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Problem 1 (Any Basis of a Hilbert Space has Same Cardinality).

Since B is a basis for H, we can write all x′i for i = 1, . . . ,m as

x′i =
n∑

j=1

αijxj.

Consider 〈x′k, x′l〉 for k 6= l, k, l = 1, . . . ,m.

〈x′k, x′l〉 = 〈
n∑

j=1

αkjxj,

n∑
i=1

αlixi〉 using the distributive and scaling properties

=
n∑

j=1

n∑
i=1

αkjα
∗
li〈xj, xi〉 since 〈xj, xi〉 = 0, for i 6= j and 〈xi, xi〉 = 1

=
n∑

j=1

αkjα
∗
lj = 0.

If we define (αk1, . . . , αkn) as the vector ᾱk ∈ Cn, then the above condition is equivalent to:

(∗) 〈ᾱk, ᾱl〉 = 0 ∀k, l = 1, . . . ,m and k 6= l.

Since any set of orthogonal vectors in Cn has cardinality at most n, we can have at most
n vectors ᾱi, i = 1, . . . , n which fulfills (∗). Hence m ≤ n.

We can do the same for expanding {xi} in terms of the basis B′, which implies that
n ≤ m. Therefore, m = n.

Problem 2 (Gram-Schmidt).

In Gram-Schmidt procedure, we make an orthonormal basis from a given set of vectors
{u1, · · · , un}. At each step, we pick vector ul from the set and make an orthonormal vector
that is orthogonal to the subspace of the already chosen vectors {u1, · · · , ul−1} with the
following procedure.

We find the projection of ul in the subspace and then reduce the projection from ul.
The resulting vector is orthogonal to the subspace and consequently to all previous vec-
tors. After normalization, it is a new member of our basis. At the first step, we start by
normalizing u1 as the first element of the basis.

In this problem,

v1 =
u1

||u1||
=

1

2
(1,−1, 1,−1),

w2 = u2 − 〈u2, v1〉v1 = (5, 1, 1, 1)− 2

2
(1,−1, 1,−1) = (4, 2, 0, 2),



where 〈u2, v1〉v1 is the projection of u2 on v1.
Then v2 = w2

||w2|| = 1√
24

(4, 2, 0, 2).

w3 = u3−〈u3, v1〉v1−〈u3, v2〉v2 = (−3,−3, 1,−3)− (1,−1, 1,−1) + (4, 2, 0, 2) = (0, 0, 0, 0).
Since w3 = 0, it means that u3 is in the subspace of {v1, v2} and it does not introduce a
new dimension. Therefore, these three vectors are in a space spanned by {v1, v2}.

Problem 3 (Various Norms).

We should verify the three properties of a norm :

(i) strict positivity : v(x) ≥ 0 and v(x) = 0⇔ x = 0

(ii) homogeneity : v(αx) = |α|v(x)

(iii) triangle inequality : v(x+ y) ≤ v(x) + v(y)

Let us first check v1(x) :

(i) v1(x) =
∑N

k=1 |xk| ≥ 0 since |xi| ≥ 0 for all i and

v1(x) =
∑N

k=1 |xk| = 0 if for all i, |xi| = 0 which is (0, 0, . . . , 0).

(ii) We know that if y, z ∈ C then |y · z| = |y||z|. Therefore,
v1(αx) =

∑N
k=1 |αxk| =

∑N
k=1 |α||xk| = |α|

∑N
k=1 |xk| = |α|v1(x).

(iii) Let y, z be two complex numbers. Then
|y + z|2 = (y + z)(y + z)∗ = yy∗ + yz∗ + zy∗ + zz∗ = |y|2 + |z|2 + yz∗ + zy∗.
zy∗ is the complex conjugate of yz∗. Therefore, yz∗+zy∗ = 2 Re {yz∗} ≤ 2|yz∗| where
Re {·} denotes the real part of a complex number. Hence, |yz|2 ≤ |y|2 + |z|2 +2|y||z| =
(|y| + |z|)2. It means that |y + z| ≤ |y| + |z|. Thus, v1(x + y) =

∑N
k=1 |xk + yk| ≤∑N

k=1 (|xk|+ |yk|) =
∑N

k=1 |xk|+
∑N

k=1 |yk| = v1(x) + v1(y).

Therefore, v1(x) is a norm on CN .

We do the same for v2(x) :

(i) v2(x) = (
∑N

k=1 |xk|2)1/2 ≥ 0 since for every k, |xk|2 ≥ 0 and v2(x) = 0 iff for all k,
xk = 0.

(ii) v2(αx) = (
∑N

k=1 |αxk|2)1/2 = (
∑N

k=1 |α|2|xk|2)1/2 =)(|α|2
∑N

k=1 |xk|2)1/2 = |α|v2(x).

(iii) To verify the triangle inequality, we use Minkowsky lemma :

(
∞∑

k=1

|xk + yk|p)1/p ≤ (
∞∑

k=1

|xk|p)1/p + (
∞∑

k=1

|yk|p)1/p, p ≥ 1.

This lemma is much more than what we need to prove the triangle inequality for
special case p = 2 . It says that for not only p = 2 and finite dimensional spaces, but
also for any arbitrary p ≥ 1 and infinite dimensional spaces the triangle inequality
holds.

Problem 4 (Convergent Sequences are Cauchy Sequences).
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On a metric space with metric d(·, ·), a sequence xn is convergent to x, if for every ε,
there exists N ∈ N such that

d(xn, x) < ε for all n > N.

We should show that every convergent sequence is a Cauchy sequence, i.e. for every ε,
there exists N ∈ N such that

d(xn, xm) < ε for all m,n > N.

Assume that xn converges to x. From triangular property of metrics :

d(xn, xm) ≤ d(xn, x) + d(xm, x)

Then since xn converges to x, for every ε/2, there exists N such that{
d(xn, x) < ε/2 n > N
d(xm, x) < ε/2 m > N

}
⇒ d(xn, xm) < ε for all n,m > N

Therefore, it is a Cauchy sequence.

Problem 5 (Incompleteness of Q).

1. an+1 is positive if an is positive. As we started from a1 = 2, then an is always positive.
On the other hand :

an+1 =
a2

n + 2

2an

≥
√

2 since a2
n + 2 ≥ 2

√
2an ⇔ (an −

√
2)2 ≥ 0

Thus , an is bounded from below by
√

2. Moreover it is decreasing, since

an+1 ≤ an ⇔
1

an

≤ an

2
⇔ an ≥

√
2

Therefore, an is a decreasing sequence bounded between
√

2 and 2. We know from
monotone convergence theorem, that the monotone and bounded sequence in R with
metric of absolute value is convergent. To find the limit, assume that limn→∞ an+1 =
limn→∞ an = L. Hence :

L =
L

2
+

1

L
⇒ L

2
=

1

L
⇒ L =

√
2.

2. Since an is convergent it is a Cauchy sequence in R. Note that an are rational numbers
because each is the summation of two rational numbers. Therefore, it is a Cauchy
sequence in Q.
As it is shown in part (i), the sequence an converges to

√
2 which is not a member of

Q. Therefore, an cannot converge in Q and {an} is not convergent in Q. Thus, Q is
not complete.

Problem 6 (Properties of DFT).

Recall the DFT analysis and synthesis equations :

Analysis equation : X[k] =
N−1∑
n=0

x[n]e−j 2π
N

kn

Synthesis equation : x[n] =
1

N

N−1∑
k=0

X[k]ej 2π
N

kn

Using the definitions we can now check the properties :
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1) Linearity :

z[n] = αx[n] + βy[n]

Z[k] =
N−1∑
n=0

z[n]e−j 2π
N

kn

=
N−1∑
n=0

(αx[n] + βy[n])e−j 2π
N

kn

= α

N−1∑
n=0

x[n]e−j 2π
N

kn + β
N−1∑
n=0

y[n]e−j 2π
N

kn

= αX[k] + βY [k].

2) Circular Shift :
Note that by taking mod N , we are only interested with shifts in the interval 0 ≤ m ≤
N − 1.

z[n] = x[(n−m) mod N ]

Z[k] =
N−1∑
n=0

z[n]e−j 2π
N

kn

=
N−1∑
n=0

x[(n−m)︸ ︷︷ ︸
l

mod N ]e−j 2π
N

kn

=
N−1∑
l=0

x[l]e−j 2π
N

k((l+m) mod N)

= e−j 2π
N

km

N−1∑
l=0

x[l]e−j 2π
N

kl since e−j 2π
N

kn is periodic with period N in both k, n

= e−j 2π
N

kmX[k].

3) Duality

z[n] = X[n]

Z[k] =
N−1∑
n=0

z[n]e−j 2π
N

kn =
N−1∑
n=0

X[n]e−j 2π
N

kn

Z[(−k) mod N ] =
N−1∑
n=0

X[n]ej 2π
N

kn = Nx[k]

Z[k] = Nx[−k mod N ].

4) Symmetries
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(i) z[n] = x∗[n]

Z[k] =
N−1∑
n=0

z[n]e−j 2π
N

kn

=
N−1∑
n=0

x∗[n]e−j 2π
N

kn

=

(
N−1∑
n=0

x[n]ej 2π
N

kn

)∗
= X∗[−k mod N ]

(ii) xep[n] = 1
2
{x[n] + x∗[(−n) mod N ]}

Xep[k] =
1

2
{DFT{x[n]}+ DFT{x∗[(−n) mod N ]}}

=
1

2
{X[k] +X∗[k]}

= Re {X[k]}

(iii) xop[n] = 1
2
{x[n]− x∗[(−n) mod N ]}

Xep[k] =
1

2
{DFT{x[n]} −DFT{x∗[(−n) mod N ]}}

=
1

2
{X[k]−X∗[k]}

= j Im {X[k]}

5) Cyclic convolution

z[n] =
N−1∑
n=0

x[m]y[(n−m) mod N ]

Z[k] =
N−1∑
n=0

N−1∑
m=0

x[m]y[(n−m) mod N ]e−j 2π
N

kn

=
N−1∑
m=0

x[m]
N−1∑
n=0

y[(n−m) mod N ]e−j 2π
N

kn

=
N−1∑
m=0

x[m]Y [k]e−j 2π
N

km

= Y [k]
N−1∑
m=0

x[m]e−j 2π
N

km

= Y [k]X[k].
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