
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 24 Signal Processing for Communications
Homework 9 May 9, 2011, INF 1 - 10:15-12:00

Problem 1 (DFT Revisit).

(i) Define Y [k] = X[k](−1)k = X[k]ej2π
k

N
(N/2), then y[n] = x[(n− N

2
) mod N ].

On the other hand, X1[k] = real{Y [k]} = 1
2
(Y [k] + Y ∗[k]). Since x[n] is real and

therefore y[n] is real, Z[k] = Y ∗[k] = Y [−k mod N ] and then, z[n] = y[−n mod N ].

Thus, x1[n] = y[n] + y[−n mod N ] = x[(n− N
2
) mod N ] + x[(−n− N

2
) mod N ].

(ii) x1[n] =
1
2
(y[n] + y[−n mod N ]) and x2[n] =

1
2
(y[n] − y[−n mod N ]) and since the

DFT is linear function, we can say that

X1[k] =
1

2
(Y [k] + Y [−k mod N ]),

and

X2[k] =
1

2
(Y [k]− Y [−k mod N ]).

Problem 2 (Limits of Z-transform).

(i) X(1) =
∑

∞

n=−∞
x[n] =(a)

∑
∞

n=0 x[n]
(a) is correct since x[n] is causal. It shows the limit of the series

∑
∞

n=0 x[n]. If the
ROC of X(z) contains the unit circle, then it has limit and the limit is equal to X(1).

(ii) lim
z→∞

X(z) = lim
z→∞

∑
∞

n=0 x[n]z
−n = x[0].

(iii) lim
z→∞

z(X(z)− x[0]) = x[1]. The result follows from the fact that :

lim
z→∞

z(X(z)− x[0]) = lim
z→∞

z

(
∞∑

n=0

x[n]z−n − x[0]

)

= lim
z→∞

z

(
∞∑

n=1

x[n]z−n

)

= lim
z→∞

∞∑

n=1

x[n]z−(n−1)

= lim
z→∞

∞∑

n=0

x[n+ 1]z−n = x[1].

(iv) X(z) =
∑

∞

n=0 x[n]z
−n ⇒ dX(z)

dz
=
∑

∞

n=0 −nx[n]z−(n+1).

Therefore, −z
dX(z)
dz

=
∑

∞

n=0 nx[n]z
−n.

It is the z-tranform of nx[n].



(v) from (iv), −z
dX(z)
dz

=
∑

∞

n=0 nx[n]z
−n =

∑
∞

n=1 nx[n]z
−n.

Hence,

lim
z→∞

−z2
dX(z)

dz
= lim

z→∞

∞∑

n=1

nx[n]z−(n−1) = lim
z→∞

∞∑

n=0

(n+ 1)x[n+ 1]z−n = x[1]

Problem 3 (Stochastic Processes).

(i)

mx = E [x[n]] = E [sin(ωn+ θ)] = E [sin(ωn) cos(θ) + cos(ωn) sin(θ)]

= sin(ωn)E [cos(θ)] + cos(ωn)E [sin(θ)] .

E [sin(θ)] =

∫
∞

−∞

sin(θ)fθ(θ)dθ =

∫ 2π

0

sin(θ)
1

2π
dθ =

−1

2π
cos(θ)

∣
∣
∣
∣

2π

0

= 0.

In the same manner, E [cos(θ)] = 0.

RX [ℓ, k] = E [X[ℓ]X[k]] = E {sin(ωℓ+ θ) sin(ωk + θ)} .

We know that sin(ϕ1) sin(ϕ2) =
1
2
(cos(ϕ1 − ϕ2)− cos(ϕ1 + ϕ2)). Thus,

RX [ℓ, k] = E

{
1

2
[cos(ω(ℓ− k))− cos(ω(ℓ+ k) + 2θ)]

}

=
1

2
E [cos(ω(ℓ− k))]−

1

2
E {cos(ω(ℓ+ k) + 2θ)}

=
1

2
cos(ω(ℓ− k))−

1

2
E {cos(ω(ℓ+ k) + 2θ)} =

1

2
cos(ω(ℓ− k)).

The last equality is due to

E {cos(ω(ℓ+ k) + 2θ)} = E {cos(ω(ℓ+ k)) cos(2θ)− sin(ω(ℓ+ k)) sin(2θ)}

= cos(ω(ℓ+ k))E {cos(2θ)} − sin(ω(ℓ+ k))E {sin(2θ)} .

and E {cos(2θ)} =
∫ 2π

0
cos(2θ) 1

2π
dθ = 1

4π
sin(2θ)

∣
∣
2π

0
= 0.

Similarly, E {sin(2θ)} = 0.

Since mX is fixed and RX [ℓ, k] is only a function of ℓ − k, we can say that x[n] is a
wide-sense stationary signal.

(ii) Let’s first compute the impulse response of this filter.

h[n] = δ[n] + βδ[n− 1]

Therefore,
H(ej2πf ) = 1 + βe−j2πf .

On the other hand,

PX(e
j2πf ) = FT{RX [k]} =

1

2j

[

δ̃(2πf − ω)− δ̃(2πf + ω)
]

.
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Therefore,

PY (e
j2πf ) = |H(ej2πf )|2PX(e

j2πf )

= |H(ej2πf )|2
1

2j

[

δ̃(2πf − ω)− δ̃(2πf + ω)
]

= |H(ejω)|2
1

2j

[

δ̃(2πf − ω)− δ̃(2πf + ω)
]

.

(iii) We should compute PX(e
j2πf ) :

PX(e
j2πf ) =

∞∑

k=−∞

RX [k]e
−j2πfk = σ2

−1∑

k=−∞

α−ke−j2πfk + σ2

∞∑

k=0

αke−j2πfk

= σ2

(
αej2πf

1− αej2πf
+

1

1− αe−j2πf

)

= σ2

(
1− α2

1 + α2 − α(e−j2πf + ej2πf )

)

More over,

|H(ej2πf )|2 = |1 + βe−j2πf |2 = |1 + β cos(2πf)− jβ sin(2πf)|2

= (1 + β2 + 2β cos(2πf)).

Thus,

PY (e
j2πf ) = (1 + β2 + 2β cos(2πf))σ2

(
1− α2

1 + α2 − 2α cos(2πf)

)

.

(iv) Y [n] corresponds to a white noise, if it power spectral density is a constant value for
all frequencies. Therefore,

PY (e
j2πf ) = (1 + β2 + 2β cos(2πf))σ2

(
1− α2

1 + α2 − 2α cos(2πf)

)

= const.

if and only if
1 + β2 + 2β cos(2πf)

1 + α2 − 2α cos(2πf)
= const.

Hence, we can conclude that β = −α.

Problem 4 (Min. Mean Squared Error Estimator∗).

(i) We should verify the following three properties of inner product :

- Positivity :

〈u, u〉 =

∫

uu∗PX,Y (x, y)dxdy =

∫

|u|2PX,Y (x, y)dxdy ≥ 0

- Linearity :

〈au+ bw, v〉 = E((au+ bw)v∗) = aE(uv∗) + bE(wv∗)

= a〈u, v〉+ b〈w, v〉

The above equalities are due to linearity of expectation function.
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- Conjugate symmetry :

〈u, v〉 = E(uv∗) = (E(u∗v))∗ = (〈v, u〉)∗

(ii) Since it is unbiased estimator,

E(X) = E(X̂) = E(aY + b) = aE(Y ) + b (1)

Since it is minimum mean squared estimator,

E
{

(X − X̂)2
}

= E
{

X2 + X̂2 − 2XX̂
}

= E(X2) + E
{

X̂2 − 2XX̂
}

E(X2) is fixed and we should minimize the second component :

E
{

X̂2 − 2XX̂
}

= E
{
(aY + b)2 − 2X(aY + b)

}

= E((a2Y 2 + b2 + 2abY )− 2aXY − 2bX)

= a2E(Y 2) + b2 + 2abE(Y )− 2bE(X)
︸ ︷︷ ︸

−b2 from (1)

−2aE(XY )

= a2E(Y 2)− 2aE(XY )− b2

We know that b = E(X)− aE(Y ) = mX − amY . Thus,

E
{

X̂2 − 2XX̂
}

= a2E(Y 2)− 2aE(XY )− (mX − amY )
2 = f(a)

To minimize E
{

X̂2 − 2XX̂
}

= f(a), we can take the derivative from f(a) and set

it equal to zero,

f ′(a) = 2aE(Y 2)− 2E(XY ) + 2mY (mX − amY ) = 0

⇒ a =
E(XY )−mXmY

E(Y 2)−m2
Y

, b = mX − amY

(iii) Shortly, the subspace of random variable Y contains Y and all continuous functions
f(y). Assume that p(y) is the minimum mean squared estimator, i.e.

argmin
f(y)

〈x− f(y), x− f(y)〉 = p(y)

According to projection theorem, since x−p(y) has the minimum norm for all members
of subspace. p(y) is projection of x on that subspace and, as we know, it is the
projection iff

〈x− p(y), f(y)〉 = 0

(x− p(y) is orthogonal with all the members of subspace)

According to hint 2, E(X|Y ) = g(Y ) has such property and, therefore, g(Y ) =
E(X|Y ) is the projection of X on the subspace of Y and it is the best minimum
squared error estimator.
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