
Statistical Physics for Communication and Computer Science 24 Feb. 2011

Lecture Notes 1: Models and Questions

Lecturer: Lecture was given by prof. Urbanke Scribe:Mahdi Jafari

1 Introduction

In this lecture we will be going to discuss about the main objective of this course. We start
this course by introducing two different types of problems; the satisfiability problems and
the coding problems, and show that although these are two completely different problems
there are exists some similarities in their nature. To this end, we use different tools from
statistical physics in order to understand and analyze the aforementioned problems.

2 Satisfiability Problem

Suppose we are given a set of n Boolean variables {x1, . . . , xn}. Each variable xi can
takes on the values 0 and 1, where 0 means “false” and 1 means “true”. We define a
literal to be either a variable xi or its negation x̄i. A clause is a disjunction of literals,
e.g., C = x1 ∨ x2 ∨ x̄3 where the operator “∨” denotes the Boolean “or” operator. An
assignment is an assignment of values to the Boolean variables, e.g., x1 = 0, x2 = 1, and
x3 = 0. Such an assignment will either makes a clause satisfy or not satisfy. For example
the clause x1 ∨ x2 ∨ x̄3 with assignment x1 = 0, x2 = 1, and x3 = 0 evaluates to 1 which
is satisfied. A SAT formula is a conjunction of a set of clauses. For example, F which is
defined as F = (x1 ∨ x2 ∨ x̄3) ∧ (x2 ∨ x̄4) ∧ x3 is a SAT formula.

Definition 1 (SAT Problem) Given a SAT formula F on the variables {x1, . . . , xn} de-

termine the satisfiability of F , i.e., determine if there exists an assignment on {x1, . . . , xn}
so that F is satisfied. If such an assignment exists we might also want to find an explicit

instance.

Now the question is that why this is an interesting problem. In fact many real-world
problems map naturally into a SAT problem. For example we can mention to problems of
circuit design, compiler optimization, program verification, and scheduling.

The bad news is that Cook proved in 1973 that it is unlikely that there exists an algo-
rithm which solves all instances of this problem in polynomial time (in n). More precisely,
the problem is NP-complete.

We say that a formula F is k-SAT, k ∈ N, if every clause involves exactly k literals.
E.g., (x1 ∨x2 ∨ x̄3)∧ (x2 ∨x3 ∨ x̄4) is a 3-SAT formula. Then the following facts are known:

• 2-SAT formulas are easy to check for satisfiability. In the Homework 1 you will
program a simple algorithm called unit-clause propagation. It solves a 2-SAT formula
in at most 2n steps.

• The k-SAT problems are NP-complete for k ≥ 3.

1 - 1

Graphical representation of SAT formulas (using factor graphs)

Given a SAT formula F , we associate to it a bipartite graph G. The vertices of the graph
are V ∪C, where V = {x1, . . . , xn} are the Boolean variables and C = {c1, . . . , cM} are the
M clauses. There is an edge between xi and cj if and only if xi or x̄i is contained in the
clause cj . Further we draw a “solid line” if cj contains xi and a “dashed line” if cj contains
x̄i.

Example 1 As an example the graphical presentation of F = (x1 ∨x2 ∨ x̄3)∧ (x2 ∨x3 ∨ x̄4)
is shown in Fig.1. �

Figure 1: The factor graph corresponding to the SAT problem of Example 1.

Random k-SAT formulas

We will be interested in the behavior of random k-SAT formulas. So let us define an
ensemble of such formulas. The ensemble F(n, k,M) is characterized by 3 parameters: k

is the number of literals per clause, n is the number of Boolean variables, and M is the
number of clauses.

How to sample from the F(n, k, M) ensemble

We define the F(n, k,M) ensemble by the way we sample from it. To this end, pick M

clauses independently, where each clause is chosen uniformly at random from the
(

n
k

)

2k

possible clauses. Then form F as the conjunction of these M clauses.
Now let us consider the following experiment. Fix k ≥ 3 (e.g., k = 3) and sample from

the F(n, k,M) ensemble. Now we ask the following question. Is such a formula satisfiable
with high probability? It turns out that the most important parameter that affects the
answer is α = M

n
.

As you observe in Fig. 2, as n becomes larger the transition of the probability of success
becomes sharper and sharper. So it seems that it may exist a threshold behavior, i.e., there
exist a real number αk such that

lim
n→∞

P [F(n, k,M = αn) is satisfied] =

{

0 α > αk,

1 α < αk.

So we are interested in answering the following questions:

• Is there such a threshold behavior in this problem?

• If so, what is the threshold number αk for a particular k?

1 - 2

• And finally, are there good algorithms to find satisfying assignments in the regime
α < αk?

P
(s
a
ti
s
fi
a
b
il
it
y
)

Figure 2: The probability that a formula generated from the random K-SAT ensemble is
satisfied versus the clause density α.

3 Coding Problem

In this section we discuss about the other problem mentioned in §1. Let us start with
defining what a binary code is.

Definition 2 A binary block code C of length n is a collection of binary n-tuples, C =
{x1, . . . , xκ} where each xi is called a codeword.

We can narrow our attention to linear code which is defined as follows.

Definition 3 A linear binary block code is a subspace of F
n
q . Equivalently, for xi and xj,

xi, xj ∈ C, then xi − xj ∈ C. In particular xi − xi = 0 ∈ C. Since C is a subspace it has a

dimension, call it k, 0 ≤ k ≤ n. Hence, κ = |C| = 2k.

For us it will be convenient to represent C as the kernel of a (n − k) × n binary matrix
of rank n − k. This matrix is called the parity-check matrix and is usually denoted by H.
So equivalently, we may write

C =
{

x ∈ {0, 1}n : Hx⊤ = 0⊤

}

.

The factor graph associated to the parity-check matrix H (of a code C)

Assume that we have a linear code C defined by the (n− k)×n binary parity-check matrix
H. We can associate to H the following bipartite graph G. The graph G has vertices V ∪C,
where V = {x1, . . . , xn} is the set of n variable nodes corresponding to the n bits (and hence
to the n columns of H), and C = {c1, . . . , cn−k} is the set of n − k check nodes, each node
corresponding to one row of H. There is an edge between i and cj if and only if Hji = 1.

Example 2 Consider the following parity-check matrix

H =





1 0 0 1
0 1 1 1
0 0 1 1



 .

1 - 3

Figure 3: The factor graph corresponding to the parity-check matrix of Example 2.

The factor graph corresponding to H is shown in Fig. 3. �

There are three related tasks to a coding problem which we will be going to discuss each
briefly in the following.

• Encoding: Given C, a code of dimension k, we can encode k bits of information
by our choice of codewords among the 2k possibilities. More precisely, we have an
information word u, u ∈ {0, 1}k , and an encoding function g, g : {0, 1}k → C, which
maps each information word into a codeword.

Although, this function is of course crucial for real systems it only plays a minor role
for our purpose. In fact the encoding process is not a difficult task.

• Transmission (channel model): We assume that we pick a codeword x uniformly
at random from the code C. We now transmit x over a channel. This channel models
and abstracts the physical transition which takes place in a real system and typically
leads to a distortion of the transmitted signal.
Channel Model: Formally, the channel has the input alphabet X = {0, 1} and an
output alphabet Y. We assume that the channel is memoryless and that there is
no feedback. The channel is characterized by a transition probability P (y|x) where
y ∈ Yn is the output and where

P (y|x) =

n
∏

i=1

p(yi|xi),

since we assumed a memoryless channel with no feedback. As examples we can men-
tion to the following channel: BEC1, BSC2, BAWGNC3.

• Decoding: Given the output y we want to map it back to codeword x; let x̂(y)
denotes this decoding function. There are many criteria to measure the performance
of a decoding function but the most important ones are

– the block error probability: P [x̂(y) 6= x], and

– the bit error probability: 1

n

∑

P [x̂(y)i 6= xi].

Clearly, we would like to have low error probability using simple algorithms.

1Binary erasure channel.
2Binary symmetric channel.
3Binary additive white Gaussian noise channel.

1 - 4

The Gallagers’ (l, r)-regular ensemble and the configuration model

As we have done for k-SAT problem, here, we define an ensemble of codes to study their
performance under decoding algorithms. We focus on a specific ensemble of codes called
(l, r)-regular Gallager ensemble which was introduced by Gallager in 1963.

The ensemble is characterized by the triple (n, l, r), where n, l, r ∈ N, and also n l
r
∈ N.

The variable n is the length of the code, l is the variable node degree, and r is the check
node degree.

To sample from the ensemble we proceed as follows. Pick n variable nodes and n l
r

check
nodes. Each variable node has l sockets and each check node has r sockets. Number the ln

variable sockets in an arbitrary but fixed way from 1 till nl. Do the same with the nl check
node sockets. Pick a permutation π uniformly at random from the set Π of permutations on
nl letters. For i from 1 till nl, insert an edge which connect variable node socket i to check
node socket π(i). If, after construction, we delete sockets then we get a bipartite graph,
which we call the factor graph of the parity check matrix H.

The reason why we are interested in this ensemble is that the factor graph of a code
in this ensemble has only ln edges. If, on the other hand, we had picked H randomly, we
would expect 1

2
n(n − k) non-zero entries, i.e., edges in the bipartite graph. We will see

that a reasonable decoding algorithm consists of sending messages along the edges of the
graph. So few edges means low complexity and, even more importantly, we will see that
the algorithm works better if the graph is sparse.

In this context, there are some questions that we would like to investigate in this course.
These are as follows:

• What are good and efficient decoding algorithms?

• If we pick a random such code from the ensemble, how well will it perform?

• In particular, is there going to be a threshold behavior so that for large instances the
code works up to some noise level but breaks down above this level (see Fig. 4)?

• How can we compute this threshold and how does it compare to the Shanno capacity
of the channel?

P
(s

u
c
c
e
s
s
)

Channel Quality GoodBad

Figure 4: The probability of sucess of decoding the transmitted message versus the channel
quality.

1 - 5

