
Statistical Physics for Communication and Computer Science 14/04/2011

Lecture Notes 8: BP-Guided Decimation for SAT Problems

Lecturer: Rudiger Urbanke Scribe:Amir Hesam Salavati

Introduction

In this lecture, we will describe an algorithm based on belief propagation to check the
satisfiablity of SAT problems. The algorithm is called BP-Guided Decimation for SAT
Problems. we first introduce an accurate version of the algorithm to be used over trees
and then extend it to the general factor graphs. In the second part of the lecture, we will
re-parametrize the message passing equations in a more convenient way to help us perform
belief propagation for SAT problems.

1 BP-Guided Decimation for SAT Problems

Let’s start by a very simple example. Suppose we are given the following formula:

F = x1 ∧ (x1 ∨ x2 ∨ x3) (1)

The factor graph for this equation is illustrated in figure 1, in which dashed lines means the
variable appears negated in the corresponding clause.

Figure 1: Factor graph of the equation F = x1 ∧ (x1 ∨ x2 ∨ x3)

F is a Boolean function. However, we can slightly modify F and model it as a binary
function that can take either of 0 or 1 values. In this case, we can write F as the product of
two other binary functions: f1 = x1 and f2 = sign(x1 + x2 + x3), where sign is the normal
sign function with sign(0) = 0.

In order to see if F is satisfiable, we can compute the “partition function”∑
x1,x2,x3

f1(x1)f2(x1, x2, x3)

8 - 1



Table 1: Satisfiability of F , given by equation (1), for all possible combination of x1, x2

and x3.

This will in fact give us the number of satisfying configurations. Here there are 3 SAT
solutions. Table 1 illustrate the satisfiability of F for all possible combination of x1, x2 and
x3.

We can also look at marginals with respect to different variables, for instance∑
∼x1

f1(x1)f2(x1, x2, x3)

which will be the number of satisfying clauses given that x1 has a particular fixed value.
From table 1 we see that µ(x1 = 0) = 0 and µ(x1 = 1) = 3; µ(x2 = 0) = 2 and µ(x2 = 1) =
1; µ(x3 = 0) = 1 and µ(x3 = 1) = 2.

Since the graph of this simple formula is a tree, the partition function and the whole
set of marginals can be exactly calculated using belief propagation. Table 2 summarizes
the messages exchanged in each iteration of the belief propagation in order to compute the
marginal with respect to x1, denoted by µ(x1), for the factor graph given in figure 1. Let
us illustrate the use of message passing rules for the derivation of µ(x1). The first line of
the table gives the initial messages at the leaf nodes.First we compute

µ2→1 =
∑
∼x1

f2(x1, x2, x3). µ2→2(x2)︸ ︷︷ ︸
1

µ3→2(x3)︸ ︷︷ ︸
1

= 4 if x1 = 0 and 3 if x1 = 1 (2)

and
µ1→1 = f(x1) = 0 if x1 = 0 and 1 if x1 = 1 (3)

Finaly,
µ(x1) = µ2→1(x1)µ1→1(x1) = 0 if x1 = 0 and 3 if x1 = 1 (4)

which agrees with table 1.

8 - 2



Table 2: Messages exchanged in each iteration of the belief propagation performed over the
factor graph given in figure 1.

So far, the marginals count the number of satisfying solutions. However, if we are
interested in the fraction of satisfying solutions with xi = 0 against those with xi = 1,
for some xi, then we have to slightly modify the message passing rules by normalizing the
messages, as explained in the sequel.

Notation: We denote clauses by a, b, c, . . . and variables by i, j, k, . . .. Furthermore, we
denote the neighborhood of a node x by ∂x. The same neighborhood excluding a particular
node y is indicated by ∂x \ y.

Having these notations in mind, we start modifying the message passing rules. In the
original message passing scheme, the message from variable i to clause a is given by equation
(5).

µi→a(xi) =
∏

b∈∂i\a

µb→i(xi) (5)

However, since we are interested in the fraction of the solutions with xi = 0 and xi = 1, we
require the new messages µ̃i→a(xi) to satisfy the following equation.

µ̃i→a(xi = 0) + µ̃i→a(xi = 1) = 1

Therefore, it is sufficient to set µ̃i→a(xi) according to equation (6).

µ̃i→a(xi) =
µi→a(xi)

µi→a(xi = 0) + µi→a(xi = 1)
(6)

At this point, it seems as if we have to once calculate µi→a(xi) for xi = 0, 1 and then
normalize the messages. However, it is easy to show that we can directly calculate µ̃i→a(xi).
To simplify the notations, we omit the normalization factor and write the messages as

µ̃i→a(xi) ∝
∏

b∈∂i\a

µ̃b→i(xi) (7)

Calculating marginals will only give us the number of satisfying combinations to a SAT
problem. Finding an actual solution is another story which we address in the next section.

8 - 3



2 From Counting the Number of Solutions to Finding a So-
lution

Given a SAT problem F , assume that the factor graph of F is a tree and F has a satisfying
solution. Then algorithm 1 will find a solution that satisfies F .

Algorithm 1 BP Guided Decimation over trees
1. Run belief propagation on F and compute the all marginals µ(xi) for all of the variables.
2. Pick a variable i. If µ(xi = 0) > 0 (there exists an assignement with xi = 0), then:

(a) Set xi = 0 in all clauses.

(b) Eliminate all those clauses that xi appears negated in them.

(c) Remove xi from the other clause.

If on the other hand µ(xi = 0) = 0 (there doesnt exist an assignmenet with xi = 0), then:

(a) Set xi = 1 in all clauses.

(b) Eliminate all those clauses that xi appears unnegated in them.

(c) Remove xi from the other clause.

3. Repeat the process until no variables are left.

Note that in each step of the above algorithm we must run belief propagation.
Terminology: Since we use belief propagation and eliminate a variable in each itera-

tion, the algorithm is called BP guided decimation.
Algorithm 1 is only accurate if we have a tree. But what about the more general cases?

We will introduce a modified version of the above algorithm in the next section to deal with
general factor graphs.

2.1 Applying BP Guided Decimation to General Factor Graphs

In this section, we apply a modified version of the BP guided decimation algorithm to
general factor graphs. However, note that the graph in this section should be sparse as
before.

Over a tree, the previous algorithm yields exact marginals and we can pick anyone of
them in each iteration. However, in general graphs it is not the case any more. As a result
and in order to deal with the inherent uncertainty in marginals, in each iteration we pick a
node i such that the difference |µ(xi = 0) − µ(xi = 1)| is maximized. This way, we hope
that this node has such a clear bias that its marginals are are quite exact despite the graph
not being a tree.

The rest of the algorithm is the same, summarized below:
Some remarks about running BP on general graphs are in order:

• Initialization The typical way of initializing messages is to set all of them equal to
1/2.

8 - 4



Algorithm 2 BP Guided Decimation over General Graphs
1. Run BP and calculate all marginals.
2. Pick a node i such that |µ(xi = 0)− µ(xi = 1)| is maximized.
3. Set xi to the most likely value, i.e. xi = 0 if µ(xi = 0) > µ(xi = 1) and to 1 otherwise.
4. Eliminate all clauses that the particular choice of xi make them satisfied. Remove xi

from the other clause.
5. Recurse until all variables are eliminated.

• Scheduling In contrast to BP guided decimation over a tree, the choice of node i affect
the solution and the whole algorithm. Therefore, scheduling matters. We usually use
flooding as a means of scheduling. In other words, in each iteration every node sends
its messages over its outgoing links.

Figure 2 illustrates two kinds of probabilities as a function of α (ratio of nb of clauses
to variables). One can run pure BP over many instances and compute the empirical prob-
ability that it converges. This yields the upper curves in figure 2. For K = 3 we get a
convergence threshold αBP≈3.86 and for K = 4 we get αBP ≈ 10.3. Now, one can run BP
guided decimation (algorithm 2) over many instances and derive the empirical probability
of success. The corresponding threshold must in general be lower than αBP since BP must
at least converge after each decimation step. This empirivcal probability is given by the
lower curve in figure 2. For K = 3 the threshold is approximately identical to αBP but for
K = 4 it is smaller and approximately equal to 9.3.

The actual SAT-UNSAT threshold is for K = 3, αsat−unsat ≈ 4.26 and for K = 4,
αsat−unsat ≈ 9.93. We will see in future lectures how to obtain these thresholds by survey
propagation algorithms.

3 Convenient Re-parametrization

Let Jia denote the weight for each edge of the factor graph where Jia = 0 means xi appears
in clause a unnegated and Jia = 1 for xi appearing negated. Furthermore, let Sia be the
subset of the neighbors of a that have the same edge type (weight) attached to a as that of
xi. Likewise, let Uia be the subset of the neighbors of a with a different edge type as that
of Jia.

Now let ξia denote µi→a(xi = Jia) and ξ̂ai indicate µ̂a→i(xi = Jia). The interpretation
of this notation is that ξia is the probability that xi has a value which does not satisfy the
clause corresponding to node a. Similarly, ξ̂ai represents the probability that xi is not free
to be chosen arbitrarily since the clause a is not satisfied yet. With these notations in mind,
we rewrite the message passing equations.

3.1 Rewriting Message Passing Equations

The original message passing equations for messages from variable to check nodes is given
by:

ξia = µi→a(xi = Jia) ∝
∏

b∈∂i\a

µ̂b→i(xi = Jia)

8 - 5



Actual 
threshold

3.86 4.26

Pr{Being Satisfiable}

1

3

Actual 
threshold

~9.98

Pr{Being Satisfiable}

1

3-SAT 4-SAT

One 
Instance

Many 
Instances

One 
Instance

Many 
Instances

Figure 2: Probability of 3− SAT and 4− SAT being satisfied by BP guided decimation.

∝

 ∏
b∈Sia

µ̂b→i(xi = Jib)

 ∏
b∈Uia

µ̂b→i(xi = 1− Jib)


∝

 ∏
b∈Sia

ξ̂bi

 ∏
b∈Uia

(1− ξ̂bi)

 (8)

Hence, from equation (8) one can rewrite the message passing rule from variable to check
nodes as follows.

ξia =

(∏
b∈Sia

ξ̂bi

)(∏
b∈Uia

(1− ξ̂bi)
)

(∏
b∈Sia

ξ̂bi

)(∏
b∈Uia

(1− ξ̂bi)
)

+
(∏

b∈Sia
(1− ξ̂bi)

)(∏
b∈Uia

ξ̂bi

) (9)

In order to rewrite the messages from check to variable nodes, let ψ(X∂a) be the kernel
of the node a, i.e. it identifies the clause that node a corresponds to. Then, the original
message passing rules for messages from constraint to variable nodes yield

ξ̂ai = µ̂a→i(xi = Jia) =
∑
∼xi

ψ(X∂a)
∏

j∈∂a\i

µj→i(xj) (10)

If we consider 1− ξ̂ai, it is obvious that 1− ξ̂ai = µ̂a→i(xi = 1−Jia). Now since xi = 1−Jia,
the clause a is always satisfied irrespective of other variables, i.e. ψ(X∂a) = 1. As a result,
equation (10) will be the sum of some products which factorizes into

1− ξ̂ai = µ̂a→i(xi = 1− Jia) ∝
∏

j∈∂a\i

∑
xj

µj→i(xj) ∝ 1 (11)

8 - 6



The last relationship holds because the summation
∑

xj
µj→i(xj) is always equal to 1 due

to the normalization of the messages. Thus, we have 1− ξ̂ai ∝ 1.
Now in order to calculate ξ̂ai exactly, i.e. to get rid of the proportional notation, let’s

take look at ψ(X∂a). We know that xi = Jia since we are considering ξ̂ai. Thus, xi does
not affect the value of ψ(X∂a). Moreover, among the other possible combinations for other
variables, there will be only one combination that results in ψ(X∂a) = 0 (because ψ(X∂a)
is the OR product of some literals).

Hence, in order to compute ξ̂ai we can assume that ψ(X∂a) is always equal to 1 and
subtract the case for ψ(X∂a) = 0 later. As a result, and from equation (8), we will obtain

ξ̂ai ∝
∑
∼xi

∏
j∈∂a\i

µj→i(xj)− Pr{ψ(X∂a) = 0}

= 1−
∏

j∈∂a\i

ξja(xj) (12)

Because the first term factorizes into the product of summations and as we discussed earlier,
it will always be equal to 1 due to normalization of messages.

Combining equation (9) and (12), we get the following equation for ξ̂ai.

ξ̂ai =
1−

∏
j∈∂a\i ξja(xj)

2−
∏

j∈∂a\i ξja(xj)
(13)

In summary, equations (9) and (13) give the new message passing rules.

8 - 7


