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1 Introduction

We want to compute the free energy and phase transition thresholds of graphical models
such as those occurring in coding & K-SAT problem. Note that for Coding this corresponds
to analyze MAP decoding. For K-SAT this corresponds to analyzing the SAT-UNSAT
threshold behavior.

For general graphical models (or statistical mechanics models) this is an impossible
task. An important approximation philosophy is the so-called ”mean-field theory”. For
models defined on sparse graphs, that are locally tree-like, a form of this theory developed
by Bethe & Peierls is very well adapted, and will be developed in this lecture. Note that
this is already a ”sophisticated” version of the most basic mean field theory.

As we will see the Bethe-Peierls theory involves fixed point equations that are the same
as those occurring in Belief-Propagation. Their use and to some extent interpretation are
however different. Note that there is clash of initials (BP) that is solely due to an historical
accident and may create a lot of confusion.

Their exist class of models for which the ”mean field theory” (a priori an approximate
method) gives the exact solution. We have already seen such a model namely the CWmodel.
Such models are commonly called ”mean-field models”. Such models are important because
they offer a useful guide for the development of more ambitious mean field approximations
for more complicated models.

It is conjectured, and partly proven, that the Bethe-Peierls mean field theory, is exact
for LDPC codes on BMS channels. In other words it allows to correctly calculate the
MAP threshold and performance curves. Since the Bethe-Peierls theory involves the same
fixed point equations than Belief-Propagation a consequence is that there is a very intimate
connection between MAP and BP decoding. This will be explained further in this lecture.
We immediately stress that this connection does not make the decoding task any easier in
the noise region εBP < ε < εMAP .

Concerning K-SAT we will see that pure Bethe-Peierls method is not exact. To improve
upon it one has to go one-step further and develop an even more sophisticated mean field
theory called ”cavity method” or ”replica method”. This will be undertaken last two lectures
of this course.

2 Free energy of graphical models on trees

Take

µ (s1, ..., sn) =
1

Z

∏
a

fa (s∂a) ,

on a tree.
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We want to express

f = − 1

N
lnZ,

as a functional of the marginals as for the CW model. As we will see the marginals that
are involved are

µi (si) =
∑
∼si

µ (s1, ..., sN ) & µa (s∂a) =
∑
∼s∂a

µ (s1, ..., sN ) .

Claim 1 On a tree we have

µ (s1, ..., sN ) =
∏
a

µa (s∂a)
∏
i

(µi (si))
1−di ,

where di is the degree of node i.

Proof. By induction over number M of clauses a.

• M = 1 clause

µ (s∂a) = µa (s∂a)µi (si)
1−1 trivially.

• Induction hypothesis: for any tree like graphical model with M clause we have the
factorization

µ (s1, ..., sN ) =
∏
a

µa (s∂a)
∏
i

µi (si)
1−di ,

where µa (s∂a) & µi (si) are the marginal of µ (s1, ..., sN ).

• Add one clause in such a way that new model with M + 1 clauses is a tree.
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(cases where s∂a∖i are absent or where is not connected to old graph are
treated in the same way than what follows).

Pr
(
s∂c\i, s1, ..., sN

)
= Pr

(
s∂c\i | s1, ..., sN

)
Pr (s1, ..., sN ) .

Here Pr is computed with the new graphical model measure

µnew

(
s∂c\i, s1, ..., sN

)
=

1

Znew
fc (s∂c)

∏
a

fa (s∂a) .

Now we have

Pr
(
s∂c\i | s1, ..., sN

)
= Pr

(
s∂c\i | si

)
=

Pr (s∂c)

Pr (si)
=

µnew
c (s∂c)

µnew
i (si)

.

So:
µnew = µnew

c (s∂c) (µ
new
i (si))

−1 Pr (s1, ..., sN ) .

Pr (s1, ..., sN ) is the marginalization of new model with respect to variables s∂c\i. Thus

Pr (s1, ..., sN ) =
1

Znew

∑
s∂c\i

fc (s∂c)︸ ︷︷ ︸
f̃c(si)

∏
a

fa (s∂a)

≡ 1

Znew
f̃c (si)

∏
a

fa (s∂a) .

This distribution corresponds to a graphical model of the type:
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This model still has M + 1 clauses. However clause c can be absorbed in clause b:

Pr (s1, ..., sN ) =
1

Znew
f̃c (si)

∏
a

fa (s∂a)

=
1

Znew
f̃c (si) fb (s∂b)

∏
a̸=b

fa (s∂a)

=
1

Znew

˜̃
f b (s∂b)

∏
a ̸=b

fa (s∂a) .

This graphical model now has M clauses:

So we can apply to it the induction hypothesis

=⇒ Pr (s1, ..., sN ) =
∏
a

µa (s∂a)
∏
i

(µi (si))
1−di .

Here µa & µi are the marginals of Pr (s1, ..., sN ). But those marginals are also those
of µnew

(
s∂c\i, s1, ..., sN

)
. So in the above formula we have µc = µnew

a & µi = µnew
i .

Finally we get:

µnew = µnew
c (s∂c)µ

new
i (si)

−1
∏
a∈G

µnew
a (s∂a)

∏
j∈G

µnew
j (sj)

1−dj

= µnew
c (s∂c)µ

new
i (si)

1−(di+1)
∏
a∈G

µnew
a (s∂a)

∏
j∈G

µnew
j (sj)

1−dj .

Claim 2 Take any Gibbs distribution in the form:

µ (s1, ..., sN ) =
1

Z
exp (−H (s1, ..., sN )) .

The free energy is equal to the difference of the average energy and the average entropy:

F = − logZ = ⟨H⟩µ − S [µ] .

Precisely,

⟨H⟩µ =
∑

s1,...,sN

H (s1, ..., sN )µ (s1, ..., sN )

S [µ] = −
∑

s1,...,sN

µ (s1,..., sN ) lnµ (s1, ..., sN ) .
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Proof.

S [µ] = − 1

Z

∑
s1,...,sN

e−H(s1,...,sN ) ln
exp (−H (s1, ..., sN ))

Z

=
1

Z

∑
s1,...,sN

H (s1, ..., sN ) exp (−H (s1, ..., sN )) + lnZ

=⇒ lnZ = S [µ]− ⟨H⟩µ .

Remark 3 at this point it is worth mentioning the ”variational principle” that states that
the Gibbs distribution minimizes the Gibbs functional

F [ν] = ⟨H⟩ν − S [ν] .

If µ is the Gibbs distribution associated to the Hamiltonian H, it satisfies

F [µ] ≤ F [ν] for all ν.

For our graphical model the Hamiltonian is∏
a

fa (s∂a) = exp (−H (s1, ..., sN )) .

Thus H (s1, ..., sN ) = −
∑

a ln (fa (s∂a)) .

F = ⟨H⟩µ − S [µ]

= −
∑
a

∑
s1,...,sN

(ln fa (s∂a))µ (s1, ..., sN )

+
∑

s1,...,sN

µ (s1, ..., sN ) ln

(∏
a

µa (s∂a)
∏
i

µi (si)
1−di

)
= −

∑
a

∑
s1,...,sN

(ln fa (s∂a))µ (s∂a)

+
∑
a

∑
s1,...,sN

µ (s1, ..., sN ) (ln (µa (s∂a)))

+
∑
i

(1− di)
∑

s1,...,sN

µ (s1, ..., sN ) (ln (µi (si)))

=
∑
a

∑
s∂a

µa (s∂a) lnµa (s∂a) +
∑
i

(1− di)
∑
si

µi (si) lnµi (si)

−
∑
a

∑
s∂a

µ (s∂a) ln fa (s∂a) .

Corollary 4 on a tree graphical model the free energy can be expressed as

F =
∑
a

∑
s∂a

µa (s∂a) ln
µa (s∂a)

fa (s∂a)
+
∑
i

(1− di)
∑
si

µi (si) lnµi (si)
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This expression can also be phrased in term of edge messages. Indeed we have seen that
on a tree the marginals are exactly given

µi (si) ∝
∏
a∈∂i

νa→i (si)

µa (s∂a) ∝ fa (s∂a)
∏
i∈∂a

νi→a (si)

where νa→i, νi→a are a set of messages associated to edges of the graph. These messages
are the (unique on a tree) solution of BP equation

νi→a (si) =
∏

b∈∂i∖a

νb→i (si)

va→i (si) =
∑
∼si

fa (s∂a)
∏

j∈∂a∖i

νj→a (sj)

Some algebra leads to the expression in terms of messages:

F =
∑
a

Fa +
∑
i

Fi −
∑
(i,a)

Fia

We get three contributions to the total free energy:

Fa = ln

(∑
s∂a

fa (s∂a)
∏
i∈∂a

νi→a (si)

)

Fi = ln

(∑
si

∏
b∈∂i

νb→i (si)

)

Fia = ln

(∑
si

νi→a (si) νa→i (si)

)

3 Notion of Bethe free energy for general graphical models

Consider a general graphical model, not necessarily tree like. Consider the set of all edges E
and associate to each edge (j, a) distributions (or ”messages”) called νj→a (xj) & νa→j (xj).
For the moment these are not necessarily the BP messages. The only constraint on these
distributions are that they are normalized to 1.

Definition 5 The Bethe free energy functional is by definition:

FBethe [{νj→a, νa→j}] ≡ Fa [{νj→b}] + Fj [{νj→b}]− Faj [{νj→a,νa→j}] .
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with

Fa [ν] = ln

(∑
s∂a

fa (s∂a)
∏
i∈∂a

νj→a (si)

)

Fj [ν̂] = ln

∑
sj

∏
b∈∂j

ν̂b→j (sj)


Faj [ν, ν̂] = ln

∑
sj

νj→a (sj) ν̂a→j (sj)

 .

Proposition 6 The stationary points of the Bethe free energy satisfy the BP fixed point
equation and conversely fixed points of BP are stationary points of the Bethe free energy.

Remark 7 In this proposition by ”stationary points” we mean ”interior stationary points”.

Proof. Introduce the Lagrangian (we consider only interior stationary points).

L
(
ν, ν̂, λ, λ̂

)
= F (ν, ν̂)−

∑
ai

λa→i

(∑
si

ν̂a→i (si)− 1

)
−
∑
ai

λi→a

(∑
si

νi→a (si)− 1

)
.

Look at stationary points of L

δL

δν̂a→i (si)
= 0 =⇒ λ̂a→i =

ν̂a→i (si)∑
si
νi→a (si) ν̂a→i (si)

−
∑

∼si
fa (s∂a)

∏
j∈∂a∖i νj→a (sj)∑

s∂a
fa (s∂a)

∏
j∈∂a νj→a (sj)

.

δL

δνi→a (si)
= 0 =⇒ λi→a =

νi→a (si)∑
si
νi→a (si) ν̂a→i (si)

−
∏

b∈∂i∖a ν̂b→i (si)∑
si

∏
b∈∂i ν̂b→i (si)

.

δL

δλ̂a→i

= 0 =⇒
∑
si

ν̂a→i (si) = 1.

δL

δλi→a
= 0 =⇒

∑
si

νi→a (si) = 1.

Let us show that λ̂a→i = λi→a = 0 (so that the normalization constraint is trivially en-
forced). Multiply the first two equations by νi→a (si) & ν̂a→i (si). Then sum over si. This
implies:

λ̂a→i

∑
si

νi→a (si) = 0

λi→a

∑
si

ν̂a→i (si) = 0.

Because of the last two equations we get λ̂a→i = λi→a = 0. Thus stationary points of

L
(
ν, ν̂, λ, λ̂

)
are:

λ̂a→i = 0;λi→a = 0 & ν, ν̂ satisfy BP equations.
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ν̂a→i (si) ∝
∑
∼si

fa (s∂a)
∏

j∈∂a∖i

νj→a (sj)

νi→a (si) ∝
∏

b∈∂i∖a

ν̂b→i (si) .

Since λ & λ̂ = 0 at a stationary point we have

0 =
δL

δνBP
=

δF

δνBP
−
∑
ai

λ̂sta
ai −

∑
i

λsta
i︸ ︷︷ ︸

=0

=⇒ idem for δF
δν̂BP

. Thus

δF

δν

∣∣∣∣
ν=νBP

= 0 &
δF

δν̂

∣∣∣∣
ν̂=ν̂BP

= 0

It is interesting to consider the special case of binary variables. We work directly in the
space of binary distribution by parametrizing:

νi→a (si) =
ehi→asi

2 coshhi→a
=

1

2
(1 + si tanhhi→a)

ν̂a→i (si) =
eĥa→isi

2 cosh ĥa→i

=
1

2

(
1 + si tanh ĥa→i

)
The Bethe functional now becomes:

FBethe

[
h, ĥ

]
≡ Fa + Fi − Fai.

Fa = ln

∑
s∂a

fa (s∂a)
∏
j∈∂a

1

2
(1 + sj tanhhj→a)


Fi = ln

∑
sj

∏
b∈∂j

1

2

(
1 + sj tanh ĥb→j

)
Fai = ln

∑
sj

1

2

(
1 + sj tanh ĥa→j

) 1

2
(1 + sj tanhhj→a)


= ln

(
1

2

(
1 + tanh ĥa→j tanhhj→a

))
.

Stationary conditions.
δF

δ tanhhj→a
= 0 &

δF

δ tanh ĥa→j

= 0

Proof.
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A)

δF

δ tanhhj→a
=

∑
s∂a

sjfa (s∂a)
∏

i∈∂a∖j
1
2 (1 + si tanhhi→a)∑

s∂a
fa (s∂a)

∏
i∈∂a

1
2 (1 + si tanhhi→a)

−
1
2 tanh ĥa→j

1
2

(
1 + tanh ĥa→j tanhhj→a

)
Thus

tanh ĥa→j =

(
1 + tanh ĥa→j tanhhj→a∑

s∂a
fa (s∂a)

∏
i∈∂a

1
2 (1 + si tanhhi→a)

)

·

∑
s∂a

sjfa (s∂a)
∏

i∈∂a∖j

1

2
(1 + si tanhhi→a)

 .

From this equation, by bringing
(
tanh ĥa→j

)
on the same side we obtain:

tanh ĥa→j =

∑
s∂a

sjfa (s∂a)
∏

i∈∂a∖j
1
2 (1 + si tanhhi→a)∑

s∂a
fa (s∂a)

∏
i∈∂a∖j

1
2 (1 + si tanhhi→a)

.

Since the left hand side is equal to∑
j

sj ν̂a→j (sj) .

and the right hand side is equal to

∑
sj

sj

(∑
∼sj

fa (s∂a)
∏

i∈∂a∖j νi→a (si)∑
s∂a

fa (s∂a)
∏

i∈∂a∖j νi→a (si)

)
.

we see that the stationarity condition is equivalent to:

ν̂a→j (sj) =
∑
∼sj

fa (s∂a)
∏

i∈∂a∖j

νi→a (si) .

one of the two BP equations.

B) δF

δ tanh ĥa→j
= 0 the calculation is similar.

δF

δ tanh ĥa→j

=

∑
sj
sj
∏

b∈∂j∖a
1
2

(
1 + sj tanh ĥb→j

)
∑

sj

∏
b∈∂j

1
2

(
1 + sj tanh ĥb→j

) − tanhhj→a

1 + tanh ĥa→j tanhhj→a

.

Thus

tanhhj→a =

 1 + tanh ĥa→j tanhhj→a∑
sj

∏
b∈∂j

(
1 + sj tanh ĥb→j

)
∑

sj

sj
∏

b∈∂j∖a

(
1 + sj tanh ĥb→j

)
.
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Now isolate (tanhhj→a) on one side and deduce:

tanhhj→a =

∑
sj
sj
∏

b∈∂j∖a
1
2

(
1 + sj tanh ĥb→j

)
∑

sj

∏
b∈∂j∖a

1
2

(
1 + sj tanh ĥb→j

) .

The left hand side is
∑

sj
sjνj→a (sj). Thus this equation is equivalent to the second

BP equation:

νj→a (sj) =

∏
b∈∂j∖a ν̂b→j (sj)∑

sj

∏
b∈∂j∖a ν̂b→j (sj)

.
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