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Problem 1 (Golay Sequences).

i) a) We have to show that
N−k−1∑
i=0

aiai+k + bibi+k = 2Nδ[k].

N−k−1∑
i=0

aiai+k + bibi+k =
N−k−1∑
i=0

(−1)ixi(−1)i+kxi+k + (−1)iyi(−1)i+kyi+k

=
N−k−1∑
i=0

(−1)k(xixi+k + yiyi+k)

= (−1)k
N−k−1∑
i=0

(xixi+k + yiyi+k)

= (−1)k2Nδ[k]

=

{
2N if k = 0

0 if k 6= 0

which implies that Ra(k) +Rb(k) = 2Nδ[k].

b) We compute:

N−k−1∑
i=0

x̂ix̂i+k + yiyi+k =
N−k−1∑
i=0

xN−i−1xN−i−1−k +
N−k−1∑
i=0

yiyi+k

=
0∑

j=N−1−k

xj+kxj +
N−k−1∑
i=0

yiyi+k

(a)
=

N−k−1∑
j=0

xj+kxj + yjyj+k

= 2Nδ[k]

where (a) is due to a change of variable j = N − i− 1− k.

ii) We have X
(
ej2πf

)
=
∑N−1

n=0 xne
−j2πfn. Using Parseval theorem :

+∞∑
n=−∞

xnx
∗
n =

N−1∑
n=0

xnx
∗
n =

∫ 1
2

− 1
2

∣∣X(ej2πf )
∣∣2 df

Moreover, we know that:
N−1∑
n=0

xnx
∗
n =

N−1∑
n=0

x2
n = N



Therefore, ∫ 1
2

− 1
2

∣∣X(ej2πf )
∣∣2 df = N

This means that the average of
∣∣X(ej2πf )

∣∣2 over the interval [−1
2
, 1

2
] is equal to N. So,

for at least one value of f ∈ [−1
2
, 1

2
], it should be greater or equal to N. This proves

that maxf
∣∣X(ej2πf )

∣∣2 ≥ √N .

iii) Since X and Y are complementary we have
∑N−k−1

i=0 xixi+k + yiyi+k = 2Nδ[k]. Fur-
thermore, since x[n] is equal to zero for n ≥ N , we have :

N−k−1∑
i=0

x[i]x[i+ k] + y[i]y[i+ k] =
N−1∑
i=0

x[i]x[i+ k] + y[i]y[i+ k] = 2Nδ[k] (1)

Now, consider the signal x̄[i] = x[−i] and ȳ[i] = y[−i]. Then,

X̄
(
ej2πf

)
=
∞∑
−∞

x̄[n]e−j2πfn =
∞∑
−∞

x[−n]e−j2πfn = X
(
e−j2πf

)
= X

(
ej2πf

)∗
Similarly, we have Ȳ

(
ej2πf

)
= Y

(
ej2πf

)∗
. Now,

Rx[k] =
N−1∑
i=0

x[i]x[i+ k] =
N−1∑
i=0

x[i]x̄[−i− k] = x[i] ∗ x̄[i]

which means that the autocorrelation function equal the convolution of x[i] and x̄[i].
Therefore,

Rx(e
j2πf ) = X(ej2πf )X̄(ej2πf ) =

∣∣X(ej2πf )
∣∣2

Similarly, we have Ry(e
j2πf ) =

∣∣Y (ej2πf )
∣∣2. Finally from (1), we get

Rx(e
j2πf ) +Ry(e

j2πf ) = 2N∣∣X(ej2πf )
∣∣2 +

∣∣Y (ej2πf )
∣∣2 = 2N

which implies that
∣∣X(ej2πf )

∣∣ , ∣∣Y (ej2πf )
∣∣ ≤ √2N.

Problem 2 (LTI Systems).

i) T (x[n]) =
∑n

k=n0
x[k]u[n− k].

The system is not stable because the output is the summation of input samples from
n0 up to n and it can go to infinity even if the input is bounded. It is linear because
summation is a linear operator. It is causal because y[n] just depends on x[n0], x[n0 +
1], . . . , x[n] and not future samples such as x[n+ 1], . . .. It is not memoryless because
as you can see y[n] depends on some other input samples which are not for the present
time. It is not time invariant , because if for example x1[n] = u[−n + n0 − 1] where
u[n] is a step function, the output will be y1[n] = 0 for n > n0, while if we shift the
input by 1 to the right, the output will be y2[n] = 1 for n > n0, which is not the
shifted version of y1][n].
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ii) T (x[n]) = x[Mn].
This system is stable and linear trivially, because |x[Mn]| < ∞ → |y[n]| < ∞ and
T [ax1[n] + bx2[n]] = ax1[Mn] + bx2[Mn] = aT [x1[n]] + bT [x2[n]]. It is not causal
because y[n] depends on future signal samples (M is positive). So, it is also not
memoryless . Let’s check if it is time invariant or not. If x2[n] = x1[n − nd], then,
y2[n] = x2[Mn] = x2[Mn − nd] while y1[n − nd] = x1[M(n − nd)] = x1[Mn −Mnd]
which is not equal to y1[n− nd]. So, it is not time invariant.

iii) T (x[n]) = x[n] ∗ x[n].
The system is not linear because T (2x[n]) = 4T (x[n]) 6= 2T (x[n]). It is not time in-
variant because if we define x1[n] = x[n−nd], then y1[n] = T (x1[n]) =

∑∞
k=−∞ x[k]x[n−

k− 2nd] 6= y[n−nd] =
∑+∞

k=−∞ x[k]x[n− k−nd]. Since the output at time n depends
both on previous and future values of n the system is neither memoryless, nor causal.
Finally as in part (i), the system is not stable.

iv) T (x[n]) = median{x[n−M1], . . . , x[n], . . . , x[n+M2]}.
We show the system is not linear with a counter-example. Take a = 1, b = 1, and
x1[n] = {0, 1, 5}, x2[n] = {6,−1,−2}. Then T (ax1[n] + bx2[n]) = median{6, 0, 3} =
3 6= aT (x1[n]) + bT (x2[n]) = median{0, 1, 5} + median{6,−1,−2} = 1 + −1 = 0.
The system is time invariant because if we let x1[n] = x[n − nd]. Then y1[n] =
med{x1[n−M1] . . . x1[n+M2]} = med{x[n−nd−M1] . . . x[n−nd+M2]} = y[n−nd].
Since the output depends on previous and future values of the input, the system is
neither memoryless nor causal in general. However, if M1 = M2 = 0, then the system
is memoryless as T (x[n]) = x[n] and if only M2 = 0, then the system is causal. The
system is stable because each value of the output equals some input value. Hence, if
the input is bounded for all n, the output will be too.

v) T (x[n]) = x[n] ∗ h1[n] ∗ h2[n] ∗ h3[n].
This is a cascaded system. First note that if n is not a multiple of M , T (x[n] = 0).
If n is a multiple of M , we can write the overall transformation as T (x[n]) = x[n]−
1

2
x[n −M ]. It is easily verified that the system is linear and time invariant . For

M 6= 0 it is not memoryless . Since the output only depends on the current and
previous inputs, the system is causal . It is stable since the output will be bounded
for a bounded input.

Problem 3 (Z-Transform).

i)

X(z) =
+∞∑

n=−∞

anu[n]z−n =
+∞∑
n=0

anz−n =
∞∑
n=0

(az−1)n =
1

1− az−1

for |az−1| < 1⇒ |z| > |a|
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ii)

X(z) =
∞∑

n=−∞

−anu[−n− 1]z−1 =
−1∑

n=−∞

−anz−n =
∞∑
n=1

−a−nzn

= −
∞∑
n=1

(a−1z)n = −
(

1

1− a−1z
− 1

)
for |a−1z| < 1

= 1− 1

1− a−1z
=

1− a−1z − 1

1− a−1z
=

1

1− az−1
for |z| < |a|

We note that x[n] = anu[n] is a causal sequence, and x[n] = −anu[−n − 1] is an
anti-causal sequence.

Problem 4 (Inverse Z-Transform).

1)

i) X(z) = z +
(1− z−2)(1 + 1

2
z−1)

(1 + z)
, 0 < |z| <∞. Note that z = −1 is not a pole of X(z).

X(z) = z +
(1− z−1)(1 + z−1)(1− 1

2
z−1)

z(1 + z−1)

= z + z−1(1− z−1)(1− 1

2
z−1)

= z + (z−1 − z−2)(1− 1

2
z−1)

= z + z−1 − 1

2
z−2 − z−2 +

1

2
z−3

= z + z−1 − 3

2
z−2 +

1

2
z−3 , for 0 < |z| <∞

Which gives :

x[n] =


1 n = −1
1 n = 1
−3

2
n = 2

1
2

n = 3
0 otherwise

ii) X(z) = log(1− 2z−1), |z| > 2..

Using the Taylor expansion we get :

X(z) = −
∞∑
n=1

(2z−1)n

n
, |z| > 2

= −
∞∑
n=1

2n

n
z−n, |z| > 2

Hence,

x[n] = −2n

n
u[n− 1]
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2)

i) X(z) =
1

(1− 1
7
z−1)(1− 5z−1)

,
1

7
< |z| < 5

We have two poles at z1 =
1

7
and z2 = −5. So,

X(z) =
1
36(

1− 1
7
z−1
) +

35
36

(1 + 5z−1)
,
1

7
< |z| < 5

The first part of X(z) is causal, the second part is anti-causal. Hence,

x[n] =
1

36
(
1

7
)nu[n]− 35

36
(−5)nu[−n− 1].

ii) Note that the degree of the numerator is equal to the degree of the denominator. So we
first use polynomial division and then apply partial fraction expansion.
The polynomial division gives,

X(z) =
1 + 1

2
z−2

1− 3
4
z−1 + 1

8
z−2

= 4(1− 3

4
z−1 +

1

8
z−2) + (−3 + 3z−2), |z| > 1

2

And then we have

X(z) = 4 +
−3(1− z−2)

(1− 1
4
z−1)(1− 1

2
z−1)

The second part have two poles at z1 =
1

4
and z2 =

1

2
. Hence,

X(z) = 4 +
−9

(1− 1
4
z−1)

+
6

(1− 1
2
z−1)

, |z| > 1

2

The system is causal, hence

x[n] = 4δ[n]− 9

(
1

4

)n
u[n] + 6

(
1

2

)n
u[n].

3) Let us first rearrange the function,

X(z) =

(
1− 1

2
z−1
)

(1− 1
4
z−1)(1 + z−1)

=
z(z − 1

z
)

(z − 1
4
)(z + 1)

=
A(z)

B(z)
, |z| > 1

Hence, we get

x[n] =
1

i2π

∮
c

X(z)zn−1dz

= Res(X(z)zn−1)|z= 1
4

+Res(X(z)zn−1)|z=−1

=

(
−1

5

(
1

4

)n
+

6

5
(−1)n

)
u[n]

(Note that we found the residues using Res(X(z)zn−1)|z=zi
= A(zi)

B′(zi)
zn−1
i in this case.)
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