
We are now ready to state our general de�nition.
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Definition C.15 (Martingale). Let F0 b F1 b � be a �lter with respect to a
given probability space. Let X0,X1,� denote a sequence of random variables on
this probability space such that Xi is Fi-measurable. ¿en we say that X0,X1,�
forms a Martingale with respect to the �lter F0 b F1 b � if E[Xi SFi−1] = Xi−1.

Discussion: Note that if X0,X1,� forms a Martingale with respect to the �lter
F0 b F1 b � then Xi is measurable with respect to Fj for j C i. ¿is is true since
by de�nition of conditional expectation E[Xi+1 SFi] is a Fi-measurable random
variable. But since E[Xi+1 SFi] = Xi we conclude that Xi is Fi-measurable and so
it is also Fj-measurable, for jC i.

We are concerned with a particular type of Martingale which is commonly
known as Doob’s Martingale.

Definition C.16 (Doob’s Martingale). Let F0 b F1 b � be a �lter with respect
to a given probability space. Let X be a random variable on this probability space.
¿en the sequence of random variables X0,X1,�, where Xi = E[X SFi], is aDoob’s
Martingale.

To see that X0,X1,� indeed forms a Martingale use (C.13) to conclude that

E[Xi SFi−1] = E[E[X SFi] SFi−1] = E[X SFi−1] = Xi−1.
In our context the σ-�elds (Ω,Fi) are generated by revealing more andmore about
a random experiment.

§C.3.2. Hoeffding-Azuma Inequality

Theorem C.17 (Hoeffding-Azuma Inequality). Let X0,X1, . . . be a Martingale
with respect to the �lter F0 b F1 b . . . such that for each i C 1,

SXi − Xi−1S B γi,γi > [0,ª).
¿en, for all n C 1 and any α A 0,

P�SXn − X0S C α
º
n� B 2e−

α2n
2Pn

i=1 γ2i .

Proof. Werestrict ourselves to the case γi = 1.¿e general case is le as ProblemC.3.
Consider the function

(C.18) f(x) = eγx,
where γ C 0. De�ne the line c(x) which intersects f(x) in the two points (−1,e−γ)
and (+1,e+γ). Explicitly,

c(x) = 1
2
[(eγ + e−γ) + x(eγ − e−γ)] = cosh(γ) + sinh(γ)x.
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Since f(x) is convex-8 we have

(C.19) f(x) B c(x), x > [−1,1].

We also need the inequality

(C.20) cosh(x) B ex2~2, x > R .

¿is is most easily seen by noting that

cosh(x) =Q
iC0

x2i

(2i)! and ex
2~2
=Q
iC0

x2i

2ii!
.

Since the terms in both series are non-negative for x > R, the claim follows by ob-
serving that for i > N, 2ii! B (2i)!.

Let Yi = Xi − Xi−1, i C 1. ¿e condition SXi − Xi−1S B 1 becomes

(C.21) SYiS B 1.

Further, we have

(C.22) E[Yi SFi−1] = E[Xi − Xi−1 SFi−1] = E[Xi SFi−1] − Xi−1 = 0.

¿erefore, we get with f(x) as de�ned in (C.18)

E[f(Yi) SFi−1] B E[c(Yi) SFi−1]by (C.19) and (C.21)
= c(E[Yi SFi−1])due to linearity
= c(0) = cosh(γ)by (C.22)

B eγ
2~2.by (C.20)

Note that Xn − X0 = Pni=1 Yi and that E[ċ] is equivalent to E[ċ SF0]. ¿erefore,

E[f(Xn − X0)] = E�
n
M
i=1

f(Yi)�

= E�E��
n
M
i=1

f(Yi)� U Fn−1��by (C.13)

= E��
n−1
M
i=1

f(Yi)�E�f(Yn) U Fn−1��by (C.14)

B E�
n−1
M
i=1

f(Yi)�eγ2~2 B enγ2~2.
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It follows that

P[Xn − X0 C α
º
n] = P[f(Xn − X0) C f(α

º
n)]

B
E[f(Xn − X0)]

f(αºn) = eγ
2n~2e−γα

º
n
= e−α

2~2,by Lemma C.1

where the last step follows if we choose γ = α~ºn. In the samemanner we can prove
P[Xn − X0 B −α

º
n] B e−α2~2, which together with the previous result proves the

claim.

As a primary application of the Hoe�ding-Azuma inequality we give the proof
of the main concentration theorem of message-passing decoding. To be concrete,
we prove that a particular performance measure, namely the error probability, con-
centrates around its expected value, but almost verbatimly the same proof can be
used to show the concentration of a variety of other measures.

Proof of ¿eorems 3.30 and 4.94. To simplify the notation we focus on the (l,r)-
regular case. ¿e general case can be dealt with in essentially the same way. ¿e
basic idea of the proof is to form a Doob’s Martingale by revealing more and more
about the object of interest. In our case, it is natural to order the nl edges on the
variable node side in some arbitrary but �xed way and then to reveal one by one
for each edge the destination socket on the check node side. We say that an edge is
being exposed. We then reveal in the following n steps the channel observations. At
the beginning of the exposure process we deal with the average (over all graphs and
channel realizations). At the end of the n(l + 1) exposure steps we have revealed
the exact graph which is used and the given channel realization. Assuming that we
can show that at each exposure step the quantity of interest does not change by too
much irrespective of the revealed information, we can use the Hoe�ding-Azuma
inequality to link the average case to speci�c instances.

Let Z denote the number of incorrect variable-to-check node messages among
all nl variable-to-check nodemessages passed in the ℓ-th iteration for a (G,Y) > Ω,
where G is a graph in the ensemble LDPC �n,xl−1,xr−1�, Y is the channel obser-
vation, and Ω is the probability space. Let =i, 0 B i B (l + 1)n, be a sequence of
equivalence relations onΩ ordered by re�nement, i.e., (G′,Y′) =i (G′′,Y′′) implies
(G′,Y′) =i−1 (G′′,Y′′). ¿ese equivalence classes are de�ned by partial equalities.

Suppose we expose the ln edges of the graph one at a time, i.e., at step i > [nl]
we expose the check-node socket π(i)which is connected to the i-th variable-node
socket, and, similarly, in the following n steps we expose the n received values, one
at a time. We have (G′,Y′) =i (G′′,Y′′) if and only if the information revealed in
the �rst i steps is the same for both pairs. Let h denote the number of steps in this
exposure procedure, h = (l + 1)n.
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De�ne Z0,Z1, . . . ,Zh by

Zi(G,Y) = E[Z(G′,Y′) S (G′,Y′) =i (G,Y)].
By construction Z0,Z1, . . . ,Zh forms a Doob’s Martingale. ¿e crucial step in the
proof is to �nd a (tight) bound

(C.23) SZi(G,Y) − Zi−1(G,Y)S B γi , i > [h],
for some suitable constants γi which may depend on l, r and ℓ, but preferably not
on n.

We �rst prove (C.23) for i > [nl], i.e., for the steps where we expose the edges.
Recall that π(i) = jmeans that the i-th variable-node socket is connected to the j-th
check-node socket. Denote by G(G, i) the subset of graphs in LDPC �n,xl−1,xr−1�
such that the �rst i edges are equal to the edges in G, i.e., G(G, i) = �G′ � (G′,Y) =i
(G,Y)�. Let Gj(G, i) be the subset of G(G, i) consisting of those graphs for which
π(i + 1) = j.¿us, G(G, i) = �jGj(G, i).

We have

Zi−1(G,Y) = E[Z(G′,Y′) S (G′,Y′) =i−1 (G,Y)] = E[Z(G′,Y′) SG′ > G(G, i − 1)]
= Q
j>[nl]

E[Z(G′,Y′) SG′ > Gj(G, i − 1)]ċ(C.24)

ċ Pr�G′ > Gj(G, i − 1) SG′ > G(G, i − 1)� .

We claim that if jand k are such that P�G′ > Gj(G, i − 1) SG′ > G(G, i − 1)� x 0 and
P�G′ > Gk(G, i − 1) SG′ > G(G, i − 1)� x 0 then
(C.25) TE[Z(G′,Y′) SG′ > Gj(G, i−1)]−E[Z(G′,Y′) SG′ > Gk(G, i−1)]T < 8(lr)ℓ.
To prove this claim de�ne a map ϕj,k � Gj(G, i − 1) � Gk(G, i − 1) as follows. Let π
be the permutation de�ning the edge assignment for a given graph H > Gj(G, i − 1)
and let k′ = π−1(k). De�ne a permutation π′ by π′ = π except that π′(i) = k
and π′(k′) = j. Let H′ denote the resulting graph. Note that H′ > Gk(G, i − 1). By
de�nition, H′ = ϕj,k(H). ¿e construction is shown in Figure C.26. Clearly, ϕj,k
is a bijection and, since every (edge labeled) graph in the ensemble has uniform
probability, such a bijection preserves probabilities. We claim that for a �xed H and
Y

(C.27) SZ(H,Y) − Z(ϕj,k(H),Y)S B 8(lr)ℓ.
To see this, note that the message along a given edge sent in iteration ℓ is only a
function of the associated computation graph, call it ÑCℓ. ¿erefore, a message is
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Figure C.26: Le : Graph G from the ensemble LDPC �10,x2,x5�; Middle: Graph H
from the ensemble G7(G,7) (note that the labels of the sockets are not shown - these
labels should be inferred from the order of the connections in themiddle �gure); the
�rst 7 edges that H has in common with G are drawn in bold; Right: the associated
graph ϕ7,30(H).¿e two dashed lines correspond to the two edges whose end points
are switched.

only a�ected by an exchange of the endpoints of two edges if one (or both) of the
two edges is (are) elements of ÑCℓ. Note that ÑCℓ contains at most 2(lr)ℓ distinct edges
and, by symmetry, an edge can be part of at most 2(lr)ℓ such computation graphs.
It follows that at most 8(lr)ℓ computation graphs can be a�ected by the exchange
of the endpoints of two edges, which proves claim (C.27).

Since ϕj,k is a bijection and preserves probability, it follows that

E[Z(G′,Y′) SG′ > Gk(G, i − 1)] = E[Z(ϕj,k(G′),Y′) SG′ > Gj(G, i − 1)] .
By (C.27) any pair Z(H,Y) and Z(ϕj,k(H),Y) has di�erence bounded by 8(lr)ℓ
and, since for any random variable SE[W]S B E[SWS], claim (C.25) follows.

By de�nition, Zi(G,Y) is equal to E[Z(G′,Y′) SG′ > Gj(G, i − 1)] for some j >
[nl]��π(l) � l < i�. Hence,

SZi(G,Y) − Zi−1(G,Y)S
B max

j
SE[Z(G′,Y′) SG′ > Gj(G, i − 1)] − Zi−1(G,Y)S

B max
j,k
SE[Z(G′,Y′) SG′ > Gj(G, i − 1)] −E[Z(G′,Y′) SG′ > Gk(G, i − 1)]S

B 8(lr)ℓ,
where we have used the representation of Zi(G,Y) given in (C.24). ¿is proves
(C.23) for i > [nl] with γi = 8(lr)ℓ.
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It remains to show that the inequality is also ful�lled for the last n steps.¿e idea
of the proof is very similar and we will be brief. When we reveal a received value at a
particular message node then only messages whose computation graph include this
node can be a�ected. Again by symmetry, we conclude that at most 2(lr)ℓ can be
a�ected. ¿is proves (C.23) for i > nl + 1, . . . ,(n + 1)l with γi = 2(lr)ℓ.

¿e claim now follows by applying the Hoe�ding-Azuma inequality. ¿e pa-
rameter 1~β can be chosen as 544l2ℓ−1r2ℓ. ¿is is by no means the best possible
constant.

§C.4. Wormald’s Differential Equation Approach
Consider the peeling decoder for the BEC as described in Section 3.19: the decoder
“peels o�” one degree-one check node at a time. In this manner we observe a se-
quence of residual graphs and an associated sequence of degree distributions. We
are interested in describing the “typical” evolution of this sequence of degree dis-
tributions as a function of “time” in the limit of large blocklengths. ¿e Wormald
method is the perfect tool to accomplish that.

Consider a function f � Rd � R, d C 1. We say that f is Lipschitz continuous if
there exists a constant L such that for any pair x, y > Rd

Sf(x) − f(y)S B LYx − yY1 = L
d
Q
i=1
Sxi − yiS.

We formulate theWormald method in the setting of the evolution of a Markov pro-
cess. More general versions are available but we do not need them. Consider the
discrete-time Markov process Z with state space �0,� , k�d, k,d > N. More pre-
cisely, ifΩ denotes the probability space then Z is a sequence Z(t = 0),Z(t = 1),�
of random variables, Z(t) � Ω � �0,� , k�d. To every ω > Ω corresponds a real-
ization z(t = 0,ω), z(t = 1,ω),�. In our setting, each (residual) graph is charac-
terized in terms of a degree distribution pair. We therefore choose the random vari-
able Z(t) at step t to be the (un-normalized) degree distribution pair (Λ(t),P(t)).
Why does the sequence Z(t = 0),Z(t = 1),� form a Markov process? Associate
to each (un-normalized) degree distribution pair (Λ(t),P(t)) the corresponding
ensemble LDPC �Λ(t),P(t)�. ¿e degree distribution pair (Λ(t),P(t)) completely
speci�es the probability distribution of the degree distribution pair (Λ(t+1),P(t+1)).
Even more, given that the degree distribution is (Λ(t),P(t)), every (labeled) graph
in LDPC �Λ(t),P(t)� has the same probability of being the residual graph at time t
in the decoding process.

In the Wormald method we do not look at a single Markov process but at a
sequence of such processes, denote them by �Z(m)�mC1. In our setting, this corre-
sponds to looking at ensembles of (increasing) length n. In particular, it is conve-
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nient to choosem = nL′(1), i.e.,m is equal to the number of edges in the graph.¿e
Wormald method consists of showing that, for increasing m, with high probability
the random variables Z(m)(t = 0),Z(m)(t = 1),� stay close to an “average” path
and that this average path is equal to the solution of a di�erential equation. In the
sequel, Z(m)i (t) denotes the i-th component (out of d) of Z(m)(t). Also, given a sub-
set D b Rd+1, we de�ne the stopping time TD(Z(m)1 ,� ,Z(m)d ) to be the minimum t
so that (t~m,Z(m)1 ~m,� ,Z(m)d ~m) ~> D.
TheoremC.28 (WormaldMethod). Let �Z(m)�mC1 denote a sequence ofMarkov
processes, where the m-th process has state space �0,� , 
mα��d, for some α A 0.
Let D be some open connected bounded set containing the closure of

�(0, z1,� , zd) � P�Z(m)i (t = 0)~m = zi,1 B i B d� A 0 for somem�.(C.29)

For 1 B i B d, let fi � Rd+1 � R such that the following four conditions are ful�lled.

(i) (Boundedness)¿ere exists a constant c such that for allm C 1 and 1 B i B d,

UZ(m)i (t + 1) − Z(m)i (t)U B c,
for all 0 B t < TD.

(ii) (Trend) For allm C 1 and 1 B i B d,

E[Z(m)i (t + 1) − Z(m)i (t) SZ(m)(t)] = fi(
t
m
,
Z(m)1 (t)
m

,� ,
Z(m)d (t)
m

) +O( 1
m
),

uniformly for all 0 B t < TD.

(iii) (Lipschitz) Each function fi, 1 B i B d, is Lipschitz continuous on the inter-
section of D with the half-space �(t, z1,� , zd) � t C 0�.

(iv) (Initial Concentration) For 1 B i B d,

P�SZ(m)i (t = 0)~m −E[Z(m)i (t = 0)~m]S C m−
1
6� B O �m 1

6e−
º

m
c3 � .

¿en the following is true.

(i) For (0, ẑ1,� , ẑd) > D the system of di�erential equations

dzi
dτ
= fi(τ, z1,� , zd), 1 B i B d,

has a unique solution in D for zi � R � R passing through zi(0) = ẑi. ¿is
solution extends to points arbitrarily close to the boundary of D.
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(ii) ¿ere exists a strictly positive constant a such that

P�SZ(m)i (t)~m − zi(t~m)S C am−
1
6� B O �m 1

6e−
º

m
c3 � ,

for 0 B t B nτmax and for each 1 B i B d. Here, zi(τ) is the solution in (i) with
ẑi = E[Z(m)i (t = 0)]~m and τmax = τmax(m) is the supremum of those τ to
which the solution can be extended before reaching within L1-distance b of
the boundary of D, where b is a strictly positive constant.

Our main application of theWormald technique is to the analysis of the peeling
decoder. In particular we are now in the position to prove¿eorem 3.107. A second
application is to the analysis of an e�cient encoder discussed in Chapter A. ¿e
Wormald technique is also the basis for the �nite-length scaling result discussed in
Section 3.23. In this case the corresponding di�erential equation not only tracks the
mean of the process but also the second moment.

Proof of ¿eorem 3.107. Consider the evolution of the peeling decoder for a speci�c
element G from LDPC (n,L,R). Time t starts at zero. Just before time zero, each
variable node together with its connected edges is removed independently from all
other choices with probability 1 − є. ¿ese are the nodes that have been transmit-
ted successfully. Time increases by one for each subsequent variable node which is
removed by the decoder.

Choose a code G uniformly at random from LDPC (n,L,R). Without loss of
generality we can assume that the all-zero codeword was transmitted. Letm denote
the total number of edges in the graph, i.e., m = nL′(1). At time t, let V(m)i (t)
denote the number of edges in the residual graph which are connected to variable
nodes of degree i, where 2 B i B lmax. ¿is random variable depends on the choice
of the graph G, the channel realization, and the random choices made by the de-
coder. In the same manner, let C(m)i (t) denote the number of edges in the residual
graph which are connected to check nodes of degree i, where 1 B i B rmax. To keep
the density of sub- and superscripts at a manageable level we drop in some of the
subsequent equations the superscript m which indicates the size of the system we
are considering. E.g., we write Vi(t) instead of V(m)i (t). Note that (V(t),C(t)) is
the pair of un-normalized degree distributions from an edge perspective and the
sequence of such random variables forms a Markov process.

Consider one decoding step. We claim that as long as C1(t) A 0

E[Vi(t + 1) −Vi(t) SV(t),C(t)] = − iVi(t)
PjVj(t)

, i C 2,

(C.30)
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E[C1(t + 1) − C1(t) SV(t),C(t)] =(C2(t) − C1(t))
(Pj(j− 1)Vj(t))
(PjVj(t))2

− 1+

O(1~m),(C.31)

E[Ci(t + 1) − Ci(t) SV(t),C(t)] =(Ci+1(t) − Ci(t))
i(Pj(j− 1)Vj(t))
(PjVj(t))2

+

O(1~m), i C 2.(C.32)

Consider (C.30). ¿is equation says that the expected decrease in the number of
edges which are connected to variable nodes of degree i equals iVi(t)~PjVj(t):
assume that there is at least one degree-one check node le so that the decoding pro-
cess continues. ¿e decoder randomly picks such a degree-one check node. Its out-
going edge is connected to one of thePjVj(t) remaining sockets uniformly at ran-
dom.¿e fraction of edgeswhich are connected to degree-inodes isVi(t)~PjVj(t),
and this equals the probability that a variable node of degree i is removed. If a vari-
able node of degree i is removed then exactly i edges which are connected to a vari-
able node of degree i are removed.

¿e interpretation for the check-node side as described by (C.31) and (C.32) is
similar. We always remove the one edge which is connected to the chosen degree-
one check node. ¿is explains the −1 on the right-hand side of (C.31). In addition
we remove in expectationPj jVj(t)~PjVj(t)−1 = Pj(j−1)Vj(t)~PjVj(t) other
edges: each such edge we remove is connected to the sockets on the right in a uni-
formmanner. If a removed edge is connected to a check node of degree i+1, which
happens with probability Ci+1(t)~PjCj(t) = Ci+1(t)~PjVj(t), then the residual
degree of this node changes from i + 1 to i. ¿is means, that there are (i + 1) fewer
edges of degree (i+ 1) and imore of degree i. ¿e extra term O(1~m) comes from
the fact that we delete several edges at each step but that in the above derivation we
assumed that the degree distribution was constant during one step.

Assume that the given instance evolves according to this expected value and that
the decoding process has not stopped. Introduce the scaled time τ = t~m. If we let
m tend to in�nity then, motivated by¿eorem C.28, we are lead to consider the set
of �rst-order di�erential equations

dvi(τ)
dτ

= −
ivi(τ)
Pjvj(τ)

, i C 2,

dw1(τ)
dτ

= (w2(τ) −w1(τ))
(Pj(j− 1)vj(τ))
(Pjvj(τ))2

− 1,

dwi(τ)
dτ

= (wi+1(τ) −wi(τ))
i(Pj(j− 1)vj(τ))
(Pjvj(τ))2

, i C 2.
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To establish the relationship, �rst recall that we assumed that the process evolves
like its expected value so that we can drop the expectation. ¿en write with ∆t = 1

Vi(t + ∆t) −Vi(t)
∆t

=
Vi(mτ +mdτ) −Vi(mτ)

mdτ
�
dvi(τ)
dτ

,

where we introduced the function vi(τ) � Vi(mτ)~m. ¿e same line of argument
can be used to establish the relationship for the check-node side.

Two tasks remain. We have to solve the set of di�erential equations and we have
to verify that the conditions of ¿eorem C.28 are ful�lled so that we can assert that
typical instances evolve like the solution of the di�erential equation.

We start by solving the systemof di�erential equations.De�ne e(τ) = Pjvj(τ) =
Pjwj(τ). Note that e(τ) represents the fraction (out of m) of edges remaining in
the residual graph at time τ. If we assume that e(τ) is a known function then the
solution of vi(τ) can be written as

vi(τ) = єλie−i R
τ
0 ds~e(s).

Let us verify this. Clearly, for τ = 0, i.e., at the beginning of the process right a er
the received variable nodes and all connected edges have been removed, this gives
us the correct result, namely vi(τ = 0) = єλi. ¿e general solution is veri�ed by
checking that it ful�lls the di�erential equation.

¿e “time” τ has a direct operational signi�cance – it measures (normalized by
m) the number of decoding steps taken. To write down the solution in its �nal form
it is more convenient to consider an alternative “time.” De�ne y(τ) = e− R τ

0 ds~e(s).
¿en we can write the solution as vi(y) = єλiyi. Recall that vi(y) is equal to the
fraction (with respect to m) of edges in the residual graph which are connected to
variable nodes of residual degree i. Let us compute the fraction (with respect to
the original number n) of nodes in the residual graph of degree i. Always i edges
of degree i form one node of degree i. ¿erefore the fraction of variable nodes of
degree i in the residual graph, call it L̃i, is equal to

L̃i = L′(1)єλiyi~i = є λi~i
Pjλj~j

yi = єLiyi,

which con�rms (3.108). It remains to �nd the evolution of the check-node degree
distribution. We claim that

w1(y) = єλ(y)[y− 1 + ρ(1 − єλ(y)],
wi(y) =Q

j
ρj�j− 1i − 1

�(єλ(y))i(1 − єλ(y))j−i, i C 2.
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Let us check that this solution ful�lls the correct initial condition. For y = 1 (τ = 0)
the above equations specialize to

wi(1) =Q
j
ρj�j− 1i − 1

�єi(1 − є)j−i, i C 1.

¿is is indeed correct. An edge which just before time t = 0 has degree jstays in the
graph with probability є and has degree i a erward with probability �j−1i−1�єi−1(1 −
є)j−i. ¿is gives the above expression. ¿at the stated equations not only ful�ll the
initial conditions but indeed solve the di�erential equations needs some extra work
which we skip.

Let us convert this solution into the node perspective. Let R̃i denote the fraction
(with respect to the original size n(1− r) = m~R′(1)) of check nodes in the residual
graph. Since i edges of degree i form one node of degree i and since the fraction of
edges is normalized with respect tom, we get for i C 2

R̃i = R′(1)Q
j
ρj~i�j− 1i − 1

�(єλ(y))i(1 − єλ(y))j−i

= R′(1)Q
jC2
ρj~j�ji�(єλ(y))

i(1 − єλ(y))j−i

=Q
jC2
Rj�ji�(єλ(y))

i(1 − єλ(y))j−i.

¿is con�rms (3.110). For i = 1 we get

R̃1 = R′(1)єλ(y)[y− 1 + ρ(1 − єλ(y)],
as stated in (3.109).

We now use ¿eorem C.28 to justify the above steps. Let us check that all con-
ditions are ful�lled.

To simplify our notation let us assume that all components Li, i = 2,� ,lmax, are
strictly positive. ¿e general case where some components are zero can be handled
in a similar way by restricting the regionD to only the non-zero components.With-
out loss of generalitywe assume thatRrmax is strictly positive. LetDbe (−η,1)�V�C,
whereV = (0,1)lmax−1

��(v2,� ,vlmax) � Pvi B η�, C = (0,1)rmax
��(c1,� , crmax) �

P ci B η�. Here, η is strictly positive but arbitrarily small. As required, D is an open
connected bounded set.

Consider the initial condition. As discussed above, on the variable side the ex-
pected normalized number of nodes of degree i at the beginning of the process
equals єLi, i = 2,� ,lmax. Since we assumed that all components are strictly posi-
tive, this point is in the interior of V for η su�ciently small. In a similar manner, we
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can check that the vector whose components consists of the expected normalized
number of check nodes is in the interior of C for η su�ciently small. We conclude
that the expected initial degree distribution is in the interior of D. Further, using the
tools discussed in this chapter, one can show that the probability that for a random
instance a given component deviates bymore thanm−

1
6 from this expected normal-

ized value isO�e−m
2
3 κ�, where κ is a strictly positive constant.¿erefore, let us limit

our focus to those instances whose initial degree distribution deviates from the ex-
pected one by an L1-norm of at most m−

1
6 . For all other instances we assume that

their (normalized) trajectories are more than the allowed am−
1
6 away from the ex-

pected value and so we count those instances as errors on the right. Sincem
2
3 C
º
m

these instances do not increase our error bound. In other words, for this subset of
instances condition (C.29) as well as condition (iv) are ful�lled.

We claim that

SVi(t + 1) −Vi(t)S B lmax, SCj(t + 1) − Cj(t)S B lmaxrmax.

¿is is true since if a variable of degree i is removed then thismeans that the number
of edges which have variable-degree i is decreased by i. Further, for each edge we
remove the number of check-degree jedges can be decreases/increased by at most
rmax. We see that condition (i) is ful�lled.

Next, de�ne the functions

gi(t,v2,� ,vlmax , c1,� , crmax) = −
ivi
Pjvj

, 2 B i B lmax,

h1(t,v2,� ,vlmax , c1,� , crmax) = (c2 − c1)
(Pj(j− 1)vj)
(Pjvj)2

− 1,

hi(t,v2,� ,vlmax , c1,� , crmax) = (cj+1 − cj)
i(Pj(j− 1)vj)
(Pjvj)2

, 2 B jB rmax − 1,

hrmax(t,v2,� ,vlmax , c1,� , crmax) = −crmax

i(Pj(j− 1)vj)
(Pjvj)2

.

We see from (C.30), (C.31), and (C.32) that condition (ii) is ful�lled as well.
Finally, some calculus veri�es that the Lipschitz condition (iii) is ful�lled.
Consider �rst the case є < єBP, where єBP is the threshold computed according

to density evolution. We see from (3.108)-(3.110) that the solution of the di�erential
equation stays bounded away from the boundary ofD from the start of the decoding
process until the number of nodes in the residual graph has reached size less than
ηm, where η is an arbitrary but strictly positive constant. We conclude that with

Preliminary version – October 18, 2007



convergence to poisson distribution 503

probability at least 1 − O(m1~6e−
º

m
(lmaxrmax)3 ) the normalized degree distribution of

the sequence of residual graphs of a speci�c instance deviates from the expected
degree distribution by at most O(m−1~6) uniformly from the start of the process
until the total number of nodes in the residual graph has reached size ηm. In words,
below the parameter єBP random instance are decoded successfully (at least up to
an arbitrarily small fraction of the size of the graph) under the peeling decoder with
probability approaching 1 asm tends to in�nity.

Second consider the case є A єBP. Nowwe see that the solution of the di�erential
equation stays inside D until “time” y so that y − 1 + ρ(1 − єλ(y)) = 0, i.e., at
the time when the number of degree-one check nodes has decreased to zero. At
this point the degree distribution of the residual graph concentrates around the one
given by (3.108)-(3.110). We conclude that if є A єBP then with probability at least 1−

O(m1~6e−
º

m
(lmaxrmax)3 ) the normalized degree distribution of the sequence of residual

graphs of a speci�c instance deviates from the expected degree distribution by at
mostO(m−1~6) uniformly from the start of the process until the decoder gets stuck.

§C.5. Convergence to Poisson Distribution
So far we have discussed tools which are helpful in establishing the concentration
of a random variable around its mean. Let us now see a standard method of proving
that a sequence of random variables converges in distribution to a Poisson. A proof
of the following theorem can be found, e.g., in Bollobás [4, p. 26].

Theorem C.33 (Convergence to Poisson Distribution). Let µi, i = 1,� ,m,
m > N, be non-negative numbers. For each n > N, let (X1(n),� ,Xm(n)) be a
vector of non-negative integer-valued random variables de�ned on the same space.
If for all (r1,� , rm) > Nm

lim
n�ª

E�(X1(n))r1� (Xm(n))rm� =
m
M
i=1
µrii ,(C.34)

where (x)r = x(x − 1)� (x − r + 1), then the random vector (X1(n),� ,Xm(n))
converges in distribution to a vector of independent Poisson random variables with
mean (µ1,� , µm).

When dealing with sums of indicator random variables, the computation of the
moments is made easier by the following observation.

Fact C.35. If x = Pi vi, where the vi > �0,1�, then for any r
(x)r = x(x − 1)� (x − r + 1) = Q

(i1,�,ir)
vi1�vir ,
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where the summation is taken over all ordered sets of distinct indices.

We can apply ¿eorem C.33 to show that the number of minimal codewords
of small (constant) weight contained in a randomly chosen (suitable LDPC) code
converges to a Poisson random variable. ¿is is done in the proof of Lemma 6.49
in the setting of turbo ensembles. We can proceed in the same fashion to prove the
equivalent statement for LDPC (n, λ, ρ) ensembles. Let us give here however an al-
ternative approach which highlights a useful connection between LDPC ensembles
and standard random graphs.

De�ne the ensemble G(n,R) of graphs, where R(x) is a degree distribution
from the node perspective so that nR′(1) > 2N. More precisely, consider a graph on
nR(1) variables, out of which nRi have degree i. To sample fromG(n,R) proceed as
follows. Label the nR′(1) sockets of the nR(1)nodes in some �xed but arbitraryway
with the set of integers [nR′(1)]. Pair up the nR′(1) sockets uniformly at random.
¿e resulting graph might contain self-loops and multiple edges. A cycle in such a
graph is de�ned in the usual way as a closed path. A cycle of length one corresponds
to a self-loop and a cycle of length two corresponds to a pair of parallel edges. We
call a cycle primitive if it cannot be decomposed into smaller cycles.

Lemma C.36 (Cycle Distribution in G(n,R) – [4, Theorem 2.16]). Let Γ be
chosen uniformly at random from the ensemble G(n,R). For a �xed m > N, let
(C1,� ,Cm) denote the random vector whose i-th component equals the number
of primitive cycles of Γ of length i. ¿en with µ = R′′(1)~R′(1) and µi = µi~(2i),

lim
n�ª

pC1,�,Cm(c1,� , cm) =
m
M
i=1

µcii e
−µi

ci!
.

Consider the bipartite (Tanner) graph associated with an LDPC code. Since the
graph is bipartite, a cycle of such a graph always has even length. As before, we call
a cycle primitive if it cannot be decomposed into smaller cycles.

LemmaC.37 (Cycle Distribution in LDPC (n,L,R)). Let G be chosen uniformly
at random from the ensemble LDPC (n, λ, ρ) ; LDPC (n,L,R) and let G2 denote
the associated bipartite graph induced by degree-two variable nodes. For a �xed
m > N, let (C1,� ,Cm), denote the random vector whose i-th component equals
the number of primitive cycles of length 2i of G2. ¿en with µ = λ′(0)ρ′(1) and
µi = µi~(2i),

lim
n�ª

pC1,�,Cm(c1,� , cm) =
m
M
i=1

µcii e
−µi

ci!
.

Proof. Consider an element G chosen uniformly at random from LDPC (n,L,R).
Let G2 denote the bipartite graph induced by its degree-two variable nodes. ¿is
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residual graph has nL2 variable nodes, all of degree two. Further, the number of
check nodes of degree i concentrates on the coe�cient in front of xi of n(1−r)R(1−
λ′(0) + λ′(0)x), where r is the rate of the original code. ¿is is true since edges in
the original graph stay edges in the residual graph with probability λ′(0). A node
of degree d therefore gives rise to the binomial distribution of degrees of the form
Pi �di�(λ′(0)x)i(1 − λ′(0))d−i = (1 − λ′(0) + λ′(0)x)d, which explains the above
expression. (¿e “degree distribution” n(1−r)R(1−λ′(0)+λ′(0)x) is non-standard
in that it contains zero-degree nodes.)

Compare LDPC �nL2x2,n(1 − r)R(1 − λ′(0)(1 − x))� withG(n(1− r),R(1−
λ′(0)(1 − x))). We claim that each element G > LDPC can be mapped into an ele-
ment of G and that there are exactly � n

nL2�(nL2)!2nL2 such graphs G that map into
each element of G. ¿is map is accomplished by associating to each variable node
in G one edge in the graph Γ, connecting the corresponding two check-node sockets
(the factor 2nL2 is due to the freedom in choosing the labels of the 2 sockets of each
degree-2 variable node).

A cycle of length i in Γ corresponds to a cycle of length 2i in G and vice versa.
¿e claim is therefore a direct consequence of Lemma C.36. It remains to verify the
value of µ. By Lemma C.36 we have

µ =
R′′(1 − λ′(0)(1 − x))
R′(1 − λ′(0)(1 − x)) S x=1 =

(λ′(0))2Pi Rii(i − 1)
λ′(0)Pi Rii

= ρ′(1)λ′(0).

Discussion: You might wonder why we only considered the cycles of G2. As dis-
cussed in ¿eorem D.31, in the limit of large blocklengths with probability one the
cycles of �xed length involve only degree-two variable nodes. ¿erefore, for large
blocklengths the cycles (of �xed length) of G are those of G2. Further, these cycles all
give rise to codewords. Some thought shows that a cycle which involves only degree-
two variable nodes and which is primitive, i.e., which cannot be decomposed into
smaller cycles, corresponds to a minimal codeword, i.e., a codeword which is not
the sum of two codewords each of which has support set contained in the support
set of the original word. It follows that in the limit of large blocklengths the number
of minimal low-weight codewords follows a Poisson distribution.

¿is connection between the graphs which represent LDPC codes and the en-
semble G is not only useful to prove that the number of minimal low-weight code-
words follows a Poisson distribution. It also gives rise to a simple proof that the sta-
bility condition applies to MAP decoding as well. ¿is is discussed in Lemma 3.68
for the BEC. To this end we need the following lemma.

Lemma C.38 (Giant Component and Cycles in G(n,R) – [14, Theorem 1]).
Let Γ be chosen uniformly at random from the ensemble G(n,R) and de�ne µ =
R′′(1)~R′(1). If µ A 1 then almost surely Γ contains a unique giant component (a
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component with a positive fraction of nodes), the number of primitive cycles in Γ
grows at least linearly in n, and the fraction of nodes that lie on cycles is strictly
positive.

Notes

A good account of the many applications of the �rst and second moment method
(Section C.1) can be found in the book by Alon and Spencer [1]. Very readable in-
troductions to Martingales (Section C.3) are contained in the books by Motwani
and Raghavan [15] as well as Mitzenmacher and Upfal [13]. ¿e method of using
the Hoe�ding-Azuma inequality to prove concentration theorems was introduced
into the computer science literature by Shamir and Spencer [16]. In this paper the
authors showed the tight concentration of the chromatic number around its mean
(see Problem C.5). ¿e inequality itself is due to Hoe�ding [6] and Azuma [3]. ¿e
proof of ¿eorem C.17 follows the one given by Alon and Spencer [1]. ¿e particu-
lar type of Martingale which results if we reveal more and more about a process is
called Doob’s Martingale Process [15, p. 90].

¿e migration of the technique into coding theory was initiated in the work
of Luby, Mitzenmacher, Shokrollahi, and Spielman, [9, 11]. ¿ey analyzed LDPC
codes in an essentially combinatorial setting: transmission over the binary symmet-
ric channel (BSC) or the binary erasure channel (BEC) with hard decision message-
passing decoding.¿e technique was then extended by Richardson and Urbanke to
encompass general message-passing decoding algorithms, including belief propa-
gation, and general BMS channels.

One of the �rst applications of analyzing stochastic processes in terms of a dif-
ferential equation which characterizes the average behavior and proving a concen-
tration around this mean is due to Kurtz in the area of population dynamics [8].¿e
method was �rst applied in the computer science �eld by Karp and Sipser [7]. ¿is
method was extended and applied to a large set of problems in computer science by
Wormald [18, 19]. ¿e �rst application in the setting to message-passing systems is
due to Luby, Mitzenmacher, Shokrollahi, and Spielman [9, 10]. ¿e extension of the
method to include the evolution of the second moment as presented in Section 3.23
is due to Amraoui, Montanari, Richardson, and Urbanke [2].

¿eoremC.33, Fact C.35, as well as LemmaC.36 can be found in the book of Bol-
lobás [4].¿e result concerning the cycle distribution in LDPC ensembles appeared
in the paper of Di, Richardson, and Urbanke [5].

¿e article by McDiarmid [12] is an excellent review of methods to prove con-
centration.
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Problems
C.1 (Generalized Chebyshev Inequality). Assume that ϕ(x) is a strictly pos-
itive and increasing function on (0,ª), ϕ(u) = ϕ(−u), and that X is a random
variable such that E[ϕ(X)] <ª. Prove that for any λ A 0

P�SXS C λ� B E[ϕ(X)]~ϕ(λ).

C.2 (Tail Bounds for Weakly Dependent Random Variables). Assume that
the random variables Xi take integral values in the range [0,d] and that

E[Xi SX1, . . . ,Xi−1] C p.

We want to �nd a bound for P�Pni=1 Xi B np(1 − δ)�. Start with

E[e−sPn
i=1 Xi] =

n
M
i=1

E[e−sXi SX1, . . . ,Xi−1].

Show that
E[e−sPn

i=1 Xi] B (1 − p
d
+

p
d
e−sd)n.

Optimizing over the choice of s this gives rise to the bound

P�
n
Q
i=1
Xi B np(1 − δ)� B

�
�
�
d − p
d − pδ̄

� d − pδ̄
(d − p)δ̄�

pδ̄
d �
�
�

n

B e−nδ
2 p
2d .

C.3 (Hoeffding-Azuma: General Case). Prove the Hoe�ding-Azuma inequality
for general constants γi.

C.4 (Expansion of RandomBipartiteGraphs – Spielman [17]). Let G be chosen
uniformly at random from the ensemble LDPC �n,xl−1,xr−1�. Show that for all
0 < α < 1 and δ A 0, with probability at least e−δn all sets of αn variables in G have
at least

n�l~r(1 − (1 − α)r) −
»
2lαh2(α) − δ

¾
lα

2h2(α)�

neighbors.
Hint: First look at the expected number of neighbors.¿en expose one neighbor

at a time to bound the probability that the number of neighbors deviates signi�cantly
from this mean.
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C.5 (Concentration of the Chromatic Number – Spencer and Shamir [16]).
Consider a graph G on n vertices. ¿e chromatic number of a graph G, denote it
by χ(G), is the smallest number of colors which is needed to color all vertices so
that no two vertices which are joined by an edge have the same color. Consider
the standard ensemble of random graphs on n vertices with parameter p: to sample
from this ensemble, pick n vertices and connect each of the �n2� ordered pairs of
vertices independently from all other connections with probability p. Show that for
this ensemble

P[Sχ(G) −E[χ(G)]S A λºn − 1] B 2e−λ2~2 .
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Appendix D

F O R M A L P OW E R S U M S

§D.1. Definition
A formal power sum F(D) over a �eld F is a sum of the form

F(D) =Q
nC0

FnDn, Fn > F .

Such objects appear frequently in this book: in the context of the �nite-length anal-
ysis for the BEC, during the study of convolutional and turbo codes, or as generat-
ing functions of weight distributions. We collect the basic facts about formal power
sums that we have used throughout the text.

§D.2. Basic Properties
In the sequel we assume that the �eld F is �xed and we usually omit any reference to
it.¿e twomost important examples for us are F = F2 and F = R. Given two formal
power sums F(D) = PnC0 FnDn and G(D) = PnC0GnDn, we de�ne their addition
by

F(D) +G(D) =Q
nC0
(Fn +Gn)Dn.

In a similar way we de�ne theirmultiplication by

F(D) ċG(D) =Q
nC0
�
n
Q
i=0
GiFn−i�Dn,

which is the rule familiar from polynomial multiplication. Note that this is well-
de�ned – to compute the n-th coe�cient of the product we only need to perform a
�nite number of operations. ¿erefore, we do not encounter issues of convergence.
Also note that multiplication is commutative.

Is is possible to de�ne division? Recall that over the reals we say that y is the
multiplicative inverse of x, x x 0, which we write as y = 1~x, if xy = 1. Dividing by
x is then the same as multiplying by y. We proceed along the same lines for formal
power sums. Consider the formal power sum F(D). We want to �nd the formal
power sumG(D), if it exists, such thatH(D) = F(D)G(D) = 1.We say thatG(D) is
themultiplicative inverse of F(D) and dividing by F(D) corresponds tomultiplying
with G(D). Using the multiplication rule from above, we get the following set of
equations:

1 = H0 = F0G0,

511
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0 = Hn =
n
Q
i=0
GiFn−i, n C 1.

¿is set of equations has a solution, and this solution is unique, if and only if F0 x 0.
In this case we get

G0 =
1
F0

,

Gn = −
1
F0

n−1
Q
i=0
GiFn−i, n C 1.

Since the evaluation of each coe�cient Fn only involves a �nite number of algebraic
operations and only makes use of the values of Fi, 0 B i < n, this gives rise to
a well-de�ned formal power sum. In summary, a formal power sum F(D) has a
multiplicative inverse if and only if F0 x 0. We write this multiplicative inverse as
1~F(D).
Example D.1 (Inverse of 1 − D over R). Let F = R and consider the example
F(D) = 1 − D. Since F0 x 0, 1~(1 − D) exists. We get

G0 =
1
F0
= 1,G1 = −

1
F0
G0F1 = 1,G2 = −

1
F0
(G0F2 +G1F1) = G1 = 1,

and, in general,

Gn = −
1
F0

n−1
Q
i=0
GiFn−i = −

1
F0
Gn−1F1 = Gn−1 = 1.

¿erefore, G(D) = Pªn=0Dn. n

¿e resemblance to the identity Pªi=0 xi = 1~(1 − x), which is familiar from
analysis and valid for SxS < 1, is not a coincidence. In general, as a rule of thumb any
identity which is valid for Taylor series and which can be meaningfully interpreted
in the realm of formal power sums is still valid if considered as an identity of for-
mal power sums. Further basic properties of formal power sums are developed in
Problem D.1.

§D.3. Summation of Subsequences
Consider a formal power sum over R,

F(D) =Q
nC0

FnDn,
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so that the corresponding real sumPnC0 Fn converges. Assume we have succeeded
in �nding a “closed form solution” F(D). ¿en we have the compact representation
of the sumPnC0 Fn as F(D)SD=1. What can we say about the related power sum

Fq(D) = Q
nC0�n~q>N

FnDn,

and the related sumPnC0�n~q>N Fn, where q is a natural number? In words, we would
like to �nd the sum of all q-th terms. We claim that

Fq(D) = 1
q

q−1

Q
i=0
F �Dei

2πj
q � , Fq(1) = 1

q

q−1

Q
i=0
F �ei

2πj
q � .

¿is is true since

1
q

q−1

Q
i=0
F �Dei

2πj
q � =Q

nC0
Fn�1q

q

Q
i=0

e
ni 2πjq �Dn

= Q
nC0�n~q>N

FnDn.

Example D.2 (Probability of Check Node Satisfaction). Assume we have r
binary iid random variables Xn, n = 1,� ,r, with P�Xn = 1� = p. We want to
determine P�Pr

n=1 Xn = 0�. ¿is can be interpreted as the probability that a check
node is ful�lled, assuming that each of its attached variable nodes is in error with
probability pand assuming that all these errors are independent. We have

P�
r

Q
n=1

Xn = 0� = Q
n�n even

�r
n
�pn(1 − p)r−nDnU

D=1
.

Since we know thatPn �rn�pn(1 − p)r−nDn
= (pD + 1 − p)r, the solution is

P�
r

Q
n=1

Xn = 0� = 1
2
�(pe 2πj

2 0
+ 1 − p)r + (pe 2πj

2 1
+ 1 − p)r�

=
1 + (1 − 2p)r

2
. n

§D.4. Coefficient Growth of Powers of Polynomials
Generating functions are an indispensable tool in enumerative combinatorics. Of-
ten the exact growth of a combinatorial object is complicated but the asymptotic
behavior of this growth is quite simple. ¿is is, e.g., the case for the weight distri-
bution problem. As a motivation, let us start with the following simple example.
Assume we want to compute

Nn(k) = coef�F(D)n,Dk� ,
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where F(D) is a function analytic around zero, which has a power series expansion
with non-negative coe�cients, and n, k > N. Let x be any strictly positive number.
¿en Nn(k)xk B Pi Nn(i)xi = (PiC0 Fixi)n = F(x)n, since all coe�cients are
non-negative. It follows that

Nn(k) B F(x)n~xk.(D.3)

¿erefore, Nn(k) B infxA0 F(x)n~xk. It may come as a surprise that such a simple
bound is essentially tight.

Example D.4 (Bound on Binomials). If we take F(x) = 1 + x, then a little bit of
calculus shows that x = k~(n − k) is the optimum choice. It is a valid choice since
it is positive if k > [n]. With this choice we get �nk� B 2nh2(k~n), a result we saw in
slightly strengthened form in Problem 1.25 (but see Problem D.5). n

¿e above argument can easily be extended to polynomials in several variables
and we skip the details. In some cases we are not only interested in an upper bound
but we are asking for a “good” approximation of the actual value. ¿e Hayman
method is a powerful tool in this respect. Although the basic idea of the Hayman
method is straightforward (recast the problem in the form of an integral and use
the Laplace method to estimate this integral), the details are cumbersome. Let us
introduce the idea by revisiting our simple example. ¿is hopefully clari�es the ba-
sic concept. We want to compute

Nn(nω) = coef�F(D)n,Dnω� ,
where F(D) is a polynomial with non-negative coe�cients, and ω > R and n > N
are such that nω > N. Without loss of generality we can assume that F0 = 1, since
common factors of D can be taken out and we can rescale the polynomial if needed.
By the residue theorem we have

Nn(nω) = 1
2πjc

F(z)n
znω+1

dz,

where we can choose the integration path to be a circle of radius x, x A 0, centered
around the origin. We get a trivial upper bound if we replace the integrand with the
maximum of SF(z)Sn. Since the length of the contour is 2πx, this gives

Nn(nω) B 2πx
2π
SF(x)Sn
xnω+1

=
F(x)n
xnω

,

where we used the fact that TF �xejθ�T takes on a maximal value for θ = 0 since all
coe�cients of F(D) are non-negative. We can optimize (minimize) this bound by
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taking the optimal value of x. ¿e condition for this optimum reads a(xω) = ω,
where a(x) = x∂F

F∂x . To summarize, we have

Nn(nω) B F(xω)
n

xnωω
, where a(xω) = ω, xω > R+ .

¿is is the same bound which we derived previously using only the positivity of
the coe�cients Fi. But from the new point of view we can see how the bound can
be improved. Note that the integrand is much smaller than its maximal value F(x)
for most of the contour – unless the polynomial has a special structure, the only
way to “line-up” (over C) the individual vectors Fixiejθi is by choosing θ = 0. As-
sume for the moment that for the given polynomial the integral is dominated by
a small interval around θ = 0. Expand ln(F(xejθ)~F(x)) around θ = 0. We get
ln(F(xejθ)~F(x)) = ja(x)θ − 1

2xa
′(x)θ2 +O(θ3). We therefore have

Nn(nω) = 1
2πjc

F(z)n
znω+1

dz z=xe
jθ
=

1
2π S

π

−π

F(xejθ)n
xnωejnωθ

dθ

=
1
2π S

π

−π

F(x)nejna(x)θe− 1
2 xa

′(x)θ2enO(θ
3)

xnωejnωθ
dθ.

If, as above, we choose x = xω then this reduces to

Nn(nω) = 1
2π S

π

−π

F(xω)ne− 1
2 xωa

′(xω)θ2enO(θ
3)

xnωω
dθ.

Assume now that a′(xω) A 0. In this case the integral is up to the error term the
integral over a Gaussian kernel with variance 1~(xωa′(xω)). One can check that the
in�uence of the error term vanishes as n tends to in�nity. If we compute the integral
over the Gaussian kernel ignoring the error termwe see that the value of the integral
converges to 1»

2πxωa(xω)
F(xω)n
xnωω

. ¿is is the Hayman approximation. In fact, more is
true. Under the same conditions we also have the following local expansion:

Nn(nω+ ∆w) = Nn(nω)x−∆wω e
−
(∆w)2
2nb(xω) (1 + o(1)),

where b(x) = xa′(x) and where the expansion is valid for ∆w > o(»n log(n)).
Let us summarize what is needed for the Hayman approximation to be valid.

First, we need that F(xejθ) takes on its maximum only at θ = 0. It is easy to see
how this condition can fail: if the powers of F(x) with non-zero coe�cients are all
divisible by k then F(xejθ) takes on a maximum at all angles which are multiples
of 2π

k . Consider as example F(x) = 1+ x2. ¿is function takes on a maximum value
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at both θ = 0 and θ = π. Conversely, as we con�rm soon in a more general setting,
if gcd�k � Fk A 0� = 1, then F(xejθ) has a unique maximum which is located at
θ = 0. Next, we need that a(x) = ω has a strictly positive solution for all ω > (0,d),
where d is the degree of F(x). We claim that this is ful�lled if F0 A 0 and if F(x)
contains at least one other non-zero term: by direct inspection of a(x) = Pi iFixi

Pi Fixi

we see that in this case a(0) = 0. Further, we then have limx�ª a(x) = d. ¿e
claim now follows by the mean-value theorem. But more is true. As discussed in
ProblemD.6, a′(x) A 0 for x A 0, so that a(x) is strictly increasing.¿ere is hence a
unique such positive solution. Finally, because of a′(x) A 0 the integrand is indeed
well-approximated by a Gaussian.

In the one-dimensional case we say that a polynomial is Hayman admissible if
the two conditions F0 A 0 and gcd�k � Fk A 0� = 1 are ful�lled. What happens
if F0 A 0 but gcd�k � Fk A 0� is strictly larger than 1? As we discussed above,
F(xωe2πjθ) has in this case gcd�k � Fk A 0�maxima. But the asymptotic expansion
is essentially still valid. We just have to multiply it by gcd�k � Fk A 0� to account for
the contribution to the integral of each of these maxima. ¿e following de�nition
extends to, and formalizes these notions for, higher dimensions.

Definition D.5 (Hayman Admissibility of Multivariate Functions). Con-
sider a function F(x) in m variables. We say that F(x) is Hayman admissible if the
following two conditions are satis�ed.

For each x > Rm with strictly positive components there exists a constant c such
that for all θ > [−π,π)m � [−n− 2

5 ,n−
2
5 ]m

TF(xejθ)~F(x)Tn B cn− 1
5 .(D.6)

For each x > Rm with strictly positive components

ln�F�xejθ�~F(x)� = ja(x)θT − 1
2
θ B(x)θT +O�YθY31�,(D.7)

where the error term is uniform over all θ > �−δ,δ�m, for some δ A 0.

Remark: In the above de�nition, the choice of the exponent − 2
5 is arbitrary and

is purely done for convenience.
¿e following lemma simpli�es the task of determining if a multivariate polyno-

mial is Hayman admissible.

LemmaD.8 (HaymanAdmissibility ofMultivariate Polynomials). Let F(D)
be a multivariate polynomial in m variables with non-negative coe�cients and at
least two strictly positive terms. Associate to F(D) the following integral matrix A:
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for each pair of distinct coe�cients (k, l) with FkFl A 0, A contains the di�erence
vector k − l as a row. If the image of the map [0,1)m � �0� � x ( x AT , contains no
element with all integral components then F(D) is Hayman admissible.
Proof. To simplify the notation in the proof, let us agree that c denotes a suitably
chosen strictly positive constant (only depending on F and x), not always the same.
We prove the claims in the order stated. Some calculus shows that

TF(xejθ)~F(x)T2 = 1 −Q
kxl
FkFlxk+l�1 − cos((k − l)θT)�~ SF(x)S2 ,(D.9)

where the sum ranges over all ordered pairs (k, l) with k x l. We claim that for a
�xed x > Rm, for all θ > [0,2π)m

SF(x)S2 CQ
kxl
FkFlxk+l(1 − cos((k − l)θT) C c θ ATAθT C 0.(D.10)

Let us postpone the proof of this claim for a moment and see how it can be used to
verify condition (D.6). We �rst claim that Ahas full column rank. ¿is is true since
if Adid not have full column rank then there would exist a non-zero vector z so that
A zT = 0T . Take x = z (mod 1). Prescaling z if necessary, we can assume that x is
not the all-zero vector. But since A is integral, AxT , and so also x AT , would have all
integral components, a contradiction. Since Ahas full column rank, ATA is strictly
positive de�nite so that

θ ATAθT C c YθY22 .(D.11)

Now if θ > [−π,π)m � �−n− 2
5 ,n−

2
5 �m then

YθY22 C n−
4
5 .(D.12)

¿erefore,

TF(xejθ)~F(x)Tn = �1 −Q
kxl
FkFlxk+l�1 − cos((k − l)θT)�~ SF(x)S2�n~2by (D.9)

B �1 − cθ ATAθT~ SF(x)S2�n~2by (D.10)

B �1 − cn− 4
5 ~ SF(x)S2�n~2by (D.11) and (D.12)

(i)
= �1 − cn− 4

5 �n~2 B e−cn
1
5
B cn−

1
5 .

Step (i) follows since by assumption x has strictly positive components so that F(x)
is strictly positive. ¿is shows that F(D) ful�lls condition (D.6) assuming we can
prove (D.10).
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Let us now see how this can be accomplished. Consider

(D.13) min�FkFlxk+l � FkFl A 0, k x l�.
Since by assumption F(D) has at least two strictly positive terms the set in (D.13)
is non empty. Since further F(D) has only a �nite number of non-zero coe�cients,
all of them are positive, and each component of x is strictly positive, the minimum
is well de�ned and strictly positive. We continue,

Q
kxl
FkFlxk+l�1 − cos((k − l)θT)�

CcQ
kxl
�1 − cos((k − l)θT)�from (D.13)

C
c
2Qkxl
T(k − l)θTT2 − c

6Qkxl
T(k − l)θTT3 .since cos(z) B 1 − z2~2 + SzS3~6

Choose δ to be equal to the inverse of 2
3 max�Yk − lY1 � FkFl A 0�. ¿en if θ >

[0,δ)m it follows thatPkxl T(k − l)θTT
3
B

3
2 Pkxl T(k − l)θTT

2
. If we insert this bound

into the last paragraph then this proves the desired bound (D.10) for the region
θ > [0,δ)m.

By assumption, the image of the map [0,1)m��0� � x ( xAT , does not contain
an element with all integral components. ¿is is equivalent to the condition that

AxT = 0T (mod 1)
has no non-zero solutions for x > [0,1)m. If we multiply this equation by 2π this is
in turn equivalent to the statement that

AθT = 0T (mod 2π)
has no non-zero solution for θ > [0,2π)m. Since the domain [0,2π]m � (0,δ)m is
compact, it follows by a continuity argument that in the range θ > [0,2π]m�(0,δ)m

Q
kxl
FkFlxk+l(1 − cos((k − l)θT))

is lower bounded by a strictly positive constant. ¿is in turn shows that (D.10) is
also true for θ > [0,2π)m � (0,δ)m. ¿is concludes the proof of condition (D.6).

It remains to prove that condition (D.7) holds as well. ¿is is easier. If x has
strictly positive components then ln�F�xejθ�~F(x)�, seen as a function of θ, is an-
alytic in [−π,π)m. It therefore has a Taylor series representation. If we expand the
function up to second order terms then the error term can be bounded by YθY31 times
a constant, where the constant is equal to the supremum of all partial derivatives of
third order in the domain [−π,π)m. ¿is supremum is �nite which shows that the
expansion is uniform.
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Lemma D.14 (Hayman Method: Multivariate Polynomials). Let F(D) be a
multivariate polynomial in m variables with non-negative coe�cients. Let ω > Rm

and n > N so that nω > Nm. De�ne Nn(nω) = coef�F(D)n,Dnω� and a(x) =
((xi∂F)~(F∂xi))mi=1. Further, let the m �m symmetric matrix B have components
Bi,j = xj∂ai~∂xj. Let xω be a real strictly positive solution to a(x) = ω. If F(D) is
Hayman admissible then B is strictly positive de�nite and

(D.15) Nn(nω) =
F �xω�

n

¼
(2πn)mSB(xω)S �xω�

nω (1 + o(1)).

Also,Nn(nω+∆w) can be approximated in terms ofNn(nω).¿is approximation is
called the local limit theorem of Nn around nω. Explicitly, if Y∆wY1 = o�

»
n logn�,

then

Nn(nω+ ∆w) = Nn(nω) �xω�
−∆w

e−
1
2n∆wB

−1(xω)∆wT(1 + o(1)).

Example D.16 (Binomial Coefficient). Consider the binomial coe�cient �nk�.
We have �nk� = coef�F(D)n,Dk� with F(D) = 1 + D. Since F0 = 1 A 0 and gcd�k �
Fk A 0� = 1, F(D) is Hayman admissible. We have a(x) = x~(1 + x) = κ, so that
xκ = κ~(1−κ). Further, B consists of a single term, call it b(x) = x~(1+ x)2. We get
b(xκ) = κ(1 − κ). ¿erefore, for κ > (0,1) and ∆ = o(»n log(n)),

� n
nκ
� = F(κ~(1 − κ))n»

2πnκ(1 − κ)(κ~(1 − κ))nκ
(1 + o(1)),

=
2nh2(κ)»

2πnκ(1 − κ)
(1 + o(1)),

� n
nκ + ∆

� = � n
nκ
�(κ~(1 − κ))−∆e− ∆2

2nκ(1−κ) (1 + o(1)),

where h2(x) = −x log2(x) − (1 − x) log2(1 − x). n

Although we have proved the above statement for κ > (0,1) and k = κn, i.e., for
the case where k scales linearly with n, it actually remains true with κ = k~n as long
as both k and n − k tend to in�nity. For a slightly less straightforward application
consider the weight distribution of the ensemble LDPC �n,xl−1,xr−1�.
Lemma D.17 (Average Weight Distribution of Regular Ensembles). Con-
sider the ensemble LDPC �n,xl−1,xr−1�with l,r C 2. For G chosen uniformly ran-
dom from the ensemble let Acw~ss(G,w) denote the number of codewords/stopping
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sets of weight w in the code de�ned by G, respectively. ¿en

E[Acw~ss(G,w)] = �nw�
coef�Fcw~ss(D)n

l
r ,Dwl�

�nlwl�
,

where Fcw(D) = Pi �r2i�D2i and Fss(D) = Pix1 �ri�Di. Let xω be the unique real
solution to a(x) = ωr, where

acw(x) = �Q
i
� r
2i
�2ix2i�~�Q

i
� r
2i
�x2i�, ass(x) = �Q

ix1
�r
i
�ixi�~�Q

ix1
�r
i
�xi�,

and de�ne bcw~ss(x) = xa′cw~ss(x). Let nωl > N, ∆w = o(»n log(n)), and ∆wl > N.
If nωl is odd thenE[Acw(G,nω)] = 0. If we are looking at the weight distribution of
codewords for even nωl or if we are looking at the weight distribution of stopping
sets, then

E[Acw~ss(G,nω)] =
µcw~ss

º
r2−(l−1)nh2(ω)Fcw~ss(xω)n

l
r

»
2πnb(xω)xnωlω

(1 + o(1)),

E[Acw~ss(G,nω+ ∆w)]
E[Acw~ss(G,nω)]

=
w(l−1)∆w

xl∆wω (n −w)(l−1)∆w e
−
(∆w)2

2 ( lr
nb(xω)−

l−1
w(1−w~n) )(1 + o(1)),

where µcw = 2, µss = 1 if r A 2, and µss = 2 if r = 2.

Proof. If r = 2 then codewords and stopping sets are identical. ¿erefore, con-
sider �rst the weight distribution of stopping sets assuming that r A 2. In this case
Fss(D) is Hayman admissible since F0 = 1 A 0 and gcd�k � Fk A 0� = 1 so that
the statement is a straightforward application of the Hayman method (to the term
coef�Fss(D)n l

r ,Dwl� as well as to the Binomial coe�cients).
We cannot apply the Hayman method directly to the weight distribution of

codewords since Fcw has only even powers and so gcd�k � Fk A 0� = 2. But we
know already from our previous discussion that this is corrected easily by multi-
plying the expansion by a factor two. Alternatively, the case of codewords can be
treated by rewriting the problem in the form

E[Acw(G,w)] = �nw�
coef�F(ºD)n l

r ,D
1
2wl�

�nlwl�
,

keeping in mind that 1
2wl must be an integer. Now we can apply the Hayman

method since Fcw(
º
D) is Hayman admissible.
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Although we have stated Lemma D.14 in explicit form, it is o en more conve-
nient to use the result in implicit form. If we want, e.g., to plot the growth rate for
the weight distribution in LemmaD.17 over the whole range, rather than solving for
xω for each choice of ω, we let x run over all elements ofR+ and the corresponding
value of ω is then given by ω = a(x)~r.

It remains to prove Lemma D.14. Let ω and n > N be such that nω > Nn. Let xω be a
strictly positive solution of a(x) = ω. First note that if F(D) is Hayman admissible
then B is strictly positive de�nite: by explicit computations we see that for y > Rm

yB(x)yT =Q
k,l
�
m
Q
i=1
(ki − l i)yi�

2FkFlxk+l .

We want to prove that the right hand side is strictly positive for nonzero y. If x is

strictly positive then this is the same as proving thatPk,l�Pmi=1(ki − l i)yi�
2FkFl is

strictly positive. If F(D) is Hayman admissible then we have seen that the matrix A
whose rows are formed by the di�erences k − l has full column rank so that there
cannot exist a vector ywhich is orthogonal to all the rows of A. We conclude that in
the above sum there must be at least one strictly positive term, which shows that B
is strictly positive de�nite.

Note that both the asymptotic expansion as well as the local limit theorem is
proved if we can show that for Y∆wY1 = o(

»
n logn)

Unm~2
Nn(nω+ ∆w) �xω�

nω+∆w

F(xω)n
−

1¼
(2π)mSB(xω)S

e−
1
2n∆wB(xω)∆wT U(D.18)

is of order O �n−1~10�. To see that this is true consider the right hand side of the
above expression. If Y∆wY1 = o(

»
n logn) then ∆wB(xω)∆wT~n = o(logn) B

Θ(logn1~20), lets say. It follows that the right hand side is at least of orderΘ(n−1~20).
¿e claim now follows since Θ(n−1~20) A O �n−1~10�. Note that

(D.19) F(x)n = Q
k>Nm

Nn(k)xk.

We continue,

Nn(nω+ ∆w)xnω+∆wω

F(xω)n
(D.20)
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=Q
k

Nn(k)xkω
F(xω)n

� 1
(2π)m S[−π,π)m e

−j(nω+∆w−k)vTdv�

using 1
2π R[−π,π) e

jkθdθ = δ(k)

=
1

(2π)m S[−π,π)m
Pk Nn(k)xkωejv kT

F(xω)n
e−j(nω+∆w) v

T
dv

=
1

(2π)m S[−π,π)m
F(xωejv)n
F(xω)n

e−j(nω+∆w) v
T
dv.by (D.19)

¿erefore, (D.18) can be written equivalently as

(D.21) Unm~2 1
(2π)m S[−π,π)m

F(xωejv)n
F(xω)n

e−j(nω+∆ω) v
T
dv−

1¼
(2π)mSB(xω)S

e−
1
2n∆wB(xω)∆wT U = O �n−10� .

Let us divide the integration region [−π,π)m into the part Γ = [−n− 2
5 ,n−

2
5 )m and

its complement [−π,π)m � Γ. By assumption F is Hayman admissible. ¿erefore,
the contribution to the integral from the region [−π,π)m � Γ is negligible, since

U 1
(2π)m S[−π,π)m�Γ

F(xωejv)n
F(xω)n

e−j(nω+∆ω) v
T
dvU

B
1

(2π)m S[−π,π)m�ΓU
F(xωejv)
F(xω)

U
n
dv = O(n−1~5).by (D.6)

On the other hand, for the integral over the region Γ we have

1
(2π)m SΓ

F(xωejv)n
F(xω)n

e−j(nω+∆w) v
T
dv

=
1

(2π)m SΓ e
jna(xω)vT− n

2 v B(xω)vT+O�n− 1
5 �
e−j(nω+∆w) v

T
dv

by (D.7)

=
1

(2π)m SΓ e
−

n
2 v B(xω)vT+O�n− 1

5 �
e−j∆wv

T
dv

a(xω) = ω

=
1

(2π)m SΓ e
−

n
2 v B(xω)vTe−j∆wv

T
dv�1 +O(n− 1

5 )�
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=n−
m
2

1
(2π)m S[−n 1

10 ,n
1
10 )m

e−
1
2 yB(xω)yTe−j∆w~

º
n yTdy�1 +O(n− 1

5 )�
y =
º
nv

=n−
m
2

1
(2π)m SRm

e−
1
2 yB(xω)yTej∆w~

º
n yTdy�1 +O(n− 1

5 )� +O(n−1~10n−m~2)

=n−
m
2

¿
ÁÁÀ (2π)m
SB(xω)S

e−
1
2n∆wB

−1(xω)∆wT�1 +O(n− 1
5 )� +O(n−1~10n−m~2)

A few remarks are in order. In the last step we have used the fact that the Fourier
transform of a Gaussian is again a Gaussian. To justify the one before last step we
claim that for anym �m real positive-de�nite matrix B−1 and any K > R+,

(D.22) WSRm
�(−K,K)m

e−
s B−1 sT

2 e−ju s
T
dsW = O(1~K).

To see this last claim write B−1 = UΛUT where U is a rotation matrix and Λ is a
diagonal matrix with positive entries along the diagonal, call them λi. Let λmin =

�λi�i, λmin A 0. ¿en we have

WSRm
�(−K,K)m

e−
s B−1 sT

2 e−ju s
T
dsW = S

tUT
>Rm

�(−K,K)m
e−

Pm
i=1 λit

2
i

2 dtt = sU

B SYtY2CK
e−

λminP
m
i=1 t2i

2 dt = O(1~K),

where the estimate in the last step is quite crude but su�cient for our purpose.

As a �rst serious application of the Hayman method, let us furnish the proof
of Lemma 3.22 that gives a su�cient condition under which the actual rate of a
randomly chosen element of an ensemble is close to the design rate.

Proof of Lemma 3.22. For any element G we have r(G) C r(λ, ρ). If it is true that the
expected value of the rate (more precisely, the logarithm of the expected number
of codewords divided by the length) is close to the design rate, then we can use the
Markov inequality to show that most codes have a rate close to the design rate.

First, we ask where the growth rate of the weight distribution has its maximum,
i.e., which codeword “type” dominates. It is natural to assume that for “most” codes
the dominant type is the one with roughly half the components equal to one. Let
us check when this is true. We could use the expression of the growth rate as stated
in Lemma 3.159. It is slightly more convenient though to start anew and derive a
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more compact representation. We know that the expected number of codewords
involving e edges is given by

E[Acw(G, e)] =
coef�Li(1 + yi)nLiLjqj(z)n

L′(1)
R′(1)Rj, yeze¡

�nL′(1)e �
,

where qj(z) = ((1+z)j+(1−z)j)~2. Let n tend to in�nity and de�ne є = e~(nL′(1).
We are interested in the exponent of the growth rate. Recall from our previous dis-
cussion that the very simple upper bound which we introduced in the beginning of
Section D.4 is exponentially tight. If we use this bound on the numerator and the
standard estimate of the binomial in terms of the binary entropy function, then we
get that for a �xed є, the exponent limn�ª

1
n log2�E[Acw(G,єnL′(1))]� is given by

the in�mum with respect to y, z A 0 of

(D.23) Q
i
Li log2(1 + yi) − L′(1)є log2 y+

L′(1)
R′(1)Qj

Rj log2 qj(z)

− L′(1)є log2 z − L′(1)h(є).
Wewant to determine the exponent corresponding to the expected number of code-
words, i.e., limn�ª

1
n log2�E[Acw(G)]�, where Acw(G) = Pe Acw(G, e). Since there

is only a polynomial number of “types” (numbers e) this exponent is equal to the
supremum of (D.23) over all 0 B є B 1. In summary, the sought a er exponent is
given by a stationary point of the function stated in (D.23) with respect to y, z and
є. Take the derivative with respect to є. ¿is gives є = yz~(1 + yz). If we substitute
this expression for є into (D.23), subtract the design rate r(L,R), and rearrange the
terms we get (3.23). Next, if we take the derivative with respect to y and solve for z
we get (3.24). In summary, Ψ(y) is a function so that

log2 E[Acw(G)] = n�r(L,R) + sup
y>[0,ª)

Ψ(y) + ωn� ,

where ωn = o(1). In particular, by explicit computation we see that Ψ(y = 1) = 0.
A closer look shows that y = 1 corresponds to the exponent of codewords of weight
n~2. ¿is is most easily seen by considering

coef�M
i
(1 + yi)nLi , ynα¡ B Li(1 + yiα)nLi

ynαα
,

where we know that the bound is exponentially tight if we choose the optimum yα.
By explicit calculation we see that a(1) = Pi Li i

2 , i.e, y = 1 corresponds to α = Pi Li i
2 .
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¿is corresponds to the case in which we take take half of each variable node type,
so that the global weight is one-half.

By an application of (the Markov) Inequality C.1 we have for any ξ A 0

P�r(G) C r(λ, ρ) + ξ� = P�Acw(G) C 2n(ξ−ωn)E[Acw(G)]� B e−nξ ln(2)~2.

Proof of Lemma 3.27. We start by showing that the dominant codeword type has
relative weight one-half. For the (l,r)-regular case the function Ψ(y) introduced
in Lemma 3.22 simpli�es to

Ψ(y) = log�1
2
(1 + yl)1−l((1 + yl−1)r + (1 − yl−1)r) lr �.

De�ne x = yl−1. ¿en the condition Ψ(y) B 0, with strict inequality except for
y = 1, is equivalent to f(x,r) B g(x,l), with strict inequality except for x = 1,
where f(x,r) = ((1 + x)r + (1 − x)r) 1r and g(x,l) = 2

1
l (1 + x l

l−1 ) l−1l . We start
by showing that for r C 2 and x C 0, f(x,r) B g(x,r). To see this, consider the
equivalent statement 2Pi �r2i�x2i = f(x,r)r B g(x,r)r = 2Pj�r−1j �x

r
r−1 j. For r =

2 a direct check shows that the two sides are equal and the same is true for x = 0.
Consider therefore the case r C 3 and x A 0. First cancel the factor 2 from both sides.
Next note that both series start with the term 1 and if r is even then the last term on
both sides is xr. For each remaining term �r2i�x2i, 2 B 2i < r, on the le there are
exactly two terms on the right of the form �r−12i−1�x

(2i−1)r
r−1 + �r−12i �x

2ir
r−1 . Now note that

for x A 0, xα is a convex-8 function in α for α A 0 and that �r−12i−1� + �r−12i � = �r2i�.
¿erefore by Jensens’ inequality (1.61),

�r−12i−1�
�r2i�

x
(2i−1)r
r−1 +

�r−12i �
�r2i�

x
2ir
r−1 C �x(� r−12i−1�

(2i−1)r
r−1 +�r−12i � 2ir

r−1)~� r2i�� = x2i.

Now where we know that f(x,r) B g(x,r) for r C 2 and x C 0, the proof
is complete if we can show that g(x,l) is a decreasing function in l and that it is
strictly decreasing except for x = 1: we write f(x,r) B g(x,r) lBr

B g(x,l), where
the last inequality is strict for x x 1. It is the task of ProblemD.7 to show that g(x,l)
is indeed decreasing in l.

Let us now use the local Hayman expansion for codewords of relative weight
close to one-half to determine the total number of codewords. In order to avoid
technicalities assume that n is divisible by 4, so that n~2 is even. From Lemma D.17
we have

E[Acw(G,nω)] = 2
º
r2−(l−1)nh2(ω)Fcw(xω)n l

r»
2πnb(xω)xnωlω

(1 + o(1)),
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E[Acw(G,nω+ ∆w)]
E[Acw(G,nω)] = � w

n −w
�
(l−1)∆w e

−(∆w)2( lr
2nb(xω)−

l−1
2w(1−w~n) )

xl∆wω
(1 + o(1)),

where in the local expansion it is understood that l∆wmust be even. Consider the
expansion around w = n~2. Explicit computations show that in this case xω = 1,
b(xω) = b(1) = r

4 , Fcw(xω) = Fcw(1) = 2r−1. If we insert these values into the above
two expressions and set w = n~2 we get

E[Acw(G,n~2)] = 2
º
r2−(l−1)n2n

l
r
(r−1)

»
2πnr~4

(1 + o(1)) = 22n(1−
l
r
)

»
2πn~4

(1 + o(1)),

E[Acw(G,nω+ ∆w)]
E[Acw(G,nω)] = e−(∆w)

2( 2ln −
2(l−1)

n )(1 + o(1)) = e−(∆w)2 2
n (1 + o(1)).

¿is gives us for l∆w even

E[Acw(G,n~2 + ∆w)] = 22n(1−
l
r
)

»
2πn~4

e−(∆w)
2 2
n (1 + o(1)).

If l is even then ∆w ranges over all integers and by summing we see that

E[
n
Q
w=0

Acw(G,w)] = 22n(1−
l
r
)(1 + o(1)).

If l is odd then we must only sum over all even integers and we get

E[
n
Q
w=0

Acw(G,w)] = 2n(1−
l
r
)(1 + o(1)).

In summary, we have

E[
n
Q
w=0

Acw(G,w)] = 2n(1−
l
r
)+ν(1 + o(1)),(D.24)

where ν = 1 if l is even and ν = 0 otherwise.
To �nish the proof note that if l is odd then the rate is always at least equal to

the design rate r(λ, ρ) = (1 − l~r), whereas if l is even then the rate is always at
least (1 − l~r) + 1~n. ¿is is true since the corresponding parity-check matrix has
always at least one dependent row (over F2 the sum of all rows is equal to zero).
Look at the case of odd l. ¿e even case is handled in the same manner. Note that
r(G) − r(λ, ρ) is a non-negative random variable. We have

P�r(G) = r(λ, ρ)� = 1 − P�nr(G) − nr(λ, ρ) C 1�
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C 1 −E[nr(G) − nr(λ, ρ)]Markov inequality (C.1)

= 1 −E�log2
Pw A(G,w)
2n(1−

l
r
) �

C 1 − log2 E�Pw A(G,w)
2n(1−

l
r
) �Jensens’ inequality (1.61)

= 1 − log2(1 + on(1))by (D.24)
= 1 + on(1).

¿e following lemma is useful when proving that projections of the global code
C onto the local code C(T), where T is the computation tree of a variable node, are
proper with high probability (see Lemma 3.47 and Problem 3.8).

Lemma D.25 (Weight Distribution of Perturbed Regular Ensemble). Con-
sider a (l,r)-regular degree distribution pair. Let a,b, c > N be �xed and let n tend
to in�nity. De�ne

p(x) = (1 + x)
r
+ (1 − x)r
2

, q(x) = (1 + x)
r−1
+ (1 − x)r−1
2

,

and

N(n,a,b, c) =Q
w

�n−aw �
�(n−a)lwl �

coef�p(x)n l
r
−blq(x)cl,xwl�.

¿en

N(n,a,b, c) = N(n,0,0,0)2a(l−1)−bl(r−1)+cl(r−2)(1 + o(1)).

Proof. Proceeding as in Lemma D.17, we have for ∆ = o(
»
m ln(m)) andmr even

coef�p(x)m,xmr~2+∆� = 2m(r−1) 1»
πmr~2

e−
2∆2
mr (1 + o(1)).(D.26)

¿erefore, for a �xed k > N,

coef�p(x)mx2k,xmr~2+∆� =coef�p(x)m,xmr~2−2k+∆�
=2m(r−1)

1»
πmr~2

e−
2(−2k+∆)2

mr (1 + o(1))

=2m(r−1)
1»

πmr~2
e−

2∆2
mr (1 + o(1))
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=coef�p(x)m,xmr~2+∆�.

Note that q(x) is a polynomial with only even terms and that it has bounded degree
(at most r − 1). ¿erefore,

coef�p(x)mq(x)k,xmr~2+∆�(D.27)

=

(r−1)k~2
Q
i=0

coef�q(y), y2i�coef�p(x)mx2i,xmr~2+∆�

=

(r−1)k~2
Q
i=0

coef�q(y), y2i�coef�p(x)m,xmr~2+∆�(1 + o(1))

=q(1)kcoef�p(x)m,xmr~2+∆�(1 + o(1))
=2(r−2)kcoef�p(x)m,xmr~2+∆�(1 + o(1)).(D.28)

From the Hayman expansion (D.26) we also conclude that if kr is even then

coef�p(x)m−k,xmr~2+∆� =coef�p(x)m−k,x(m−k)r~2+(kr~2+∆)�

=2(m−k)(r−1)
1»

π(m − k)r~2
e−

2(kr~2+∆)2
(m−k)r

=2−k(r−1)coef�p(x)m,xmr~2+∆�(1 + o(1)).(D.29)

As a �nal ingredient note that

�n−aw �
�(n−a)lwl �

=

�nw�
�nlwl�
(1 −w~n)−a(l−1)(1 +O(n−2)).

If w = n~2 + ∆ this gives

� n−a
n~2+∆�

� (n−a)l(n~2+∆)l�
=

� n
n~2+∆�

� nl
(n~2+∆)l�

(1
2
− ∆~n)−a(l−1)(1 +O(n−2))

=2a(l−1)
� n
n~2+∆�

� nl
(n~2+∆)l�

(1 +O(n−1)).(D.30)

Let us now combine all these estimates. We get

Q
w

�n−aw �
�(n−a)lwl �

coef�p(x)n l
r
−blq(x)cl,xwl�
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=Q
∆

� n−a
n~2+∆�

� (n−a)l(n~2+∆)l�
coef�p(x)n l

r
−blq(x)cl,xnl~2+∆l�

(D.30)
= 2a(l−1)Q

∆

� n
n~2+∆�

� nl
(n~2+∆)l�

coef�p(x)n l
r
−blq(x)cl,xnl~2∆l�(1 + o(1))

(D.28)
= 2a(l−1)+cl(r−2)Q

∆

� n
n~2+∆�

� nl
(n~2+∆)l�

coef�p(x)n l
r
−bl,xnl~2+∆l�(1 + o(1))

(D.29)
= 2a(l−1)−bl(r−1)+cl(r−2)Q

∆

� n
n~2+∆�

� nl
(n~2+∆)l�

coef�p(x)n l
r ,xnl~2+∆l�(1 + o(1))

Lem. 3.27
= 2a(l−1)−bl(r−1)+cl(r−2)N(n,0,0,0)(1 + o(1)).

TheoremD.31 (More Than YouWant To KnowAbout theWeight Distribu-
tion). Consider the ensemble LDPC (n, λ, ρ) ; LDPC (n,L,R) and let Gcw~ss(ω)
denote the growth rate of theweight distribution of codewords/stopping sets. De�ne
the critical parameter ωcrit

cw~ss = inf�0 < ω B 1~2 � Gcw~ss(ω) A 0�. Let Acw~ss(G,w)
denote the number of codewords/stopping sets of weight w of a code G and let
Âcw~ss(G,w)denote the correspondingnumber ofminimal codewords/stopping sets.
Further, let lmin~lmax denote the minimum/maximum variable node degree, re-
spectively, and let le be the minimum even variable node degree. Set Lle = 0 if no
such degree exists. Finally, let µ = λ′(0)ρ′(1), µi = µi

2i , i > N, and κ = R′′(1)
2L′(1)R′(1) .

¿en

E[Acw~ss(G,w)] B eO(
¼

w3
n )
�(4κ)lmin~2Llmin�w(wlmin~2)!

nw(lmin~2−1)w!
,(D.32)

lim
n�ª

E[Acw~ss(G,w > 2N)]
nw(1−lmin~2) = κwlmin~2Lwlmin

(wlmin)!
w!(wlmin~2)! ,(D.33)

lim
n�ª

E[Acw(G,w > (2N+1))]
nw−((w−1)lmin+le)~2 = κ((w−1)lmin+le)~2Lw−1lminLle

((w − 1)lmin + le)!
w!(((w − 1)lmin + le)~2)! ,(D.34)

lim
n�ª

E[Ass(G,w > (2N+1))]
n3~2+w(1−lmin~2) = κ(wlmin−3)~2Lwlmin

r̄R′′′(1)(wlmin − 3)!
6((wlmin − 3)~2)! .(D.35)

For lmin = 2 andW > N,

E[Acw~ss(G,w)] B µweO(
¼

w3
n ),(D.36)
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lim
n�ª

E[Acw~ss(G,w)] = µw�2ww �4
−w, lim

n�ª
E[Âcw~ss(G,w)] = µ

w

2w
,(D.37)

lim
n�ª

P�Âcw~ss(G,1) = a1,� , Âcw~ss(G,W) = aW� =
W
M
w=1

µaii e
−µi

ai!
.(D.38)

If 0 < µ < 1, then for 0 < ω < ωcrit
cw~ss

lim
n�ª

P�
nω
Q
w=1

Acw~ss(G,w) = 0� = lim
n�ª

P�
nω
Q
w=1

Âcw~ss(G,w) = 0� =
»
1 − µ,(D.39)

and, more generally, for any �xedW > N

lim
n�ª

P�
nω
Q
w=W

Âcw~ss(G,w) = 0� = e−P
ª

i=W µi .(D.40)

If lmin C 3 (µ = 0), then for any 0 < ω < ωcrit
cw~ss andW > N,

P�
nω
Q
w=W

Acw~ss(G,w) A 0� B O(n−W(lmin−1)+
Wlmin
2 �).(D.41)

Discussion: Let us dissect the many statements which are contained in this the-
orem. We start with the case lmin = 2 (µ A 0). From (D.36) we see that the expected
number of codewords/stopping sets of size w is essentially upper bounded by µw.
More precisely, if we �x the weightw and increase the blocklength then this number
converges to a de�nite limit for both regular as well as minimal codewords/stopping
sets as stated in (D.37). Equation (D.38) in addition asserts that the distribution
of minimal codewords/stopping sets converges to a Poisson distribution. As long
as µ < 1, the expected number of “small” codewords/stopping sets (smaller than
nωcrit

cw~ss) stays �nite and the probability that a code chosen uniformly at random
contains no small nonzero codewords/stopping sets converges to the non-zero limitº
1 − µ (see (D.39)). In other words, a fraction

º
1 − µ of all codes has linear min-

imum distance. According to (D.40), this fraction can be made arbitrarily close to
one by looking only at words of size at leastW, whereW is chosen su�ciently large.

¿e case lmin C 3 behaves in a fundamentally di�erent way. In this case the
expected number of nonzero codewords/stopping sets of weight strictly less than
ωcrit

cw~ssn converges to zero as n tends to in�nity. ¿is convergence is quite rapid. For

�xed w, words of weight w tend to zero at a rate n−w(lmin−1)+
wlmin
2 � as stated in

(D.41). ¿erefore, almost all codes in such an ensemble have linear minimum dis-
tance.
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Proof of ¿eorem D.31:. We are looking for a good upper bound on the expected
weight distribution as stated in Lemma 3.158. According to Problem D.13, it is rela-
tively straightforward to derive a bound of the form (D.36) with an additional factor
11lmaxw. It takes more e�ort if we want to eliminate this additional factor. We start
with α(w, e). For any γ A 0 we have

Q
e
α(w, e)γe = coef�M

i
(1 + xγi)nLi ,xw� = Q

(w1,�,wlmax)�Pwi=w
M
i
�nLi
wi
�γiwi

(1.57)
B �n

w
�~�n

w
� Q
(w1,�,wlmax)�Pwi=w

nw

w1!�wlmax!
M
i
(Liγi)wi

(1.57)
B ew

2~n�n
w
� Q
(w1,�,wlmax)�Pwi=w

w!
w1!�wlmax!

M
i
(Liγi)wi

= ew
2~n�n

w
�L(γ)w.(D.42)

¿erefore, if we �nd an upper bound for βcw~ss(e) of the form γe for some γ then we
can insert this bound into the above summation to derive an upper bound on the
expected weight distribution. We claim that we have the uniform bound

βcw~ss(e) B eO(
¼

e3
n )S

ª

0
e−s(4sκ~n)e~2ds.(D.43)

Let us postpone the proof of (D.43) for a moment. We continue,

E[Acw~ss(G,w)] =Q
e
α(w, e)βcw~ss(e)

(D.43)
B Q

e
α(w, e)eO(

¼
e3
n )S

ª

0
e−s(4sκ~n)e~2ds.

Since the only non-zero terms in the sum are those with lminw B e B lmaxw, we

can rewrite the error bound eO(
¼

e3
n ) as eO(

¼
w3
n ). If we exchange the order of sum-

mation and integration (which is justi�ed since all terms are non-negative) and use
(D.42) we get

E[Acw~ss(G,w)] B eO(
¼

w3
n )�n

w
�S

ª

0
e−sL(

»
4sκ~n)wds.

De�ne L̃(x) = L(x)~(Llminxlmin), so that the last expression is equal to

eO(
¼

w3
n )�n

w
�Lwlmin(4κ~n)lminw~2S

ª

0
e−sslminw~2L̃(

»
4sκ~n)wds.
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Using (1.54) we have1

S
ª

0
e−sslminw~2L̃(

»
4sκ~n)wds =Q

i
coef�L̃(z)w, zi�(4κ~n)i~2((lminw + i)~2)!

(i)
B Q

i
coef�L̃(z)w, zi�(2κlmaxw~n)i~2(lminw~2)!

= L̃(
»
2κlmaxw~n)w(lminw~2)!

In step (i) we used the bound ((lminw + i)~2)! B ((lminw + i)~2)i~2(lminw~2)!.
Because of the de�nition of L̃ we know that ((lminw + i)~2) B lmaxw~2. ¿e con-

tribution of L̃(
»
2κlmaxw~n)w can be upper bounded by eO(

¼
w3
n ). Collecting our

results we get the upper bound (D.32). Further, for lmin = 2, and taking into account
that 4κL2 = µ, we get (D.36).

Let us now justify the upper bound (D.43) which we have used to prove (D.32).
Let pcw(z) =Li �(1 + z)i~2 + (1 − z)i~2�Ri and pss(z) =Li((1 + z)i − iz)Ri . For-
tunately we can treat both cases together. We therefore simply write p(z). Consider
the polynomial q(z) =Li(1+� i2�z2)Ri . First assume that e is even. Using the results
of Problems D.11 and D.12, we see that with γ = r̄R′′(1)

coef�p(z)nr̄, ze� B coef�q(z)nr̄, ze�eO(
¼

e3
n ) B

(γn~2)e~2
(e~2)! eO(

¼
e3
n ).

We claim that the bound stays valid if e is odd. In this case e C 3. We then have

coef�p(z)nr̄, ze� (i)B nr̄2rmaxcoef�p(z)nr̄, ze−3�
B nr̄2rmaxcoef�q(z)nr̄, ze−3�eO(

¼
e3
n )

(ii)
B nr̄2rmax (γn~2)(e−3)~2

((e − 3)~2)! e
O(
¼

e3
n ) B

(γn~2)e~2
(e~2)! eO(

¼
e3
n ).

In step (i) we �rst choose a check node to which we connect an odd number of
times (C 3). At least one such node must exist if e is odd. In step (ii) we then use the
previously derived bound for even e.

We continue,

β(e) (1.57)B (γn~2)
e~2e!eO(

¼
e3
n )

L′(1)ene(e~2)!
1With some abuse of notation we continue to write m! even if m is not an integer as proxy for

Γ(m + 1).
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=

»
κ~ne� e

e~2�(e~2)!e
O(
¼

e3
n )

� e
e~2�B2e
B

»
4κ~ne(e~2)!eO(

¼
e3
n )

(1.54)
=

»
4κ~neeO(

¼
e3
n )S

ª

0
e−sse~2ds.

Statement (D.36) is a special case of (D.32) (just set lmin = 2). We can re�ne our
bounds. If we �x e and let n tend to in�nity we get

βcw(e) = (κ~n)e~2 e!
(e~2)!1�e>2N�(1 +O(1~n)),

βss(e) =
¢̈̈
¦̈̈
¤
βcw(e), if e is even,
(1−r)R′′′(1)

6n3~2 βcw(e − 3)(1 +O(1~n)), if e is odd

¿e statements (D.33), (D.34), (D.35), and (D.37) follow by combining these esti-
mates.

Although we have not explicitly mentioned it above, the proof of (D.32) actu-
ally shows that the only words of “small” weight which appear in large graphs are
those that only involve degree-two variable nodes. ¿is follows from the fact that
the contribution of L̃(

»
2κlmaxw~n)w is small and that the main contribution of

L(x) comes from the lowest order term.
Statement (D.38), i.e., that the distribution of the number of minimal code-

words/stopping sets converges to a Poisson distribution, is shown in Lemma C.37.
To deduce from (D.38) statement (D.39) we proceed as follows. If E and D are

two events and P�D� C 1 − δ then
P�E� − δ B P�E,D� B P�E�.

Choose as E the event PWw=1 Â(G,w) = 0 and as D the event Pnωw=W+1 Â(G,w) = 0,
where ω < ωcrit

cw~ss. ¿en

P�D� C 1 − P�
nω
Q

w=W+1
A(G,w) C 1�

C 1 −E[
nω
Q

w=W+1
A(G,w)].by Markov inequality

Pick a strictly positive but small ω̃. ¿en

1 −E[
nω̃
Q

w=W+1
A(G,w)] C 1 −

nω̃
Q

w=W+1
µweO(

»
w3~n)

C 1 −
µW+1

1 − µ
eO(
»
w3~n).

by (D.36)
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In the last step we have made use of the fact that eO(
»
w3~n) is uniform in w, that

0 < µ < 1, and that ω̃ is chosen su�ciently small. Finally, the contribution of
E[Pnωw=ω̃nA(G,w)] tends to zero as n increases by de�nition of ωcrit

cw~ss. We see that
by an appropriate choice ofW we can make P�D� arbitrarily small. It follows that
P�Pnωw=1 Â(G,w) = 0� behaves like P�PWw=1 Â(G,w) = 0�, forW large. But by (D.38)
this probability converges for increasingW to (D.39).

§D.5. Unimodality
Definition D.44 (Unimodality and Log-Concavity). We say that a sequence
�Fi�ni=0 of real numbers is unimodal if for some 0 B k B l B n

F0 B F1 B ċ ċ ċ B Fk = ċ ċ ċ = Fl C Fl+1 C . . .Fn.

We say that a sequence �Fi�ni=0 of positive real numbers is log-concave if for 1 B i < n
1
2
(lnFi−1 + lnFi+1) B lnFi.

Fact D.45 (Log-Concavity Implies Unimodality). Let �Fi�ni=0 be a log-concave
sequence of positive numbers. ¿en �Fi�ni=0 is unimodal.
LemmaD.46 (Unimodality of Generating Functions). Let F(D) = F0+F1D+
ċ ċ ċ + FnDn be a polynomial all of whose roots are negative. ¿en �Fi�ni=0 is log-
concave.

Example D.47 (Binomial Coefficient Sequence). Consider the sequence

�Fi�ni=0 = ��
n
i
�αi�ni=0,

where α A 0.¿en F(α) = Pni=0 Fiαi = (1+α)n, which has a root of multiplicity n at
D = − 1

α < 0. ¿erefore ��ni�αi�ni=0 is log-concave and a fortiori unimodal. Further,
the maximum is taken on at i = α

1+αn. n

Notes
Ahighly recommended source for further reading and the inspiration for these brief
notes, is Wilf ’s book generatorfunctionology [18]. Some of the many other useful
references in this respect are Graham, Knuth, and Patashnik [10], Sedgewick and
Flajolet [15], Egorychev [7], and Stanley [16, 17].

¿e simple but extremely useful inequality (D.3) was applied by Zyablov and
Pinsker [19] to the analysis of the �ipping algorithm. Burshtein and Miller applied
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the inequality in [3] to theweight and stopping set enumeration problemandpointed
out that the inequality is asymptotically tight. ¿e inequality was also put to good
use by Orlitsky, Viswanathan, and Zhang [11].

¿eHaymanmethod can be seen as a re�nement of inequality (D.3). It is a special
case of the so-called saddle-point methodwhich is due to Riemann andDebye [13, 5].
A very lucid introduction into this method was written by de Brujin [4]. Gardy and
Solé discussed the saddle point method in the context of asymptotic coding theory
[9].We stated theHaymanmethod for the special case of determining the coe�cient
growth of powers of polynomials. ¿is particular case was studied by Bender and
Richmond [1] as well as Gardy [8].¿e proof we give is essentially the one appearing
in [1] presented as in the paper by Rathi [12]. ¿e Hayman method was used for the
determination of the weight distribution by Di [6].

¿emost important application of theHaymanmethod in this book is the deter-
mination of the average weight distribution of ensembles as described in Chapter 3
but there are several other important potential applications. To mention just one,
in Section 6.9.1 we discuss how the weight distribution of convolutional codes can
be computed in terms of powers of suitable matrices. Although we have not stated
such a result in the main text, it was shown by Bender, Richmond, and Williamson
[2] that central and local limit theorems can be derived in this case as well. It was
shown by Sason, Telatar, and Urbanke [14] how to compute the asymptotic growth
rate in this case.

For references on the weight distribution problem and its historical develop-
ment see the Notes at the end of Chapter 3.

Problems

D.1 (Further Properties of Formal Power Sums). In this example we inves-
tigate some further basic properties of formal power sums. Consider the set of all
formal power sums with coe�cients in the �eld F. We have seen that we can endow
the set of such power sums with some algebraic structure. In particular, we can add,
subtract, multiply and for some elements we can even de�ne a division. ¿e set of
all formal power sums over F is usually denoted by F[[D]] and is called the ring
of formal power sums. As a general rule, in F[[D]] all those operations are mean-
ingful which require for the determination of each coe�cient of the output only a
�nite number of (algebraic) operations. We saw how addition, multiplication, and
the determination of the multiplicative inverse (if it exists) of a given element all fall
in this category. We now discuss some more operations which we can perform on
elements of F[[D]], we see how we can use formal powers sums as generating func-
tions to solve problems in the area of enumerative combinatorics, andwe investigate
the relationship between formal power sums and Taylor series.
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1. Assume we are given a sequence �Fi�iC0. We then say that F(D) = Pªi=0 FiDi

is the generating function of �Fi�iC0 and we write F(D)� �Fi�iC0.

a) If F(D)� �Fi�iC0, then what are the generating functions of �Fi+1�iC0
and of �Fi+2�iC0?

b) De�ne the derivative of a formal power sum F(D) = Pªi=0 FiDi to be
F′(D) = Pªi=0 iFiDi−1. If F(D) � �Fi�iC0, then what is the formal
power sum corresponding to �iFi�iC0?

2. Let f(z) be a function such that for some region of convergence f(z) has the
Taylor series expansion f(z) = Pªi=0 fizi. If F(D) = Pªi=0 fiDi we then also
write with some abuse of notation F(D) = f(D). Using this notation, what
would you write for F1(D) = Pªi=0 Di

i! and for F2(D) = Pªi=0(−1)i D
2i

(2i)!? How
about F′1(D) and F′2(D)? Any comments?

3. Let F = R and consider the recurrence ai+2 = ai+1 + ai, (i C 0; a0 = a1 = 1).
De�ne the formal power sum a(D) = Pªi=0 aiDi and use it to solve this
recursion. You hopefully got an answer of the form a(D) = p(D)

q(D) , where
p(D),q(D) > F[D]. Find now a0,a1,a2, and a3 by formally �nding the �rst
four coe�cients of the resulting power sum. Note: Do not use the recursion
for that, start with a(D) and use only algebraic operations. Now use a partial
fraction expansion to write a(D) as a sum of rational terms each of which has
only one pole. Can this procedure be again de�ned in a purely formal way,
i.e., only using algebraic operations but making no use of any analytic prop-
erties? Finally, use this partial fraction expansion to give an expression of the
coe�cients ai in a more explicit form.

4. Let F = R and consider the recurrence (i + 1)ai+1 = 3ai, (i C 0; a0 = 1).
De�ne the formal power sum a(D) = Pªi=0 aiDi and use it to solve this re-
cursion.

5. Let F(D),G(D) > F[[D]]. We are interested in compositions of formal power
sums. Can you �nd a meaningful de�nition for the expression G(F(D))?
Does such an expression always make sense. Using your �ndings: Does eeD−1

have a well-de�ned formal power series? How about eeD?

D.2 (Inverse, Composition andDerivative). De�ne the two formal power sums
F(D) = Pªi=0 1

i!D
i and G(D) = −Pªi=1 (−1)

i

i Di, where all coe�cients are over R.

1. Do 1
F(D) and F(G(D)) exist? If so, determine their �rst three coe�cients.
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2. Show that F′(D) = F(D) and G′(D) = 1
1+D , where all operations are in-

terpreted formally. [Recall that the formal derivative of a formal power sum
z(D) = Pªi=0 ziDi is equal toPªi=0 iziDi−1

= Pªi=0(i + 1)zi+1Di.]

3. Find functions f(D) and g(D) such that F(D) andG(D) are their respective
Taylor series around zero.
Hint: Youmight recognize the functions f(D) and g(D) from their respective
Taylor seriesPªi=0 1

i!D
i and−Pªi=1

(−1)i
i Di directly. If not, observe from above

that f(D) and g(D) ful�ll the equations f′(D) = f(D) and g′(D) = 1
1+D .

4. Use the above functions towrite down 1
F(D) and F(G(D)) explicitly as formal

power sums.

D.3 (Summation of Shifted Subsequences). As in Section D.3 consider a formal
power sum over R,

F(D) =Q
nC0

FnDn,

so that the corresponding real sumPnC0 Fn converges. Express

Fq,k(D) = Q
nC0�(n+k)~q>N

FnDn,

and the related sum PnC0�(n+k)~q>N Fn, where q is a natural number, in a compact
way.

D.4 (Efficient Computation of Power of Polynomial – Wilf [18, p. 26]). Let
p(x) be a polynomial with p0 = 1 and assume that we want to compute the �rst
few coe�cients of p(x)n. If q(x) = p(x)n, this means that we want to compute
the �rst few coe�cients of q(x). Take the derivative of both sides of the equa-
tion q(x) = p(x)n. ¿e resulting equation reads np′(x)q(x) = p(x)q′(x). Now
use your mastery of formal power sums to conclude that the coe�cient qi can
be computed recursively via iqi = Pi

j=1(j(n + 1) − i)pjqi−j. Apply this proce-
dure to compute, for generic n and r, the �rst three coe�cients of q(x) when
p(x) = (1 + x)r − rx.
D.5 (Bound on Sum of Binomials – The Return). Prove the estimatePmk=0 �nk� B
2nh2(m~n), 0 B m B n~2, using the technique of Example D.4.
D.6 (a(x) is Increasing). Let F(x) denote a polynomial with non-negative coef-
�cients, F0 A 0, and at least one further non-zero term. De�ne a(x) = xF′(x)

Fx . Show
that a′(x) A 0 for x A 0.

Hint: Show, equivalently, that xa′(x) A 0 for x A 0.
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D.7 (Rate versus Design Rate for Regular Ensembles). Show that g(x,l)
introduced in in the proof of Lemma 3.27 on page 525 is a decreasing function in
l and that it is strictly decreasing except for x = 1.

D.8 (Reduction of Trinomial to Binomial). Let α,β C 0, with a strict inequality
for α. Justify each of the following steps.

coef�(1 + αx + βx2)n,xk� (i)= Q
jBk
�n
j
�� j
k − j
�α2j−kβk−j

(ii)
B Q

jBk
�n
j
� j

k−jα2j−kβk−j

(k − j)!
(iii)
B �n

k
�Q
jBk

�nj�
�nk�

kk−jα2j−kβk−j

(k − j)!
(iv)
B �n

k
�Q
jBk

njk!
j!nk

e
k2
n
kk−jα2j−kβk−j

(k − j)!
(v)
= �n

k
�e k2

n Q
j
�k
j
�αk( kβ

nα2
)k−j

(vi)
= �n

k
�e k2

n αk�1 + kβ
nα2
�
k

(vii)
B �n

k
�αke k2

n (1+
β
α2
)

(viii)
= coef�(1 + αx)n,xk�e k2

n (1+
β
α2
).

D.9 (Reduction of Polynomial with Four Terms to Binomial). Let α,β,γ C
0, with strict inequality for α. Justify the following steps.

coef�(1 + αx + βx2 + γx3)n,xk� (i)= Q
j
�n
j
�γjcoef�(1 + αx + βx2)n−j,xk−3j�

(ii)
B Q

j
�n
j
�γjcoef�(1 + αx + βx2)n,xk−3j�

(iii)
B Q

j
�n
j
�γjcoef�(1 + αx)n,xk−3j�e k2

n (1+
β
α2
)

(iv)
= �n

k
�αke k2

n (1+
β
α2
)Q

j

�nj�� n
k−3j�
�nk�

γjα−3j

(v)
B �n

k
�αke k2

n (1+
β
α2
)e

k2
n Q

0BjBk~3

njk!nk−3j

j!nk(k − 3j)!γ
jα−3j
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(vi)
B �n

k
�αke k2

n (2+
β
α2
)Q

j
�k
j
�� k

2γ
n2α3

�
j

(vii)
= �n

k
�αke k2

n (2+
β
α2
) �1 + k2γ

n2α3
�
k

(viii)
B �n

k
�αke k2

n (2+
β
α2
)+ k3γ

n2α3

(ix)
= coef�(1 + αx)n,xk�e k2

n (2+
β
α2
)+ k3γ

n2α3 .

D.10 (Reduction of General Polynomial to Binomial). Consider a polyno-
mial p(x) = 1 +PiC1 pixi with p1 A 0 and pi C 0, i C 2. Show that

coef�(1 +Q
iC1
pixi)n,xk� B coef�(1 + p1x + βx2 + γx3)n,xk�

B coef�(1 + p1x)n,xk�e
k2
n (2+

β
p21
)+ k3γ

n2p31 ,

where β = p2 +PiC4 pi
 i2� and γ = p3 +PiC5�iodd pi.
D.11 (Reduction of Codeword Polynomial to Binomial). Consider p(x) =
1 +PiC1 �r2i�x2i. Prove that

coef�p(x)n,xk� B coef�(1 + �r
2
�x2)n,xk�e k2

4n(2+
β
α2
)+ k3γ

8n2α3 ,

where α = �r2�, β = �r4� +PiC4 �r2i�
 i2�, and γ = �r6� +PiC5�iodd �r2i�. n

D.12 (Reduction of Stopping Set Polynomial to Binomial). Consider p(x) =
1 +PiC2 �ri�xi. Show that for k even

coef�p(x)n,xk� B coef�(1 + �r
2
�x2)n,xk�eO(

¼
k3
n ).

D.13 (Bound On Weight Distribution). Consider the pair (λ, ρ) ; (L,R) with
λ′(0) A 0 and no degree-one check nodes. Show that

E[Acw(G,w)] B E[Ass(G,w)] = 11lmaxw �λ′(0)ρ′(1)�w eO(
¼

w3
n ),

using the bound

E[Ass(G,w)] B min
x,y,zA0

Q
eC2w

p(x, y, z)n
xwyeze

1
�nL′(1)e �

,

where p(x, y, z) = �Lj(1 + xyj)Lj��Li�(1 + z)i − iz�Ri r̄�, r is the design rate of
the code, and r̄ = 1 − r.

Hint: Choose x = w
nL(y) , y =

¼
1
κ
w
n , whereκ =

1
2

L′(1)
ρ′(1)lmax

, and z =
½

e
2nr̄PjC2 Rj� j2�

.
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Appendix E

C O N V E X I T Y , D E G R A D AT I O N , A N D
S TA B I L I T Y

We collect here a couple of lengthy proofs.

Proof of ¿eorem 4.76. ¿e proof proceeds (i)� (ii), (ii)� (iii), and (iii)� (i).
¿e implication (i) � (ii) is a consequence of (Jensens’ inequality) (1.61). Let

pY SX and pZ SX denote the two BMS channels corresponding toA(x) andB(x), re-
spectively. Assume that the output of both channels is inD-representation. Property
(i) states that X� Y � Z, i.e., that pZ SX is degraded with respect to pY SX. As both
pY SX and pZ SX are symmetric, Lemma 4.75 assures us that there exists a symmetric
channel pZ SY � [−1,1]� [−1,1] which e�ects this degradation. Let pX,Y,Z(x, y, z)
denote the joint density. As always we assume that the input X to the BMS channel
is uniform. Using this fact and the relationship X� Y � Z,

pX,Y,Z(1, y, z) = 1
2
pY SX(y S 1)pZ SY(z S y),

pX,Y,Z(−1, y, z) = 1
2
pY SX(y S − 1)pZ SY(z S y) = 1

2
pY SX(−y S 1)pZ SY(z S y)

=
1
2
pY SX(y S 1)1 − y1 + y

pZ SY(z S y),

where in the last step we have used the symmetry relation (4.13). We conclude that

pY,Z(y, z) = Q
x>��1�

pX,Y,Z(x, y, z) = 1
2
pY SX(y S 1) 2

1 + y
pZ SY(z S y)

=
2

1 − y
pX,Y,Z(−1, y, z).(E.1)

Recall that the output Z of the channel pZ SY is in D-representation. From Prob-
lem 4.59 we know that if the output of the channel is z then (1 − SzS)~2 equals the
error probability. If we assume that the output takes on the non-negative value z
then the error probability can also be expressed as pX SZ(−1 S z). We conclude that
for z C 0, (1 − z)~2 = pX SZ(−1 S z). ¿erefore, for z C 0

1 − z
2
= pX SZ(−1 S z) = pX,Z(−1, z)pZ(z) =

R 1
−1 p(−1, y, z)dy

pZ(z)

543
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(E.1)
=
R 1
−1 � 1−y2 �p(y, z)dy

pZ(z) =
1 −E[Y S z]

2
.

We conclude that E[Y S z] = z for z C 0. ¿e equivalent argument for z B 0 shows
thatE[Y S z] = z is valid for also for z B 0, and hence for all z.¿is impliesE[SYS S z] C
E[Y S z] = z. Further, since X has a uniform prior and since the channels pY SX
as well as pZ SY are both symmetric it follows that pY SZ(y S z) = pY SZ(−y S − z).
¿erefore, E[SYS S z] = E[SYS S − z] so that we have E[SYS S z] C SzS. We write

f(SzS) C f(E[SYS S z]) C E[f(SYS) S z],
where the �rst step follows since f(ċ) is non-increasing and the second step is a con-
sequence of (Jensens’ inequality) (1.61) since f(ċ) is convex-9. Taking expectations
with respect to Z on both sides we get

E[f(SZS)] C E[f(SYS)] ,
which is (ii).

Consider the implication (ii)� (iii). De�ne h(x, z) = (1 − z) − (x − z)1�xCz�.
Fix z > [0,1] and note that h(x, z) is non-increasing and convex-9 (as a function of
x). Integrating by parts we get

S
1

0
h(x, z)dSAS(x) = S

1

0
((1 − z) − (x − z)1�xCz�)dSAS(x)

= ((1 − z) − (x − z)1�xCz�)SAS(x) S 10 + S
1

z
SAS(x)dx

= S
1

z
SAS(x)dx.

By assumptionwe know that R 1
0 h(x, z)dSAS(x) B R 1

0 h(x, z)dSBS(x). By the deriva-
tion above this implies R 1

z SAS(x)dx B R 1
z SBS(x)dx, as claimed.

Let us close the circle by proving that (iii)� (i).¿is is the most di�cult part of
the proof. ¿e proof uses a new symmetric channel representation. ¿is represen-
tation takes the form x Ð� (S,Z), where S > �−1,+1� and Z is uniform on [0,1]
and carries reliability information. Such a representation is naturally related to the

SDS-distribution: let x SAS
ÐÐ� (S,Y) and assume that SAS is smooth andmonotonically

increasing on [0,1] with SAS(0) = 0 and SAS(1) = 1. In this case de�ne Z = SAS(Y).
In the general case where SAS has jumps, given Y, choose Z to be uniformly dis-
tributed on the interval [SAS(Y−), SAS(Y)] (de�ne SAS−1(0−) = 0). It follows that Z
is uniformly distributed on [0,1]. In this representation channel symmetry takes
the form

pS SZ,X(1 S z,1) = pS SZ,X(−1 S z,−1).
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We claim that if SAS is continuous at the point SAS−1(z) then

pS SZ,X(1 S z,1) − pS SZ,X(−1 S z,1) = SAS−1(z).

To see this note that the le hand side of the above equation is equal to one mi-
nus twice the error probability, assuming that the Z-reliability takes on the value
z. Similarly, in the SDS-representation, the value y also represents one minus twice
the error probability incurred assuming the SDS-reliability equals y. ¿e claim now
follows since by de�nition of the map y = SAS−1(z). To cover the general case (in-
cluding points of discontinuity) set

SAS−1(z) = min�y � SAS(y) C z�.

Since SAS is right continuous the minimum exists and SAS−1 is right continuous.
Before proceeding to the general case let us consider a simple special case. As-

sume we have SAS B SBS, or, equivalently SAS−1 C SBS−1. Assuming transmission over
A, we have

pS SZ,X(1 S z,1) − pS SZ,X(−1 S z,1) = SAS−1(z) C SBS−1(z).

In this case we can degrade (S,Z) Ð� (S′,Z) by passing S through a BSC with
cross-over probability depending on Z. ¿e goal is to have

pS′ SZ,X(1 S z,1) − pS′ SZ,X(−1 S z,1) = SBS−1(z).

We claim that the required cross-over probability is

1
2
�1 − SBS

−1(z)
SAS−1(z) �.

To see where this map is coming from consider the simplest case: two BSC’s, one
with parameter є and one with parameter є′, with є < є′. In this case the two SDS-
distributions are step functions, one at 1−2є and the second one at 1−2є′. Compute
the cross-over probability according to the above formula for a point z > (0,1]:
according to our de�nition we have for any such point SAS−1(z) = 1 − 2є and
SBS−1(z) = 1−2є′, so that the cross-over probability of the degrading channel has pa-
rameter ∆є = 1

2�1− 1−2є′
1−2є � = є′−є

1−2є . But we have already seen in Example 4.73 that this
is the correct parameter, i.e., that the concatenation of the BSC(є)with the BSC(∆є)
gives the BSC(є′). ¿e resulting channel is equivalent toB (see Problem 4.30).

¿e general case is solved by reducing it to the simple case. ¿e remainder
of the proof is quite technical and is intended only for those that believe nothing
unless they have checked every step themselves. To help convey the ideas of the
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Figure E.2: Le : Two SDS-distributions SAS (thick line) and SBS (thin line). Right:
Since R 1

z SAS(x)dx B R 1
z SBS(x)dx we know that SAS_ SBS.

proof we use an example. Figure E.2 shows a plot of SAS and SBS satisfying (iii) but
not satisfying SAS B SBS. Starting from the channel SAS we construct a channel q,
(S,Z) q

Ð� (S,Z′) such that Z′ is uniform on [0,1] and
pS SZ′ ,X(1 S z′,1) − pS SZ′ ,X(−1 S z′,1) C SBS−1(z′).

From there it can be degraded to B as in the simple case. Let us de�ne the set of
“troublesome” points z (since these are the ones that prevent us from using the pre-
vious method), ZSBS,

ZSBS = �z � SAS−1(z) < SBS−1(z)� .
Since SAS−1(z) − SBS−1(z) is right continuous it follows that ZSBS is right open, i.e.,
if z > ZSBS then [z, z+ є) ⊂ ZSBS for some є A 0. ¿e basic idea of the proof is to �nd
for each zB > ZSBS a unique companion point zA, see Figure E.2, such that

(E.3) SAS−1(zA) C SBS−1(zA) C SBS−1(zB) A SAS−1(zB).
¿e degrading channel q appropriately mixes the two z values. For the point zB the
error rate under A is too high, while for zA it is lower than that for zB and lower
than we require at zA. We work our way downZSBS and exchange mass between zA
and zB so that both

pS SZ,X(1 S zB,1) − pS SZ,X(−1 S zB,1) = SBS−1(zB), and(E.4)

pS SZ,X(1 S zA,1) − pS SZ,X(−1 S zA,1) = SBS−1(zA)(E.5)

hold. Figure E.2 illustrates a particular zB with its matching zA. ¿e condition (iii)
ensures that we will not run out of mass associated with zA prior to covering all of
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ZSBS. For each pair (zB, zA) we de�ne є1 and є2 (depending on (zB, zA)) so that

qZ′ SZ(zA S zB) = є1, qZ′ SZ(zB S zB) = 1 − є1,
qZ′ SZ(zA S zA) = 1 − є2, qZ′ SZ(zB S zA) = є2,

see Figure E.6. We will de�ne zA(zB), є1, and є2 presently.

1 − є2

1 − є1

є1
є2

zA

zB

zA

zB

Figure E.6: De�nition of q on (zB, zA) pair.

Let us �rst consider what constraints are placed on є1 and є2 so that Z′ is uni-
formly distributed. To keep our exposition simple, let us assume that zA and zB are
smoothly parametrized by a parameter α. Consider an in�nitesimal dzB and dzA
that are matched, i.e., the two intervals correspond to dα.¿en the probability mass
of Z′ in the interval dzA is (1 − є2)dzA + є1dzB and the probability mass of Z′ in
the interval dzB is (1 − є1)dzB + є2dzA. For Z′ to be uniform therefore requires
є2dzA = є1dzB or

(E.7)
є2
є1
=
dzA
dzB

.

We also need to ensure that at the output of the channel q we have the desired re-
liability values as described by (E.4) and (E.5). Consider �rst the top output. It is
the result of mixing a “mass” dzA(1 − є2) with reliability SAS−1(zA) with a “mass”
dzBє1 corresponding to the reliability SAS−1(zB). By our previous discussion the
total mass dzA(1 − є2) + dzBє1 equals dzA. ¿e two relative masses are therefore

dzA(1 − є2)
dzA(1 − є2) + dzBє1 = 1 − є2,

dzBє1
dzA(1 − є2) + dzBє1 = є2,

respectively. In a similar manner, the relative masses for the bottom output are є1
(for the branch from the top) and 1 − є1, respectively. According to (E.4) and (E.5)
we should have

є1SAS−1(zA) + (1 − є1)SAS−1(zB) = SBS−1(zB), and(E.8)
(1 − є2)SAS−1(zA) + є2SAS−1(zB) = SBS−1(zA).(E.9)
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¿ese equations can be solved uniquely for є1 and є2 and we take this solution as
our de�nition:

є1 =
SBS−1(zB) − SAS−1(zB)
SAS−1(zA) − SAS−1(zB)

, є2 =
SAS−1(zA) − SBS−1(zA)
SAS−1(zA) − SAS−1(zB)

.

Both are well de�ned, i.e., both lie in [0,1], if we can establish (E.3). From (E.7) and
the previous equations we see that

dzA
dzB

=
є2
є1
=
SAS−1(zA) − SBS−1(zA)
SBS−1(zB) − SAS−1(zB)

.

¿us, in the example in Figure E.2, zA and zB should be paired up so that the two
shaded areas are equal. We can now appreciate that condition (iii) ensures that we
will not run out of mass associated with zA prior to covering all of ZSBS. ¿at a
mapping from zA to zB which ful�lls (E.3) is possible also in the general case is
hopefully su�ciently clear that we can skip the tedious technical details.

¿e de�nition of q is now complete. Given (s, z) we check if z = zB > ZSBS. If
so then we set z′ = zB with probability 1 − є1 and set z′ = zA(zB) with probability
є1. If z = zA > ZSAS then we set z′ = zA with probability 1 − є2 and set z′ = zB(zA)
with probability є2. Finally, if z ~> ZSAS 8ZSBS then we set z′ = z.

For all z′ > ZSBS 8ZSAS we have argued that

pS SZ′ ,X(1 S z′,1) − pS SZ′ ,X(−1 S z′,1) = SBS−1(z′).

If z′ ~> ZSBS 8ZSAS then

pS SZ′ ,X(1 S z′,1) − pS SZ′ ,X(−1 S z′,1)
=pS SZ,X(1 S z′,1) − pS SZ,X(−1 S z′,1) C SBS−1(z′).

Second Proof of Su�ciency in ¿eorem 4.127. On page 235 we gave a proof of ¿eo-
rem 4.127.¿e proof uses the notion of extremes of information combining. Here is
a second proof based on entirely di�erent ideas.

¿e second proof uses the idea of minimal codewords of a tree. Consider the
density evolution equations aℓ = aBMSC e λ(ρ(aℓ−1)), ℓ C 1, but initialized with
a0 = b, where b is a symmetric L-density.¿e claim is that ifB(aBMSC)λ′(0)ρ′(1) <
1, then there exists a strictly positive constant ξ so that if E(b) B ξ then E(aℓ)
converges to zero.

Consider the tree channel ( ÑTℓ,aBMSC,b). ¿e message density emitted at the
root node is aℓ. Let Tℓ denote an element of the tree ensemble. Recall that on Tℓ, the
BP decoder is equivalent to aMAP decoder of the root node, i.e., it is optimal. Since
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we want to show that E(aℓ) converges to zero and since the BP decoder on a tree is
optimal it su�ces if we can show that some (well-chosen suboptimal) decoder has
a probability of error which converges to zero.

Since aBMSC and b are symmetric we can assume that the all-one codeword was
transmitted. Recall from De�nition 3.45 the notion of a tree code. Without loss
of generality we can assume that the channel outputs log-likelihood ratios. Let Lv
denote the log-likelihood ratio associated to variable v, where in the sequel v goes
over all variables contained in Tℓ. Some thought shows that the message relating to
the root node which the BP decoder computes can be expressed as

ln
Pc>C+(Tℓ) exp( 12 Pv>Tℓ cvLv)
Pc>C−(Tℓ) exp( 12 Pv>Tℓ cvLv)

.

¿erefore, the BP decodermakes amistake if the numerator inside the log is smaller
than the denominator. We upper bound this error probability by considering a sub-
optimal (in terms of bit error probability) decoder which compares the likelihood
of themost likely codeword inC+(Tℓ)with the likelihood of themost likely word in
C−(Tℓ) and extracts the value of the root node accordingly. We get a further upper
bound if we compare the likelihood of the all-one word with the likelihood of the
most likely word in C−(Tℓ). We conclude that

E(aℓ) B P�Q
v>Tℓ

Lv < max
c>C−(Tℓ)

Q
v>Tℓ

cvLv� + 1
2
P�Q

v>Tℓ

Lv = max
c>C−(Tℓ)

Q
v>Tℓ

cvLv�

= P�Q
v>Tℓ

Lv < max
c>C−min(Tℓ)

Q
v>Tℓ

cvLv� + 1
2
P�Q

v>Tℓ

Lv = max
c>C−min(Tℓ)

Q
v>Tℓ

cvLv�

= P� min
c>C−min(Tℓ)

Q
v�cv=−1

Lv < 0� + 1
2
P� min

c>C−min(Tℓ)
Q

v�cv=−1
Lv = 0�.

¿e one before last step needs a justi�cation. Assume that all most likely codewords
are elements of C−(Tℓ). Let c denote one of them. Either c > C−min(Tℓ), i.e., it is
minimal itself, or it contains aminimal codeword. In either case, denote thisminimal
codeword by cmin. De�ne c̃ = c ċ cmin so that c = cmin ċ c̃, where the multiplication is
component-wise. Note that c̃ > C+(Tℓ) and that cmin and c̃ do not have any positions
in common where they take on the value −1. We claim that

Q
v>Tℓ

Lv < Q
v>Tℓ

cmin,vLv.

In words, if all most likely codewords are elements of C−(Tℓ) then there exists a
minimal codeword which is strictly more likely than the all-one codeword. ¿is
is seen as follows. Since by assumption all most likely codewords are elements of
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C−(Tℓ), we know that c is strictly more likely than c̃, which is an element ofC+(Tℓ).
¿erefore,

Q
v>Tℓ

cvLv = Q
v>Tℓ

cmin,v c̃vLv A Q
v>Tℓ

c̃vLv.

We conclude thatPv>Tℓ(cmin,v−1)c̃vLv A 0. Since cmin and c̃ do not share a position
in which both of them take on the value −1 it follows that

Q
v>Tℓ�cmin,v=−1

cmin,vLv =
1
2 Qv>Tℓ

(cmin,v − 1)c̃vLv A 0.

¿e claim now follows from

Q
v>Tℓ

cmin,vLv = Q
v>Tℓ�cmin,v=+1

cmin,vLv + Q
v>Tℓ�cmin,v=−1

cmin,vLv

A Q
v>Tℓ�cmin,v=+1

cmin,vLv − Q
v>Tℓ�cmin,v=−1

cmin,vLv = Q
v>Tℓ

Lv.

In the event that the set of most likely codewords contains both elements from
C−(Tℓ) as well as C+(Tℓ) then essentially the same argument shows that the in-
equality stays valid but might no longer be strict.

Consider the random variable

Xℓ = min
c>C−min(Tℓ)

Q
v>Tℓ�cv=−1

Lv,

where the randomness resides both in the choice of the tree Tℓ as well as the re-
alization of the channel represented by the log-likelihood ratios �Lv�v>Tℓ . Denote
its distribution by Bℓ, Bℓ(x) = P�Xℓ B x�, and its density by bℓ. Let us derive a
recursion for Bℓ. We claim that we have

bℓ+1 = aBMSC e λ(ρ′(1 −Bℓ)bℓ), b0 = b.

¿is can be seen as follows. Consider a variable node v and its subtree and as-
sume that v has associated value −1. We then want to compute the sum of the log-
likelihoods associated to v itself and the minimum of the sum of log-likelihoods
computed over all of its minimal subtrees. Assume for the moment that v has de-
gree l and that each of its connected child check nodes have degree r. For each of its
child check nodes the incoming cumulative distribution is 1 − (1 − Bℓ−1)r−1, since
it is the minimum of r − 1 incoming independent random variables. If we average
over the edge degree distribution and take the derivative to get the density we see
that the density entering the variable node v along a particular edge is ρ′(1−Bℓ). At
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the variable node itself we add (l− 1) such independent samples and add a sample
form the received distribution. ¿is gives the stated formula.

Since this recursion is hard to handle we introduce the following simpler one,

b̃ℓ+1 = aBMSC e λ(ρ′(1)b̃ℓ), b̃0 = b.

Since b̃0 = b0 = b, it is not hard to check that b̃ℓ C bℓ point-wise for each ℓ C 0. ¿is
follows from the fact that λ and ρ are polynomials with non-negative coe�cients.
Note that b̃ℓ is in general not a probability density (it is non-negative but does not
in general integrate to one).

We now show that if B(aBMSC)λ′(0)ρ′(1) < 1 then there exists a strictly pos-
itive constant η such that if B(b) < η then limℓ�ªB(b̃ℓ) � 0. Let us �rst see
how this proves the claim. ¿e right side of inequality (4.66) states that B(b) B
2
»

E(b)(1 −E(b)). ¿us, there exists ξ A 0 such that E(b) < ξ implies B(b) < η.
By our claim this implies that B(b̃ℓ) � 0 as ℓ � ª. ¿e proof now follows from
the sequence of inequalities

B(b̃ℓ) CB(bℓ) C E(bℓ) C E(aℓ),
where in the second step we use the le side of inequality (4.66).

¿e proof of the claim proceeds by induction. De�ne

ξℓ =B(aBMSC)(λ2 + (1 − λ2)ρ′(1)B(b̃ℓ))ρ′(1).
Note that since B(aBMSC)λ′(0)ρ′(1) < 1 there exists a strictly positive η such that
ξ0 = B(aBMSC)(λ2 + (1 − λ2)ρ′(1)η)ρ′(1) < 1. We claim that B(b̃ℓ) B ξℓ0 B(b).
¿is not only shows that B(b̃ℓ) converges to 0 but it shows that the convergence is
exponential in ℓ.

Let us �rst show that for ℓ C 0, (i) ξℓ < 1, and (ii) ρ′(1)B(b̃ℓ) < 1. We have
already seen that the �rst condition is ful�lled for ℓ = 0 and we can rede�ne η if
necessary so that also the second condition is ful�lled at the beginning. ¿is serves
as our anchor.

Assume that (i) and (ii) hold for some ℓ C 0. We will show that they then also
hold for ℓ+ 1. Since λ(1) = 1 and (ii) holds we conclude that

λ(ρ′(1)B(b̃ℓ)) B (λ2 + (1 − λ2)ρ′(1)B(b̃ℓ))ρ′(1)B(b̃ℓ).
From Lemma 4.64 we know that the Bhattacharyya operator is multiplicative at the
variable-node side. Combined with the previous inequality, and recalling the de�-
nition of ξℓ, this gives

B(b̃ℓ+1) B (λ2 + (1 − λ2)ρ′(1)B(b̃ℓ))ρ′(1)B(b̃ℓ)B(aBMSC) = ξℓB(b̃ℓ).
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¿erefore, B(b̃ℓ+1) B (Lℓ
i=0 ξi)B(b) B B(b). Now recall that by induction hy-

pothesis ξi < 1 for 0 B i B ℓ. ¿e previous inequality then shows that both (i) and
(ii) also holds for ℓ+ 1.

Further, it follows that ξℓ is non-increasing so that we have the boundB(b̃ℓ) B
(Lℓ−1

i=0 ξi)B(b) B ξℓ0 B(b), as claimed.
Proof of Lemma 4.167. Since the derivatives in (4.168) are known to exist a.e., the
lemma is in fact equivalent to saying that, for any h′i C hi,

H(Xi SYi(h′i),Y�i) −H(Xi SYi(hi),Y�i) B H(Xi SYi(h′i),Φi) −H(Xi SYi(hi),Φi) .
By de�nition the family �BMSC(hi)� is ordered by degradation: Xi � Yi(hi) �
Yi(h′i). Also, Φi = ϕi(Y�i), i.e., Φi is a function of Y�i. Finally, since the chan-
nel is memoryless, we know that (Yi(hi),Yi(h′i)) � Xi � (Y�i,Φi). ¿e thesis
is therefore a consequence of Lemma E.10 by making the substitutions Xi ( X,
Yi(hi)( Y, Yi(h′i)( Y′, Y�i ( Z, Φi ( Z′.

LemmaE.10. Consider the randomvariablesX,Y,Y′,Z,Z′. Assume thatX� Y �
Y′, X� Z � Z′, and (Y,Y′)� X� (Z,Z′). ¿en

H(X SY′,Z) −H(X SY,Z) B H(X SY′,Z′) −H(X SY,Z′) .(E.11)

Proof. We verify (E.11) by proving the following sequence of steps:

H(X SY′,Z) −H(X SY,Z) (i)B H(X SY′,Z,Z′) −H(X SY,Y′,Z,Z′)
(ii)
B H(X SY′,Z′) −H(X SY,Y′,Z′)
(iii)
= H(X SY′,Z′) −H(X SY,Z′).

Consider claim (i). Since conditioning can only decrease entropy it su�ces to show
that H(X SY′,Z) = H(X SY′,Z,Z′). Equivalently, we can show that I(X;Y′,Z) =
I(X;Y′,Z,Z′). In turn this is equivalent to I(X;Z SY′) = I(X;Z,Z′ SY′). Now note
that I(X;Z,Z′ SY′) = I(X,Y′;Z,Z′) − I(Y′;Z,Z′). First consider I(X,Y′;Z,Z′).
Since (Y,Y′) � X � (Z,Z′) we have I(X,Y′;Z,Z′) = I(X;Z,Z′). Further, since
X� Z � Z′ it follows that I(X;Z,Z′) = I(X;Z), so that I(X,Y′;Z,Z′) = I(X;Z).
Next consider I(Y′;Z,Z′). Note that I(Y,Y′;Z,Z′ SX) = 0 since (Y,Y′) � X �
(Z,Z′). Expand I(Y,Y′;Z,Z′ SX) to get

0 = I(Y,Y′;Z,Z′ SX) = I(Y,Y′;Z SX) + I(Y′;Z′ SX,Z) + I(Y;Z′ SY′,X,Z).
Since mutual information is non-negative, each part of this expansionmust be zero.
¿is shows that I(Y′;Z′ SX,Z) = 0. UsingX� Z � Z′, we see that I(Y′;Z′ SX,Z) =
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I(X,Y′;Z′ SZ) = I(Y′;Z′ SZ)+ I(X;Z′ SY′,Z). ¿is shows that I(Y′;Z′ SZ) = 0. It
follows that I(Y′;Z,Z′) = I(Y′;Z) + I(Y′;Z′ SZ) = I(Y′;Z). Combining the two
statements we see that I(X;Z,Z′ SY′) = I(X;Z) − I(Y′;Z). Clearly, I(X;Z SY′) B
I(X;Z,Z′ SY′). On the other hand, I(X;Z SY′) = I(X,Y′;Z)−I(Y′;Z) C I(X;Z)−
I(Y′;Z) = I(X;Z,Z′ SY′). ¿is shows that we have in fact equality.

Step (iii) requires us to prove thatH(X SY,Z′) = H(X SY,Y′,Z′). By symmetry
(of the assumptions and the statement) the proof is identical to the previous one if
we exchange the roles of (Y,Y′) and (Z,Z′).

It remains to prove step (ii). It can alternatively bewritten as I(Y;X SY′,Z,Z′) B
I(Y;X SY′,Z′). Expand I(Y;X,Z SY′,Z′) both ways to get

I(Y;X,Z SY′,Z′) = I(Y;X SY′,Z′) + I(Y;Z SY′,X,Z′)
= I(Y;Z SY′,Z′) + I(Y;X SY′,Z,Z′).

If we can show that I(Y;Z SY′,X,Z′) = 0 then our claim follows from the previous
equality by noting that mutual information is non-negative, so that in particular
I(Y;Z SY′,Z′) C 0. We proceed similarly as for step (i). Expand I(Y,Y′;Z,Z′ SX)
to get

0 = I(Y,Y′;Z,Z′ SX) = I(Y,Y′;Z′ SX) + I(Y′;Z SX,Z′) + I(Y;Z SY′,X,Z′).

We conclude that I(Y;Z SY′,X,Z′) = 0.
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BEC, 99, 109, 170
BMSC, 230

critical rate, 20, 21
cycle, 166
cycle-free code, 66

D-mean
BAWGNC, 201
BEC, 201
BSC, 201
multiplicativity at checknode, 201

data processing inequality, 29, 124, 254
decoder

APP, 189
BCJR, 66
bit MAP, 56

block MAP, 63
bounded distance, 7, 8, 12
BP, 56, 214
Gallager algorithm A, 276, 280
iterative, 22, 23, 32, 34, 65
MAP, 9
ML, 9, 279
peeling, 117–123, 128, 132, 133, 144,

147, 158, 159, 453–455, 485, 496,
498, 503

Reed-Solomon, 33
sequential, 33
Viterbi, 66
with erasures, 213

degradation, 204
a-posterior probability, 209
BCC, 274
BEC, 72
BLC, 274

degree
average, 78, 162
distribution, 77
maximal, 115
minimal, 154

degree distribution, 77
conversion, 79, 80
edge perspective, 79
heavy-tail Poisson, 112, 165
node perspective, 78
optimally sparse for BEC, 114
right-concentrated, 110

degree-onenodes, 79, 384, 393, 395, 400,
401, 418, 419

density
Gallager’s lower bound
BMSC, 112, 246

LDPC, 113
parity-check matrix, 112, 246

density evolution, 117
BAWGNC, 223
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BAWGNMAC, 312
BEC, 96
BMSC, 219
check-node update, 468
e�cient implementation, 465–470
Fourier check-node update, 470
quantization of densities, 466
turbo, 343
variable-node update, 466
Z channel, 298

Descartes’ rule of signs, 30, 34
design rate, 78, 162
di�erential entropy, 28

Gaussian, 302
distance, 6

Hamming, 6
normalized, 7

distributive law, 49, 52, 53, 61
dominant type, 298
Doob’s Martingale, 491
dual code, 14, 166
duality rule for entropy, 195

edge perspective, 79, 161
eigenvalue method, 436, 437, 440
Elias bound, 8, 12
EM algorithm, 66
encoding

complexity, 454
convolutional, 327
gap, 445, 458
(3,5)-regular ensemble, 463
(3,6)-regular ensemble, 461

LDPC, 443–462
turbo, 338

ensemble, 8
ARA, 389
compound, 390
generator, 16, 38
IRA, 388

LDGM, 390, 414
LDPC, 78
MN, 390
multi-edge, 384
non-binary, 409
parity-check, 16, 39, 41
RA, 386
rate-less, 414
turbo, 325–367

entropy, 27, 195
entropy function

binary, 8
erasure, 71
ergodic, 300, 302, 303, 315
error exponent

block code, 19
convolutional code, 20

error �oor, 27, 79, 87, 139, 149, 155, 161,
169, 213, 260, 262, 263, 267,
269, 341, 354, 356, 360, 361,
368–371, 388, 414, 415, 422

error probability
BAWGNC, 200
BEC, 200
BSC, 200

exchange of limits
BEC, 117
BMSC, 268

EXIT
BAWGNC, 237
BEC, 102–109, 159, 196, 282
area theorem, 167, 168
characterizations, 167
Hamming code, 166, 167
MAPperformance, 123–132, 169
out of box, 170
regular ensemble, 168

BMSC, 191, 196, 208, 236–246, 265–
267, 270

BSC, 237
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LDGM, 419
non-binary, 413, 416–417
parity-check code, 237
repetition code, 237
turbo, 348–349, 365

expander codes, 433–439
expansion, 433

error correcting radius, 434, 440
�ipping algorithm, 434
lower bound via eigenvaluemethod,

436
message-passing, 440
minimum distance, 433
random bipartite graph, 507
random graphs, 437
stopping sets, 441

expectation, 31
E[ċ], 31
expectation-maximization algorithm,

66
expurgated ensemble, 143
extending, 35
extractor, 34
extrinsic, 103–105, 124, 125, 189, 196,

236, 252, 254, 272, 279

factor graph, 49–65
factor node, 50
Forney style, seeForney-style fac-

tor graph
variable node, 50

factor node, 50
Fano inequality, 29
Fast Fourier transform, 468
FFT, see Fast Fourier transform
FG, see factor graph
�lter, 490
�nite-length analysis

BEC, 117, 135–149
BMSC, 259–260

�nite-length behavior, 27
�rst moment method, 485
�xed point characterization

BEC, 99–100
BP, 230–231
Gallager algorithm A, 229–230

�ipping algorithm, 433–439
forest, 50
formal power sum, 511–534

addition, 511
basic properties, 535
coe�cient growth, 513
composition, 536
derivative, 536
division, 511
generating function, 536
log-concavity, 534
multiplication, 511
multiplicative inverse, 511
relation to Taylor series, 535
solving recursions, 536
unimodal, 534

Forney-style factor graph, 59–61, 65,
293, 300, 303–305, 312, 328, 331,
339–341, 366, 372, 375, 409–
411

BAWGNMAC, 312
channel with memory, 300
GEC, 300
IIC, 300
turbo, 366

Fourier transform, 31, 198–200, 202,
238, 274, 411, 412, 425, 466

check domain, 199, 470
variable domain, 199, 466, 467

FSFG, see Forney-style factor graph
functional

alternative representation, 283
Bhattacharyya, 201, 274, 283
capacity, 191

Preliminary version – October 18, 2007



INDEX 571

convexity and degradation, 206,
207

D-mean, 200
de�ned by Fourier transform
check domain, 200
variable domain, 199, 200

entropy, 195, 283
error probability, 200, 270, 274, 283
EXIT, 196
GEXIT, 196, 255, 267
ordering via degradation, 205

fundamental theorem of algebra, 37

G(n, k), 16, 38, 39, 204, 485
weight distribution, 486

Gallager algorithmA, 212, 216, 219, 223,
227, 229, 230, 232

monotonicity, 223–225
stability condition, 280
tree channel
performance, 219

Gallager’s inequality, 258
Gallager’s lower bound on density

BEC, 112
gap

greedy algorithm
asymptotic, 458

multiplicative
capacity, 109

GAT, see general area theorem
Gaussian elimination, 443, 445, 447, 448
GEC, see Gilbert-Elliot channel
general area theorem, 196, 251, 253
generating function, 536
generator ensemble, 16
generator matrix

de�nition, 14
systematic, 14, 36

GEXIT, 255, 266
BAWGNC

kernel, 198, 272
BEC, 282
kernel, 197, 271

BMSC, 93, 191, 266, 267
degradation, 275
functional, 196
kernel, 208
MAP performance, 250–259

BSC
kernel, 197, 272

kernel, 196
turbo, 349

GEXIT kernel
comparison of various, 198

Gilbert-Elliot channel, 314
all-one codeword assumption, 304
FSFG, 300
optimized code, 314
threshold, 314

Gilbert-Varshamov bound, 8, 37, 38
Gilbert-Varshamov distance, 485
girth, 166
Gray mapping, 309
greedy upper triangulation, 449

H(n, k), 16, 39, 41, 74, 77, 163, 165, 168
Hamming bound, 37
Hamming code, 15
Hamming distance, 6, 35
Hamming weight, 6
hard decision, 4, 182
hash function, 34
Hayman admissible, 516

multivariate functions, 516
multivariate polynomial, 516

Hayman method, 514, 535
binomial coe�cient, 519
multivariate polynomial, 519

heavy-tail Poisson, 165
Heavyside distribution, 178
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Hoe�ding-Azuma inequality, 218, 485

IIC, see intersymbol-interference chan-
nel

iid, 4, 31
indicator function, 51
inequality

Bernstein, 201, 273, 485, 488
Cauchy-Schwarz, 488
Chebyshev, 8, 11, 485, 486
generalized, 507

data processing, 29, 124, 254
Fano, 29, 33, 44, 114, 250
Gallager, 258, 265, 280
Hoe�ding-Azuma, 218, 485, 491,

506, 507
Jensen, 31, 43, 75, 114, 154, 249, 525,

527, 543, 544
Markov, 438, 486, 487, 523
triangle, 6, 7

information set, 37
information theory, 27, 32
inner product, 35
intersymbol-interference channel, 300,

314
FSFG, 300

irregular ensemble, 77
isotropic, 279
iterative decoding, 65

Jensens’ inequality, 31

kernel
in message-passing rule, 53

known side information, seebinaryRayleigh
fading channel

KSI, see known side information
Kullback-Leibler distance, 75

Laplace method, 514

LDPCcode, see low-density parity-check
code

Lipschitz continuity, 496
LLR, see log-likelihood ratio
local algorithm, 1
local limit theorem, 519

power of matrix, 369
log-concavity, 534
log-likelihood algebra, 66
log-likelihood ratio, 176

distribution, 178, 185
BAWGNC, 186
BEC, 185
BSC, 186
symmetrization, 299

su�cient statistic, 177
symmetry of distribution, 179, 269

low-density parity-check code, 77
average degree, 78
computation graph, 87, 219, 494
concentration of error probabil-

ity, 85, 218
conditional independence of er-

ror probability, 85, 217
design rate, 78
ensemble, 78
over ring, 449

majority rule, 5
MAP, seemaximum a-posteriori
marginal

message-passing, 54
recursive determination, 51

Markov chain, 2, 28, 205, 209, 254
Markov inequality, 486
Martingale, 490–503, 506

Doob’s, 491
matching condition

BEC, 108
max-sum, 62, 63
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maximum a-posteriori
bitwise, 56
blockwise, 63

maximum likelihood
block codes, 39
decision problem, 17, 18
performance ofH(n, k), 165

MDS, see maximum distance separa-
ble

memory
convolutional code, 325

message-passing, 50, 65, 66
BEC, 67
blockwise MAP decoding, 63
code with cycles, 64
expansion, 440
initialization, 54
mapper, 67
paradigm, 85
quantizer, 68
rules, 57
simpli�cation, 58

min-product, 62
min-sum, 62

BEC, 67
minimal, 6
minimum distance, 7, 13, 32

lower bound, 32
upper bound, 32

ML, seemaximum likelihood
monotonicity

BEC, 97
BMSC, 223
BP, 225–227
Gallager algorithm A, 223

multi-edge ensemble
all-one codeword assumption, 392
conditional independence of er-

ror probability, 392
multilevel scheme, 308, 309, 314

mutual information, 28, 43, 104, 196,
247, 302, 306, 307, 552, 553

non-binary, 383, 409–414, 424–426
all-one codeword assumption, 426

normal graph, see Forney-style factor
graph, 65

normalized distance, 7
NP-class, 17

O(ċ), 31
o(ċ), 31
optimally sparse, 114
optimization via linear program

BEC, 116, 159

pairwise independence, 38
parity-check ensemble, 16
parity-check matrix, 14

density, 112, 246
Parseval theorem, 31, 202
peeling decoder, 117–123, 128, 132, 133,

144, 147, 158, 159, 453–455, 485,
496, 498, 503

perfect code, 15
permutation, 78
physical degradation, see degradation
Poisson distribution, 369

convergence, 503, 530, 533
precoding, 383
proper code, 14
puncturing, 35

rate, 6
design, 162
versus design rate, 80, 523

rate-less code, 383
redundancy, 2
Reed-Solomon code, 36
regular code, 75
regular ensemble, 75
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repetition code, 6
replica, 66
replica coding, 66
residue theorem, 514
right-concentrated, 110
rules of signs, 30

saddle-point method, 535
scalar, 30
second moment method, 485, 488
self-dual code, 35
semi-ring, 66, 67
sequential decoding, 33
set partitioning, 314
Shannon capacity, 2, 12, 28
Shannon’s random ensemble, 8
shortening, 35
sign change, 30
Singleton bound, 37
Slepian-Wolf, 315
socket, 78
source coding, 2, 32, 315
source coding theorem, 3
source-channel separation, 3
sparse graph, 1, 77, 112, 114
sphere, 7
stability condition

BAWGNC, 234
BAWGNMAC, 313
BCC, 280
BEC, 101, 233
BLC, 280
BP, 233–236
BSC, 234
Gallager algorithmA, 232–233, 280
turbo, 346
ZC, 299

state space model, 326–327
stochastic degradation, seedegradation
stopping set, 119, 132, 136–145

weight distribution, 149–157
su�cient statistic, 29, 177, 189, 209, 236,

252
sum-product, 62, 63
summation convention, 49
summation of subsequences, 512
support set, 6
survey propagation, 315
symmetry of LLR distribution

APP processing, 189
BMSC, 187
compactness, 181

syndrome, 17

Tanner graph, 50, 51, 57, 75
Tanner’s bound, 436, 440
termination rule, 368
Θ(ċ), 31
threshold

BEC, 98
BMSC, 227
BP, 227
convolutional code, 334
Gallager algorithm A, 227
turbo, 341, 344, 345

transfer-matrix method, 65
tree channel

BEC, 95
BMSC, 218
convergence
BEC, 95
BMSC, 219

performance
BEC, 96
BP, 221
Gallager algorithm A, 219

tree code, 92
tree ensemble, 91
trellis, 330, 372
trellis coded modulation, 314
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triangle inequality, 6
turbo code, 335–367

all-one codeword assumption, 341,
342

asymmetric, 365, 371
Bhattacharyya constant, 347, 370
big numerator, 371
computation graph, 341, 368
parallel concatenated, 342
serially concatenated, 373

conditional independence of er-
ror probability, 341

decoding
parallel concatenated, 338
serially concatenated, 372

density evolution
parallel concatenated, 343
serially concatenated, 373

encoder
parallel concatenated, 335

EXIT, 348
FSFG, 339, 366
geometric interpretation, 369
GEXIT, 349
interleaver design, 370
irregular, 365
minimum distance, 369
parallel concatenated, 335
k components, 375

performance, 341
S-random interleaver, 370
schedule, 372
serially concatenated, 337
stability condition, 346, 370
statisticalmechanics point of view,

369
termination rule, 368
threshold, 341, 344, 345
waterfall, 341

weight distribution, 351–364, 369,
375

alternating puncturing, 374
random puncturing, 374
serial code, 375

Turing machine, 17

uncoded transmission, 4
unimodal, 74, 534
union bound, 33, 41, 156, 261, 347
unknown side information, seebinary

Rayleigh fading channel
u + v construction, 36
upper triangular form, 443
upper triangulation

greedy, 449
USI, see unknown side information

variable node, 50
degree-one, 79

vector, 30
Viterbi algorithm, 22, 33, 66, 334, 372

versus BCJR algorithm, 372

waterfall
BEC, 27, 139
BMSC, 213, 214, 267
BSC, 214, 215
turbo, 341

weight
Hamming, 6

weight distribution, 32
convolutional code, 351–355
LDPC, 149–157
LDPC ensemble, 529–535
regular, 519

turbo, 351–364
Wolf trellis, 34, 40
Wormald method, 459, 485, 496–503,

506
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Z channel, 296–299, 313
all-one codeword assumption, 296
Bhattacharyya constant, 299, 316
capacity, 297
density evolution, 298
distribution of LLR
symmetrization, 299

extremality, 313, 316
optimal input distribution, 297, 316
stability condition, 299, 314
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