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1 Introduction

Gibbs distributions, and methods to study them, play a fundamental role in problems of
modern coding and constraint satisfaction. They can be viewed as purely mathematical
objects, but some insight can be gained by understanding why they are natural objects in
the context of physical models. This is the goal of this chapter.

Statistical mechanics describes the behavior of large systems or ”macroscopic systems”
that are composed of a large number of degrees of freedom. For example condensed matter
systems are composed of O(1023) atoms, molecules, magnetic moments, spins, etc. Many
problems of coding and computer science also involve a large number of degrees of freedom
(e.g. bits) also. A precise knowledge and description of the motion of each molecule in a
macroscopic system would be impossible and is in fact inessential to the understanding of
the macroscopic properties of the system. The general approach of statistical mechanics is
to replace the fully deterministic description in terms of laws of motion by a probabilistic
description based on appropriate probability distributions, that one has to guess.1

The correct probabilistic description is known only for systems which have reached ther-
mal equilibrium, for which the macroscopic laws of usual thermodynamics apply. Gibbs dis-
tributions introduced in this chapter only describe those. We will derive Gibbs distributions
from two “natural” principles which one can take as the definition of “thermal equilibrium”.

Systems that do not fall in this category are said to be “out of equilibrium” and their
fundamental probabilistic description(s) (if this is even possible) is not elucidated (such
systems range all the way from stationary heat or electric flows up to the more fancy living
systems).

The Gibbs measures that we seek do not depend on the detailed form of the microscopic
dynamics for the degrees of freedom (the equations of motion of Newton for classical particles
or of Heisenberg for a quantum system) but only on the fact that there exist conserved
quantities. In fact even if the dynamics is unknown, or unspecified, or random, we can
write down the Gibbs measures simply in terms of the conserved quantities.

The prime example of a conserved quantity is the energy of an isolated system. We
will stick to the simple case where there is only one conserved quantity, namely the energy.
It will also be useful to have a concrete working example in mind. The following is a toy
model which turns out to be one of the most important and most studied models of classical
statistical mechanics. More will be said about it in the third lecture.

Example 1 (Lattice gas model) Replace continuum space by a discrete d-dimensional
grid (see figure 1, d = 3 may seem the most relevant case but other values of d are of also

1At the turn of the 19th to 20th century this constituted an important shift of paradigm, which emerged
through the works of Helmholtz, Maxwell, Boltzmann, Planck, Gibbs, Einstein and others.
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Figure 1: The lattice gas model. At most one particle occupies a lattice site. There is an
energy cost for neighboring particles.

of great importance both theoretically and practically). Particles (e.g. atoms) can occupy
the vertices of this grid and at most one atom is present on a vertex. We will call V the
set of vertices and E the set of edges. The configuration of the system is described by a
vector (x1, · · · , x|V |) where xi = 1 if an atom is present at vertex i and xi = 0 if vertex i is
empty. We suppose that only neighboring atoms interact and that the interaction energy is
−J (J < 0 corresponds to repulsion and J > 0 to attraction). The total energy function,
also called Hamiltonian in physics, or cost function in computer science, is then

H(x1, . . . , x|V |) = −J
∑

(i,j)∈E

xixj − µ
∑
i∈V

xi, (1)

The real number µ is a cost associated to the presence or absence of a particle (this might
be a chemical affinity or a chemical potential). The detailed dynamics xi(t), i ∈ V as a
function of time t is not specified here. We only assume that the dynamics is such that the
total energy, call it E, of the system is conserved. This means that at any time t we have

H(x1(t), . . . , x|V |(t)) = E (2)

The set of configurations satisfying this equation is called the energy surface and is denoted
ΓE. Note that ΓE ⊂ {0, 1}|V |.

Example 2 (Ising model) The Ising model is very similar. there the degrees of freedoms
describe magnetic moments localized at the sites of a crystal, here our grid (V,E). These
are modeled by the so-called spin variable si = ±, i ∈ V . The Hamiltonian is

H(s1, . . . , s|V |) = −J
∑

(i,j)∈E

sisj − h
∑
i∈V

si, (3)
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Mathematically speaking the lattice-gas and Ising models are equivalent. One can go from
one to the other simply by performing the change of variable xi = 1−si

2 or (−1)xi = si and
redefining the interaction constants.

Remark. Real world systems have continuous degrees of freedom. For classical particle sys-
tems, {0, 1}|V | is replaced by the phase space which is the set of all positions and velocities,
and ΓE really is a variety (surface). For magnetic systems spins si = ± are replaced by
vectors. For quantum systems degrees of freedoms such as positions, velocities and spins
are non commuting operators (matrices). Remarkably in all these mathematical settings
the concepts of statistical mechanics are the same than in the discrete setting, which is our
concern here.

2 Two postulates

There is no entirely logical or unique way of introducing a new physical law. Here we will
derive the Gibbs distributions, starting from two economical postulates. The first one may
seem reasonable. The second one is the mark of Boltzmann’s genius (his famous simple
formula (12)). The theory is validated by its experimental success.

2.1 The Ergodic Hypothesis

Let T be the experimental time scale on which we measure an observable quantity φ(x1(t), . . . , x|V |(t))
and let τ the microscopic dynamical time scale. In practice T � τ . We assume that the
result of the measure is an average

1
T

∫ T/2

−T/2
φ(x1(t), . . . , x|V |(t)) ≡ 〈φ〉. (4)

For an isolated system, the state (of the system) visits all configurations (in the lattice-gas,
(x1, . . . , x|V |) ∈ {0, 1}|V |) that are compatible with conservation of energy, ΓE = {x|H(x) =
E}. This set is called the energy surface of the isolated system. The ergodic hypothesis
assumes that the system spends an equal amount of time around each configuration on the
energy surface. More precisely, under the assumptions that: i) the experimental time scale
is much larger than the microscopic one, τ/T → 0, ii) the energy density is fixed E/|V | = e,
iii) and the size of the system is very large |V | → ∞, the above average can is calculated
as follows:

lim
1
T

∫ T/2

−T/2
dt φ(x1(t), . . . , x|V |(t)) =

∑
x∈{0,1}|V | I(x ∈ ΓE)φ(x)∑

x∈{0,1}|V | I(x ∈ ΓE)
, (5)

where x = (x1, . . . , x|V |) and ΓE = {x|H(x) = E} is called the energy surface.

Definition 1 We define the micro-canonical measure as

µmicro(x) =
I(x ∈ ΓE)∑

x∈{0,1}|V | I(x ∈ ΓE)
. (6)
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The ergodic hypothesis states that the time average of a measured quantity can be
computed by taking the expected value with respect to the micro-canonical measure. We
have replaced the detailed dynamical information by a measure.

From a modern perspective this hypothesis should be viewed at best as an attempt to
justify the introduction of the micro-canonical measure. For all practical purposes, when
the system has reached thermal equilibrium one can calculate expectation values thanks to
the micro-canonical measure.

It is not obvious that the identity (5) should be exactly true, or that it is even necessary.
We have not specified very precisely how we take the limits τ

T → 0 and |V | → +∞; we
have not specified to which class of functions φ we want to apply the hypothesis; we have
not specified what are the initial conditions of the trajectory x(t); etc. All these daunting
problems have been the subject of much debates and efforts and the hypothesis has played
an important historical role. In mathematics, an outcome of these efforts is a deep branch
of mathematics called ”ergodic theory”. The hypothesis has been proven for simple systems
with only a few particles (a finite number of them) and simple dynamical laws. The first
proof goes back to Sinai (around 1970) for one particle in a billiard shaped region, whose
dynamics is given by straight lines reflecting at the billiard walls, and has since then been
extended to a finite fixed number of hard spheres in the billiard. Note that such systems with
a small number of degrees of freedom are not at all the concern of (traditional) statistical
mechanics.

We summarize this discussion by formulating our first principle:

Postulate 1. For a macroscopic isolated system with conserved energy, measurable quan-
tities can be calculated as averages with respect to the micro-canonical measure.

2.2 Boltzmann’s Principle

Set
W (E) =

∑
x∈{0,1}|V |

I(x ∈ ΓE). (7)

For the systems of interest the above expression has an exponential behavior as the size of
the system grows. ∑

x∈{0,1}|V |

I(x ∈ ΓE) ' exp(S(E)), (8)

with S(E) = O(|V |). Define the Boltzmann entropy as

SBoltz(E) = lnW (E). (9)

A priori, this is a purely mathematical combinatorial quantity.

Example 3 Let us consider the lattice gas model introduced in the previous example for
the simple case J = 0. Pick E/µ lattice nodes among |V | nodes with the state +1 and the
rest 0. Hence,

W (E) =
(
|V |
E/µ

)
' exp

(
|V |h2(

E

µ|V |
)
)

, (10)

2 - 4



where h2(·) is the binary entropy function. In the infinite size limit we have

s(e) = lim
|V |→∞
E/|V |=e

S(E)
|V |

= h2

(
E

µ|V |

)
= h2

(
e

µ

)
, (11)

where e = E/|V |. Note that this is a concave function (for physicaly sensible Hamiltonians
the Boltzmann entropy is a concave of e; this is not always the case in computer science
and coding problems with hard constraints).

Postulate 2. (Boltzmann) The thermodynamic entropy measured in an experiment2 and
the Boltzmann entropy (a pure counting object) are equal. More precisely,

SThermo = kBSBoltz, (12)

where
∂SThermo

∂E
=

1
T

. (13)

and T is the temperature measured by a thermometer. Here kB is Boltzmann’s constant that
relates temperature units of the thermometer with energy units. It is not really a fundamental
constant: one can always measure temperature in units of energy and set kB = 1 (this is
not usual practice though).

This postulate makes the connection between statistical mechanics and thermodynamics.
It allows to compute thermodynamic quantities such as thermodynamic entropy and free
energy (intuitively free energy is the amount of energy that can be transformed into work
while maintaining the temperature and other quantities - volume or pressure - constant).

3 Gibbs Measure

The micro-canonical measure described earlier, only characterizes an isolated system. How-
ever, real macroscopic systems are not isolated. One should also notice that in practice, in
order to reach thermal equilibrium it is necessary to put systems in contact with a thermal
bath. For simplicity, let us again take our lattice gas model where we have a large isolated
system denoted by the graph G = (V,E). It is best to think of G as being infinite, G = Zd.
We assume that this large system has reached thermal equilibrium with temperature T .
Therefore, we know that it is described by

µmicro(x) =
I(x ∈ ΓE)∑

x∈{0,1}|V | I(x ∈ ΓE)
. (14)

Now, let us consider a much smaller but still macroscopic system S ⊂ V (see Figure 2).
The main question we answer in this section is what is the induced measure on S? The

2We do not review here what thermodynamic entropy is and how it is measured. This was understood
by Carnot, Clausius, Joule, Helmholtz and others in their work on heat engines in the 19th century. For us,
equation (13) defines SThermo.
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Figure 2: The system S is embedded in a thermal bath V . The total system V is considered
as an isolated system and its total energy E is conserved. We compute the induced measure
on S.

probability that the configuration of this smaller systems is x1, . . . , x|S| reads

µind(x1, . . . , x|S|) =
∑

x|S|+1,...,x|V |

µ(x1, . . . , x|V |) =

∑
x|S|+1,...,x|V |

I(x ∈ ΓE)∑
x1,...,x|V |

I(x ∈ ΓE)
. (15)

The total energy can be written as,

E = H(x1, . . . , x|V |)
= HS(x1, . . . , x|S|) +HV \S(xS+1, . . . , x|V |) +Hint,

where Hint is the term capturing the interactions between particles in the sets S and V .
Note that in general we have HS = O(|S|), HV \S = O(|V \ S|) and Hint = O(|∂S|). Since
O(|V \ S|) � O(|S|) � O(|∂S|), the term Hint can be neglected from the above expression
for energy. Note however that this is the term that allows S to reach thermal equilibrium
through the interactions with the bath. For fixed x1, . . . , x|S| we get

µind(x1, . . . , x|S|) =

∑
x|S|+1,...,x|V |

I((x|S|+1, . . . , x|V |) ∈ ΓE−HS(x1,...,x|S|))∑
x1,...,x|S|

∑
x|S|+1,...,x|V |

I((x|S|+1, . . . , x|V |) ∈ ΓE−HS(x1,...,x|S|))

=
exp(S(E −HS(x1, . . . , x|S|))∑

x1,...,x|S|
exp(S(E −HS(x1, . . . , x|S|))

(a)
=

exp(S(E)−HS(x1, . . . , x|S|) ∂S
∂E + . . . )∑

x1,...,x|S|
exp(S(E)−HS(x1, . . . , x|S|) ∂S

∂E + . . . )

(b)
=

exp
(
−HS(x1,...,x|S|)

kBT

)
∑

x1,...,x|S|
exp

(
−HS(x1,...,x|S|)

kBT

) ,
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where in (a) we used the Taylor expansion and in (b) the Boltzmann’s principle. Th e
resulting measure is nothing else than the Gibbs measure.

Definition 2 (Gibbs measure) We define the Gibbs measure of the system S at thermal
equilibrium with a bath of temperature T as

µGibbs(x1, . . . , x|S|) =
1
Z

exp
(
−
HS(x1, . . . , x|S|)

kBT

)
, (16)

where the normalizing factor Z is called the partition function

Z =
∑

x1,...,x|S|

exp
(
−
HS(x1, . . . , x|S|)

kBT

)
Remark. In this derivation an important assumption was that Hint between the system
and its complement can be neglected. For finite dimensional systems with local (i.e. finite
range, or fast decaying with distance) interactions between particles this is always true.
However if one deals with infinite dimensional systems (meaning here that d → +∞ or
that the graph G cannot be metrically embedded in a finite dimensional space) or if the
interactions are very long ranged this assumption may be problematic.

4 Free Energy, Entropy and Equivalence of Ensembles

The formulation in terms of the Gibbs measure above is also called canonical ensemble
formulation. In practice which ensemble should one choose for the theoretical description
of a large system: the micro-canonical or the canonical ? No system is really isolated and
it would seem that the canonical description is more natural. However for large systems
the energy fluctuations are negligible (of the order of the surface to be compared to the
volume) and the micro-canonical can also be used. It is a matter of convenience which one
to choose3 and there are rules that allow to pass from one ensemble to another.

In the micro-canonical ensemble one computes the entropy

s(e) = lim
|V |→∞
E/|V |=e

1
|V |

lnW (E). (17)

In the canonical ensemble the relevant quantity is the free energy

f(T ) = −kBT lim
|S|→∞

1
|S|

lnZ. (18)

One can show that free energy and entropy are related by a Legendre transformation,

f(T ) = min
e

(e− kBTs(e)). (19)

Note that f(T ) is a concave function of T . Since s(e) is concave, the Legendre transform
can be inverted, and the entropy recovered from the free energy. This is what is meant by
equivalence of ensembles.

3In principle. An important condition is locality of interactions.
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For completeness let us sketch the derivation of the last relation. The partition function
can be written as ∑

x1,...,x|S|

exp
(
−
HS(x1, . . . , x|S|)

kBT

)
=

∑
E

W (E) exp(− E

kBT
)

≈ |S|
∫

de e
−|S|( e

kBT
−s(e))

Taking the logarithm on both sides and going to the infinite size limit yields

lim
|S|→+∞

1
|S|

lnZ = −min
e

(
e

kBT
− s(e)) (20)

which is equivalent to the relationship between f(T ) and s(e).

Remark. According to the physical situation, other measures or ensembles may be more
convenient or relevant. When there are many conserved quantities besides energy, call them
Ij(x), j = 1, ..., g, one can take for the statistical mechanics description of the system the
measure (or ensemble),

µ(x) =
1
Z

exp(−
g∑

j=1

µjIj(x)) (21)

where the multipliers µj have thermodynamic interpretations. The multiplier associated
to conserved energy is the inverse temperature; the one associated to conserved particle
number is the chemical potential; the one associated to conserved volume is pressure, etc....
All the Legendre transformations between relevant thermodynamic quantities can be derived
similarly than above.

5 Marginals, thermodynamic limit

Usually the Gibbs measure contains too much information. It is often enough to calculate
the first two marginals. More precisely,

µi(xi) =
∑
∼xi

µGibbs(x1, . . . , x|S|), (22)

and
µi,j(xi, xj) =

∑
∼xi
∼xj

µGibbs(x1, . . . , x|S|). (23)

It is usually enough to know the averages4

〈xi〉 =
∑
xi

xiµi(xi) =
∑

x1,...,x|S|

xi µGibbs(x1, . . . , x|S|), (24)

4The bracket 〈−〉 is the standard notation for expectations with respect to Gibbs distributions.
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and
〈xixj〉 =

∑
xi,xj

xixjµi,j(xi, xj) =
∑

x1,...,x|S|

xixj µGibbs(x1, . . . , x|S|). (25)

Note that for binary variables xi = 0, 1 (or ±1) these averages suffice to reconstruct the
marginals µi and µi,j .

The following covariance is usually called a correlation function

Ci,j = 〈xixj〉 − 〈xi〉〈xj〉. (26)

A simple but fundamental fact, is that these quantities can all be computed once the free
energy is known. Let us modify slightly the Gibbs measure5 by introducing extra ”source”
factors,

µ
λ
Gibbs(x1, . . . , x|S|) =

exp
(
−βHS(x1, . . . , x|S| +

∑|S|
i=1 λixi)

)
Zλ

, (27)

where Z̃ is the normalization factor. The reader should check the very important identities

〈xi〉λ =
∂

∂λi
lnZλ, (28)

and

〈xixj〉λ − 〈xi〉λ〈xj〉λ =
∂2

∂λi∂λj
lnZλ. (29)

To calculate the original quantities namely, 〈xi〉 and 〈xixj〉, we only need to compute lnZλ

near λ = 0. Let us warn the reader that it sometimes happens that lnZ is known at λ = 0
but that for λ small the problem is orders of magnitude harder.

Statistical mechanics describes macroscopic systems. This regime is captured by com-
puting the free energy and marginals in the infinite size limit,

lim
|S|→+∞

1
|S|

lnZ, lim
|S|→+∞

〈xi〉, lim
|S|→+∞

〈xixj〉. (30)

This limit is called the thermodynamic limit. One of the ambitious mathematical statistical
mechanics is to make sense of the thermodynamic limit for the Gibbs distribution itself. The
reader can appreciate that this is not an obvious problem simply by the fact that an infinite
number of variables will be involved and that the limits of the numerator and denominator
do not make sense. The idea is to reconstruct the full measure from the limiting marginals.
It turns out that the limits of marginals depend on boundary conditions or added infinites-
imal perturbations (such as the λ → 0 terms) and as a result the limiting Gibbs measures
are not necessarily unique. This is the case precisely when phase transitions are present: a
unique microscopic Hamiltonian can lead to many possible phases of matter (water-ice-gas)
each being described by one of the limiting Gibbs measures. This fundamental feature of
Gibbs distributions gained recognition only in the 1940-50’s through the works of Bethe,
Peierls, Onsager and has developed into a mathematical theory, beginning in the late 1960’s
(see history of Ising model in lecture 3).

5Here we use the standard notation β = 1
kBT
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