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1 Analysis of Belief Propagation for the BEC via Density
Evolution

We consider a binary erasure channel with probability of erasure ǫ and an (l, r)-LDPC code.
Let PBP

b
(l, r, ǫ, n, L) denote the bit error probability of BP decoding an ensemble of size n,

using L iterations (a computation tree of depth L). We know from the last lecture that the
limit of this quantity as n goes to infinity is given by F (ǫ, xL−1), where

F (ǫ, x) = ǫ(1 − (1 − x)r−1)l.

The quantity x corresponds to the probability of erasure at each iteration, and we can
assume x0 = 1. It evolves after each iterations according to the recurrence xi = f(ǫ, xx−1),
where

f(ǫ, x) = ǫ(1 − (1 − x)r−1)l.

We analyze the sequence {xi} and ask whether it converges to 0 or not. In case it does,
the decoding is successful, otherwise it is not. Note that convergence depends on ǫ, l, and
r.

Remark 1. The function f(ǫ, x) is increasing in ǫ and x for x, ǫ ∈ [0, 1].

Lemma 1. We have that

• the xi are decreasing in i,

• xi(ǫ) ≤ xi(ǫ
′) if ǫ ≤ ǫ′.

Proof. • By induction. The first two elements of the sequence are x0 = 1 and x1 =
f(ǫ, x0) = ǫ. We assume xi−1 ≤ xi−2 as the induction hypothesis. Since f(ǫ, ·) is
increasing, we obtain f(ǫ, xi−1) ≤ f(ǫ, xi−2). The left hand side is equal to xi, and
the right hand side to xi−1, and we deduce that xi ≤ xi−1.

• By induction. We first have x1(ǫ) = ǫ ≤ ǫ′ = x1(ǫ). The general statement is deduced
as follows:

xi(ǫ) = f(ǫ, xi−1(ǫ))
(a)

≤ f(ǫ′, xi−1(ǫ))
(b)

≤ f(ǫ′, xi−1(ǫ
′)) = xi(ǫ

′),

where inequality (a) follows from the fact that f is increasing in ǫ, and inequality (b)
follows from it being increasing in x, together with the induction hypothesis.
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From the first part of the previous lemma, it follows that xi(ǫ) converges in [0, 1]. From
the second part, it follows that if xi(ǫ) → 0 for some ǫ, then xi(ǫ

′) → 0 for all ǫ′ < ǫ.
We denote by x∞(ǫ) the limit limi→∞ xi(ǫ). Then x∞ is increasing in ǫ.

Hence we can define the quantity ǫBP as sup ǫ : x∞(ǫ) = 0; this is called the threshold.
There is a graphical way to characterize this threshold. Note that x∞ is a fixpoint of

f(ǫ, ·), i.e. f(ǫ, x∞) = x∞. Thus, if f(ǫ, x) − x < 0 for all x < 0, then x∞ = 0, and as soon
as there is a fixpoint f(ǫ, x) = x in the interval (0, 1), we have that x∞ > 0.

Example. For a (3,6)-LDPC code, we have that ǫBP ∼ 0.4294. The transmission rate is
R = 1− l

r
= 1

2 , and we know there exists some decoding procedure for erasure probabilities
as high as ǫShannon = 1 − R = 1

2 .

A result by Luby, Mitzenmacher, Shokrollahi, Spielman and Stemann [LMSSS 97] states
that there exist LDPC codes so that ǫBP = ǫShannon. Note that if we stick to regular codes,
like (3, 6)- or (4, 8)-LDPC, we cannot achieve capacity.

We define Λi as the fraction of variable nodes of degree i in the ensemble; in particular,
we have that Λi ≥ 0 and

∑

i
Λi = 1. Likewise we define Ri as the fraction of check nodes

of degree i. The question is how to choose Λi and Ri such that we achieve capacity. In
the cited paper it is shown that there must be nodes of arbitrarily large degree, otherwise
capacity will not be attained.

We could also define ǫMAP , corresponding to a MAP decoder. Note that analyzing
MAP is harder than analyzing BP. All three thresholds (ǫBP , ǫMAP , and ǫShannon) can be
arbitrarily close.

2 Generalization to BMS Channels (in particular BAWGN
Channel)

We consider a BAWGNC channel, where the output Y is given in terms of the input X by
Y = X + Z, where Z ∼ N (0, σ2) is the noise (independent of the input).
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If we fix the input to X = 1, then Y ∼ N (1, σ2). In this case, the log-likelihood is

l = log
p(y|x = 1)

p(y|x = −1)
= log

1√
2πσ2

e
− (y−1)2

2σ2

1√
2πσ2

e
− (y+1)2

2σ2

=
1

2σ2
[(y + 1)2 − (y − 1)2] =

2y

σ2

We then define the random variable L, whose distribution is N
(

2
σ2 , σ2

(

2
σ2

)2
)

∼ N
(

2
σ2 , 4

σ2

)

.

Let a(l) be the probability density function of L.
Direct decision based on L is performed as follows: if L is positive, decide X̂ = 1, if L

is negative, decide X̂ = −1, and for L = 0, decide X̂ = 1 or X̂ = 0, each with probability
1
2 . The bit error probability in this case is given by

Pb =

∫ 0

−∞
a(l)dl = Q

(

µL

σL

)

== Q

(

1

σ

)

∼ e
− 1

2σ2 .

Note that Pb tends to 0 as σ approaches 0.
We now look at the message passing rules in the generalized setting.

• At variable nodes, we assume the incoming messages are L1, . . . , Ll−1, with (i.i.d.) dis-
tributions bi(y). The outgoing message is L =

∑

l−1
i

Li, with L having the distribution
ai+1(y).

• At check nodes, we assume the incoming messages are L1, . . . , Ll−1, with (i.i.d.) dis-

tributions ai(y). The outgoing message is L = 2 tanh−1
(

∏

r−1
i=1 tanh

(

Li

2

))

, with L

having the distribution bi+1(y).

We consider the distributions ai after each iteration. By population dynamics approach
or numerical calculations we observe that the mass of the distribution migrates toward +∞,
and

lim
n→∞

PBP
b (l, r, σ, n, L) =

∫ 0

−∞
aL(y)dy.
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Channel degradation

In order to imitate the proofs that we have obtained for BEC, we need to define an order
on the distributions. For two distributions a(y) and b(y), the intuition behind a(y) ≺ b(y)
is that a(y) is “better” than b(y), and the sequence ai(y) decreases, as is the case for the
BEC.

To define the order relation, we associate to each probability distribution a(y) a binary
symmetric channel, with p(y|x = 1) = a(y), and (due to symmetry) p(y|x = −1) = a(−y).
Note that the log-likelihood distribution of p(y|x) is exactly a(y), and thus a(y) can be
represented by a channel.

For two BMS channels p(y|x) and q(z|x), they are ordered by degradation as p(y|x) ≺
q(z|x) if there exists a BMS channel r(z|y), i.e. q(z|x) is the composition of p(y|x) and
r(z|y). p

Claim 1. The ai(y) are monotonically decreasing under degradation, i.e. a1(y) ≻ a2(y) ≻
. . . ≻ ai(y) ≻ . . .. This is similar in the case of BEC, where we had x1 > x2 > . . . > xi > . . ..

Claim 2. Given two channels AWGN(σ) and AWGN(σ′), we have that ai(y;σ) ≺ ai(y, σ′).
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