ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 24
Homework 9

Signal Processing for Communications
May 9, 2011, INF 1 - 10:15-12:00

Problem 1 (DFT Revisit).
(i) Define $Y[k]=X[k](-1)^{k}=X[k] e^{j 2 \pi \frac{k}{N}(N / 2)}$, then $y[n]=x\left[\left(n-\frac{N}{2}\right) \bmod N\right]$.

On the other hand, $X_{1}[k]=\operatorname{real}\{Y[k]\}=\frac{1}{2}\left(Y[k]+Y^{*}[k]\right)$. Since $x[n]$ is real and therefore $y[n]$ is real, $Z[k]=Y^{*}[k]=Y[-k \bmod N]$ and then, $z[n]=y[-n \bmod N]$. Thus, $x_{1}[n]=y[n]+y[-n \bmod N]=x\left[\left(n-\frac{N}{2}\right) \bmod N\right]+x\left[\left(-n-\frac{N}{2}\right) \bmod N\right]$.
(ii) $x_{1}[n]=\frac{1}{2}(y[n]+y[-n \bmod N])$ and $x_{2}[n]=\frac{1}{2}(y[n]-y[-n \bmod N])$ and since the DFT is linear function, we can say that

$$
X_{1}[k]=\frac{1}{2}(Y[k]+Y[-k \bmod N]),
$$

and

$$
X_{2}[k]=\frac{1}{2}(Y[k]-Y[-k \bmod N]) .
$$

Problem 2 (Limits of Z-transform).
(i) $X(1)=\sum_{n=-\infty}^{\infty} x[n]={ }^{(a)} \sum_{n=0}^{\infty} x[n]$
(a) is correct since $x[n]$ is causal. It shows the limit of the series $\sum_{n=0}^{\infty} x[n]$. If the ROC of $X(z)$ contains the unit circle, then it has limit and the limit is equal to $X(1)$.
(ii) $\lim _{z \rightarrow \infty} X(z)=\lim _{z \rightarrow \infty} \sum_{n=0}^{\infty} x[n] z^{-n}=x[0]$.
(iii) $\lim _{z \rightarrow \infty} z(X(z)-x[0])=x[1]$. The result follows from the fact that:

$$
\begin{aligned}
\lim _{z \rightarrow \infty} z(X(z)-x[0]) & =\lim _{z \rightarrow \infty} z\left(\sum_{n=0}^{\infty} x[n] z^{-n}-x[0]\right) \\
& =\lim _{z \rightarrow \infty} z\left(\sum_{n=1}^{\infty} x[n] z^{-n}\right) \\
& =\lim _{z \rightarrow \infty} \sum_{n=1}^{\infty} x[n] z^{-(n-1)} \\
& =\lim _{z \rightarrow \infty} \sum_{n=0}^{\infty} x[n+1] z^{-n}=x[1] .
\end{aligned}
$$

(iv) $X(z)=\sum_{n=0}^{\infty} x[n] z^{-n} \Rightarrow \frac{d X(z)}{d z}=\sum_{n=0}^{\infty}-n x[n] z^{-(n+1)}$.

Therefore, $-z \frac{d X(z)}{d z}=\sum_{n=0}^{\infty} n x[n] z^{-n}$.
It is the z -tranform of $n x[n]$.
(v) from (iv), $-z \frac{d X(z)}{d z}=\sum_{n=0}^{\infty} n x[n] z^{-n}=\sum_{n=1}^{\infty} n x[n] z^{-n}$.

Hence,

$$
\lim _{z \rightarrow \infty}-z^{2} \frac{d X(z)}{d z}=\lim _{z \rightarrow \infty} \sum_{n=1}^{\infty} n x[n] z^{-(n-1)}=\lim _{z \rightarrow \infty} \sum_{n=0}^{\infty}(n+1) x[n+1] z^{-n}=x[1]
$$

Problem 3 (Stochastic Processes).
(i)

$$
\begin{aligned}
& m_{x}=E[x[n]]=E[\sin (\omega n+\theta)]=E[\sin (\omega n) \cos (\theta)+\cos (\omega n) \sin (\theta)] \\
& \quad=\sin (\omega n) E[\cos (\theta)]+\cos (\omega n) E[\sin (\theta)] \\
& E[\sin (\theta)]=\int_{-\infty}^{\infty} \sin (\theta) f_{\theta}(\theta) d \theta=\int_{0}^{2 \pi} \sin (\theta) \frac{1}{2 \pi} d \theta=\left.\frac{-1}{2 \pi} \cos (\theta)\right|_{0} ^{2 \pi}=0 .
\end{aligned}
$$

In the same manner, $E[\cos (\theta)]=0$.

$$
R_{X}[\ell, k]=E[X[\ell] X[k]]=E\{\sin (\omega \ell+\theta) \sin (\omega k+\theta)\}
$$

We know that $\sin \left(\varphi_{1}\right) \sin \left(\varphi_{2}\right)=\frac{1}{2}\left(\cos \left(\varphi_{1}-\varphi_{2}\right)-\cos \left(\varphi_{1}+\varphi_{2}\right)\right)$. Thus,

$$
\begin{aligned}
R_{X}[\ell, k] & =E\left\{\frac{1}{2}[\cos (\omega(\ell-k))-\cos (\omega(\ell+k)+2 \theta)]\right\} \\
& =\frac{1}{2} E[\cos (\omega(\ell-k))]-\frac{1}{2} E\{\cos (\omega(\ell+k)+2 \theta)\} \\
& =\frac{1}{2} \cos (\omega(\ell-k))-\frac{1}{2} E\{\cos (\omega(\ell+k)+2 \theta)\}=\frac{1}{2} \cos (\omega(\ell-k)) .
\end{aligned}
$$

The last equality is due to

$$
\begin{aligned}
E\{\cos (\omega(\ell+k)+2 \theta)\} & =E\{\cos (\omega(\ell+k)) \cos (2 \theta)-\sin (\omega(\ell+k)) \sin (2 \theta)\} \\
& =\cos (\omega(\ell+k)) E\{\cos (2 \theta)\}-\sin (\omega(\ell+k)) E\{\sin (2 \theta)\}
\end{aligned}
$$

and $E\{\cos (2 \theta)\}=\int_{0}^{2 \pi} \cos (2 \theta) \frac{1}{2 \pi} d \theta=\left.\frac{1}{4 \pi} \sin (2 \theta)\right|_{0} ^{2 \pi}=0$.
Similarly, $E\{\sin (2 \theta)\}=0$.

Since m_{X} is fixed and $R_{X}[\ell, k]$ is only a function of $\ell-k$, we can say that $x[n]$ is a wide-sense stationary signal.
(ii) Let's first compute the impulse response of this filter.

$$
h[n]=\delta[n]+\beta \delta[n-1]
$$

Therefore,

$$
H\left(e^{j 2 \pi f}\right)=1+\beta e^{-j 2 \pi f} .
$$

On the other hand,

$$
P_{X}\left(e^{j 2 \pi f}\right)=F T\left\{R_{X}[k]\right\}=\frac{1}{2 j}[\tilde{\delta}(2 \pi f-\omega)-\tilde{\delta}(2 \pi f+\omega)] .
$$

Therefore,

$$
\begin{aligned}
P_{Y}\left(e^{j 2 \pi f}\right) & =\left|H\left(e^{j 2 \pi f}\right)\right|^{2} P_{X}\left(e^{j 2 \pi f}\right) \\
& =\left|H\left(e^{j 2 \pi f}\right)\right|^{2} \frac{1}{2 j}[\tilde{\delta}(2 \pi f-\omega)-\tilde{\delta}(2 \pi f+\omega)] \\
& =\left|H\left(e^{j \omega}\right)\right|^{2} \frac{1}{2 j}[\tilde{\delta}(2 \pi f-\omega)-\tilde{\delta}(2 \pi f+\omega)] .
\end{aligned}
$$

(iii) We should compute $P_{X}\left(e^{j 2 \pi f}\right)$:

$$
\begin{aligned}
P_{X}\left(e^{j 2 \pi f}\right) & =\sum_{k=-\infty}^{\infty} R_{X}[k] e^{-j 2 \pi f k}=\sigma^{2} \sum_{k=-\infty}^{-1} \alpha^{-k} e^{-j 2 \pi f k}+\sigma^{2} \sum_{k=0}^{\infty} \alpha^{k} e^{-j 2 \pi f k} \\
& =\sigma^{2}\left(\frac{\alpha e^{j 2 \pi f}}{1-\alpha e^{j 2 \pi f}}+\frac{1}{1-\alpha e^{-j 2 \pi f}}\right)=\sigma^{2}\left(\frac{1-\alpha^{2}}{1+\alpha^{2}-\alpha\left(e^{-j 2 \pi f}+e^{j 2 \pi f}\right)}\right)
\end{aligned}
$$

More over,

$$
\begin{aligned}
\left|H\left(e^{j 2 \pi f}\right)\right|^{2}=\left|1+\beta e^{-j 2 \pi f}\right|^{2} & =|1+\beta \cos (2 \pi f)-j \beta \sin (2 \pi f)|^{2} \\
& =\left(1+\beta^{2}+2 \beta \cos (2 \pi f)\right) .
\end{aligned}
$$

Thus,

$$
P_{Y}\left(e^{j 2 \pi f}\right)=\left(1+\beta^{2}+2 \beta \cos (2 \pi f)\right) \sigma^{2}\left(\frac{1-\alpha^{2}}{1+\alpha^{2}-2 \alpha \cos (2 \pi f)}\right) .
$$

(iv) $Y[n]$ corresponds to a white noise, if it power spectral density is a constant value for all frequencies. Therefore,

$$
P_{Y}\left(e^{j 2 \pi f}\right)=\left(1+\beta^{2}+2 \beta \cos (2 \pi f)\right) \sigma^{2}\left(\frac{1-\alpha^{2}}{1+\alpha^{2}-2 \alpha \cos (2 \pi f)}\right)=\text { const. }
$$

if and only if

$$
\frac{1+\beta^{2}+2 \beta \cos (2 \pi f)}{1+\alpha^{2}-2 \alpha \cos (2 \pi f)}=\text { const. }
$$

Hence, we can conclude that $\beta=-\alpha$.
Problem 4 (Min. Mean Squared Error Estimator*).
(i) We should verify the following three properties of inner product :

- Positivity :

$$
\langle u, u\rangle=\int u u^{*} P_{X, Y}(x, y) d x d y=\int|u|^{2} P_{X, Y}(x, y) d x d y \geq 0
$$

- Linearity:

$$
\begin{aligned}
\langle a u+b w, v\rangle=E\left((a u+b w) v^{*}\right) & =a E\left(u v^{*}\right)+b E(w v *) \\
& =a\langle u, v\rangle+b\langle w, v\rangle
\end{aligned}
$$

The above equalities are due to linearity of expectation function.

- Conjugate symmetry :

$$
\langle u, v\rangle=E\left(u v^{*}\right)=\left(E\left(u^{*} v\right)\right)^{*}=(\langle v, u\rangle)^{*}
$$

(ii) Since it is unbiased estimator,

$$
\begin{equation*}
E(X)=E(\hat{X})=E(a Y+b)=a E(Y)+b \tag{1}
\end{equation*}
$$

Since it is minimum mean squared estimator,

$$
\begin{aligned}
E\left\{(X-\hat{X})^{2}\right\} & =E\left\{X^{2}+\hat{X}^{2}-2 X \hat{X}\right\} \\
& =E\left(X^{2}\right)+E\left\{\hat{X}^{2}-2 X \hat{X}\right\}
\end{aligned}
$$

$E\left(X^{2}\right)$ is fixed and we should minimize the second component :

$$
\begin{aligned}
E\left\{\hat{X}^{2}-2 X \hat{X}\right\} & =E\left\{(a Y+b)^{2}-2 X(a Y+b)\right\} \\
& =E\left(\left(a^{2} Y^{2}+b^{2}+2 a b Y\right)-2 a X Y-2 b X\right) \\
& =a^{2} E\left(Y^{2}\right)+\underbrace{b^{2}+2 a b E(Y)-2 b E(X)}_{-b^{2} \text { from }(1)}-2 a E(X Y) \\
& =a^{2} E\left(Y^{2}\right)-2 a E(X Y)-b^{2}
\end{aligned}
$$

We know that $b=E(X)-a E(Y)=m_{X}-a m_{Y}$. Thus,

$$
E\left\{\hat{X}^{2}-2 X \hat{X}\right\}=a^{2} E\left(Y^{2}\right)-2 a E(X Y)-\left(m_{X}-a m_{Y}\right)^{2}=f(a)
$$

To minimize $E\left\{\hat{X}^{2}-2 X \hat{X}\right\}=f(a)$, we can take the derivative from $f(a)$ and set it equal to zero,

$$
\begin{aligned}
f^{\prime}(a) & =2 a E\left(Y^{2}\right)-2 E(X Y)+2 m_{Y}\left(m_{X}-a m_{Y}\right)=0 \\
& \Rightarrow a=\frac{E(X Y)-m_{X} m_{Y}}{E\left(Y^{2}\right)-m_{Y}^{2}}, \quad b=m_{X}-a m_{Y}
\end{aligned}
$$

(iii) Shortly, the subspace of random variable Y contains Y and all continuous functions $f(y)$. Assume that $p(y)$ is the minimum mean squared estimator, i.e.

$$
\arg \min _{f(y)}\langle x-f(y), x-f(y)\rangle=p(y)
$$

According to projection theorem, since $x-p(y)$ has the minimum norm for all members of subspace. $p(y)$ is projection of x on that subspace and, as we know, it is the projection iff

$$
\langle x-p(y), f(y)\rangle=0
$$

($x-p(y)$ is orthogonal with all the members of subspace)
According to hint 2, $E(X \mid Y)=g(Y)$ has such property and, therefore, $g(Y)=$ $E(X \mid Y)$ is the projection of X on the subspace of Y and it is the best minimum squared error estimator.

