ECOLE POLY TECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 1 Statistical Physics for Communication and Computer Science
Homework 1 February 25, 2010, INR 113 - 9:15-11:00

This is the first in a sequence of homeworks. You can use any programming language
you like. The idea is that over the following weeks we will build up a sequence of routines
which we can reuse. We therefore recommend that you comment your code and write it
carefully.

The aim of this weeks homework is to write programs which can sample a random
bipartite graph and then to test this program for random 3-SAT instances by running a
very simple routine called unit clause propagation.

Problem 1 (Configuration Model). Let [be the variable node degree and r be the check
node degree. Pick n variable nodes and m = nl/r check nodes. Each variable node has [
sockets and each check node has r sockets. Number these sockets in a fixed but arbitrary
order from 1 to nl on both sides. Pick a random permutation from the set of permutations
on nl letters uniformly at random. Construct a bipartite graph by connecting the variable
node socket i to check node socket (7). This is called the configuration model.

Your program should take as input the parameters n, m, [and r. It should check that
the input is valid and return a bipartite graph according to this configuration model. Think
about the data structure. Later on we will run algorithms on such a graph. It will then
be necessary to loop over all nodes, refer to edges of each node, be able to address the
neighbor of a node via a particular edge and store values associated to nodes and edges.

Problem 2 (Poisson Model). Pick two integers, n and m. As before, there are n variable
nodes and m check nodes. Further, let » be the degree of a check node. For each check
node pick r variables uniformly at random either with or without repetition and connect
this check node to these variable nodes. For each edge store in addition a binary value
chosen according to a Bernoulli(1/2) random variable.

This is called the Poisson model since the node degree distribution on the variable nodes
converges to a Poisson distribution for large n.

Again, think of the data structure. We will use this model right away to run some
simple algorithm on it.

Problem 3 (Unit Clause Propagation for Random 3-SAT Instances). Generate random
instances of the Poisson model. Pick n = 10° and let r = 3. Let a be a non-negative real
number. It will be somewhere in the range [0,5]. Let m = |an].

For a given o generate many random bipartite graphs according to the Poisson model.
Interpret such a bipartite graph as a random instance of a 3-SAT problem. This means,
the variables nodes are the Boolean variables and the check nodes represent each a clause
involving 3 variables. The binary variable associated to each edge indicates whether in this
clause we have the variable itself or its negation.

For each instance you generate, try now to find a satisfying assignment in the following
greedy manner. This is called the unit clause propagation algorithm.

(i) If there is a check node in the graph of degree one (this corresponds to a unit-clause),
then choose among such check nodes uniformly at random. Remove it from the graph
together with the connected variable node and all edges emanating from this variable
node.

(ii) If no such check exists, pick a variable node uniformly at random from the graph and
sample a Bernoulli(1/2) random variable, call it X. Remove this variable node from
the graph. For each edge emanating from the variable node do the following. If X
agrees with the variable associated to this edge then remove not only the edge but
the associated check node and all its outgoing edges. If not, then remove only the
edge.

Continue the above procedure until there are no variable nodes left. If, at the end of
the procedure, there are no check nodes left in the graph (by definition all variable nodes
are gone) then we have found a satisfying assignment and we declare success. If not, then
the algorithm failed, although the instance itself might very well be satisfiable.

Plot now the probability of success for this algorithm as a function of a. You should
observe a threshold behavior. Roughly at what value of @ does the probability of success
change from close to 1 to close to 07 Hand in this plot.

