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Problem 1 (Continuity of a function). Let a function f(x) be continuous at x0 if ∀ε > 0,
∃δ(ε) > 0 s.t. if |x−x0| < δ(ε) then |f(x)− f(x0)| < ε, which means limx→x0 f(x) = f(x0).

(a) For x 6= x0, the continuity of sin(πx) and πx implies that sin(πx)
πx

is continuous. We
can easily check continuity of sin(πx) by the definition.
For x = x0, we have that sinc(0) = 1. Let us check the limit, which is an indetermi-
nate form, 0

0
.

lim
x→0

sin(πx)

πx
= lim

x→0
π

cos(πx)

π
= 1

The first equality comes from the l’Hospital rule.
Since limx→0 sinc(x) = sinc(0), the function is continuous at x = 0. Then the
function is continuous everywhere.

(b) Nowhere continuous means that it is not continuous at x0 for all x0 ∈ R, i.e, ∃ε > 0
s.t. ∀δ > 0, there exists x such that if |x− x0| < δ, |f(x)− f(x0)| 6< ε.
We use the fact that any open intervals in R contain both rational and irrational
numbers, i.e. there is an irrational number between any two rational and vice versa.
For x0 ∈ Q : ε = 0.5, ∀δ > 0, ∃x ∈ R \ Q s.t. if |x − x0| < δ then |f(x) − f(x0)| =
1 6< 0.5 ⇒ not continuous at x0 ∈ Q.
For x0 ∈ R \ Q : ε = 0.5, ∀δ > 0, ∃x ∈ R s.t. if |x − x0| < δ then |f(x) − f(x0)| =
1 6< 0.5 ⇒ not continuous at x0 ∈ Q. Then the function is nowhere continuous.

(c) Let y0 = g(x0) and h = f ◦ g.
Continuity of f(.) implies that ∀ε > 0, ∃δ1 > 0 such that |y − y0| < δ2 ⇒ |f(y) −
f(y0)| < ε. Then because of continuity of g(.), for a given δ1 > 0, ∃δ > 0 such that
|x− x0| < δ ⇒ |g(x)− g(x0)| = |y − y0| < δ1.
Therefore, by putting all together, we can say that

∀ε > 0, ∃δ > 0 such that |x− x0| < δ ⇒ |f(g(x))− f(g(x0))| = |h(x)− h(x0)| < ε.

Problem 2 (Convergence of infinite series). Let Sn =
∑n

i=1 ai where ai ∈ R. We say that
the series

∑n
i=1 ai is convergent and has sum S, if limn→∞ Sn = S, i.e, for every ε > 0, there

is a N ∈ N such that
|S − Sn| < ε,∀n > N.

(a) Assume that limn→∞ Sn = S <∞.Then,

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0.

Note that limn→∞(Sn − Sn−1) = limn→∞ Sn − limn→∞ Sn−1 since their limit, S, is
finite. For divergence series, this equality does not hold.

The other approach is using Cauchy convergence criterion : ∀ε > 0, ∃N ∈ N such
that |

∑n
i=m ai| < ε for ∀m ≥ n > N . By taking m = n + 1, the desired result is

obtained.



(b) We have that s(x) = 1
xp

is a decreasing positive function for all x ∈ R+. We want to
prove that

n∑
i=2

1

ip
≤
∫ n

1

s(x)dx ≤
n−1∑
i=1

1

ip
. (1)

Let
∫ n

1
s(x)dx =

∑n−1
k=1

∫ k+1

k
s(x)dx. Since s(x) is decreasing, s(k) ≥ s(x) ≥ s(k + 1)

for all x ∈ [k, k + 1]. Hence,

s(k + 1) =

∫ k+1

k

s(k + 1)dx ≤
∫ k+1

k

s(x)dx ≤
∫ k+1

k

s(k)dx = s(k).

Thus,
n∑
i=2

1

ip
=

n−1∑
k=1

s(k + 1) ≤
n−1∑
k=1

∫ k+1

k

s(x)dx ≤
n−1∑
k=1

s(k) =
n−1∑
i=1

1

ip
.

Therefore, if limn→∞
∫ n

1
s(x)dx tends to infinity then the right inequality of (1) implies

that
∑∞

i=2
1
ip

is divergent. On the other hand, if limn→∞
∫ n

1
s(x)dx is bounded, the

left inequality of (1) implies that
∑∞

i=2
1
ip

is bounded and then it is convergent (since
its elements are positive).

∞∑
i=1

s(n) converges⇔
∫ ∞

1

s(x)dx converges.

The evaluation of the integral gives

∫ ∞
1

1

xp
dx =


−px−p+1 |∞1 <∞ if p > 1

lnx =∞ if p = 1
−px−p+1 |∞1 =∞ if p < 1

Then we conclude that the series converges only for p > 1.

(c) (i)
∑∞

n=1 x
n (geometric series). Let us first compute the sum up to N

N∑
n=1

xn = (1 + x+ x2 + . . .+ xN) =
1− xN+1

1− x
,

where the second equality coming from the following factorization

(1 + x+ x2 + . . .+ xN) · (1− x) = (1 + x+ . . .+ xN)− (x+ x2 + . . .+ xN+1).

As N goes to infinity,

lim
N→∞

N∑
n=1

xn = lim
N→∞

1− xN+1

1− x
=

{
1

1−x if |x| < 1

∞ otherwise

The condition on x for convergence is then |x| < 1.

(ii) In order to study the convergence of
∑∞

n=1(
n
n+1

)n
2
, we first need to observe the

following

lim
n→∞

(
n

n+ 1

)n
= lim

n→∞

1(
1 + 1

n

)n =
1

e
. Therefore, lim

n→∞

(
n

n+ 1

)n2

=
1

en
.
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Furthermore, let us recall the ratio test for convergence. Assume that for all n,
an > 0. Suppose that there exists r such that

lim
n→∞

an+1

an
= r.

If r < 1, then the series converges. If r > 1, then the series diverges. If r = 1,
the series may converge or diverge.

Thus

lim
n→∞

an+1

an
= lim

n→∞

(
n+1
n+2

)(n+1)2(
n
n+1

)n2 =
1

en+1

1
en

=
1

e
< 1.

Hence the series is convergent.

(iii)
∑∞

n=1
n!
nn

. By applying the bound (n)! ≤ nn+1e−n, we get

∞∑
n=1

n!

nn
≤

∞∑
n=1

nn+1e−n

nn
=
∞∑
n=1

.
n

en

By using the ratio test, we can easily check that the upperbounded series is
convergent and then

∑∞
n=1

n!
nn

is convergent.

(iv) First note that 1
i
− 1

i+1
≥ 1

j
− 1

j+1
for j ≥ i. Then,

∞∑
n=1

(−1)n

n
= −1 + (

1

2
− 1

3
) + (

1

4
− 1

5
) + (

1

6
− 1

7
) + · · ·

< −1 + (
1

2
− 1

3
) + (

1

3
− 1

4
) + (

1

4
− 1

5
) + · · ·

= −1 +
∞∑
i=2

1

i
− 1

i+ 1
= −1 +

1

2
=
−1

2
.

Since the summation of two subsequent elements ,(1
i
− 1

i+1
), is positive, for odd

N , the
∑N

n=1
(−1)n

n
is increasing and bounded from above by −1

2
. Therefore, the

series is convergent.

(d) Two alternatives of proofs are presented

Alternative 1 Let us define a+
i = max {ai, 0} and a−i = max {−ai, 0}. Then

|ai| = |a+
i |+ |a−i |, and ai = |a+

i | − |a−i |.

The series can be expressed using a+
i and a−i

∞∑
i=1

|ai| =
∞∑
i=1

|a+
i |+ |a−i | <∞⇒

∞∑
i=1

|a+
i | <∞ and

∞∑
i=1

|a−i | <∞.

Then
∑∞

i=1 ai =
∑∞

i=1 |a
+
i | −

∑∞
i=1 |a

−
i | <∞.

Alternative 2 We can write ∣∣∣∣∣
m∑
i=n

ai

∣∣∣∣∣ ≤∑ i = nm|ai| < ε by assumption.

Hence it is a Cauchy sequence and so it converges.
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Problem 3 (Sums). In parts (i), (ii) and (iv) we can directly see that the sums are finite.

(i)

n∑
k=i

xk =
n∑
k=0

xk −
i−1∑
k=0

xk

=
1− xn+1

1− x
− 1− xi

1− x

=
xi − xn+1

1− x

(ii)

n∑
k=1

kxk = x

n∑
k=1

kxk−1

= x

n∑
k=1

dxk

dx

= x
d

dx

(
n∑
k=1

xk

)
by linearity of differentiation

= x
d

dx

(
1− xn+1

1− x
− 1

)
= x

−(n+ 1)xn(1− x)− (1− xn+1)(−1)

(1− x)2

=
x− (n+ 1)xn+1 + nxn+2

(1− x)2

(iii)
∑∞

n=1

(√
3

2
+ 1

j2

)n
Let x =

√
3

2
+ 1

j2
. In problem 2 part c), you found the condition for convergence on∑∞

n=1 x
n as |x| < 1. Note that here |x| = |

√
3

2
+ 1

j2
| =

√
3
4

+ 1
4

= 1 6< 1.

Hence this series diverges and the sum is infinite.

(iv)

n∑
k=1

sin (2π
k

N
) =

n∑
k=1

ej2π
k
N − e−j2π k

N

2j

=
1

2j

(
1− ej2π n+1

N

1− ej 2π
N

− 1− 1− e−j2π n+1
N

1− e−j 2π
N

+ 1

)

=
1

2j

1− e−j 2π
N − ej2π n+1

N + ej2π
n
N − 1 + ej

2π
N + e−j2π

n+1
N − e−j2π nN(

1− ej 2π
N

)(
1− e−j 2π

N

)
=

sin (2π
N

) + sin (2π n
N

)− sin (2π n+1
N

)

2− 2 cos (2π
N

)
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Problem 4 (Inner Product Properties). (a)

‖x+ y‖2 = < x+ y, x+ y >

= < x, x > + < x, y > + < y, x > + < y, y >

= ‖x‖2+ < x, y > +< x, y >+ ‖y‖2

= ‖x‖2 + 2 Re{< x, y >}+ ‖y‖2

When E = R2, using the definition of the inner product on R2, we have

< x, y >= ‖x‖‖y‖ cos θ

where θ is the angle between vectors x and y. We see that

∀x, y, s.t. x⊥y ⇐⇒< x, y >= 0

Plugging this into the expression, we recover the famous Pythagorean Formula

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

(b) Using the previous expression, we have

‖x+ y‖2 = ‖x‖2 + 2 Re{< x, y >}+ ‖y‖2

‖x− y‖2 = ‖x‖2 − 2 Re{< x, y >}+ ‖y‖2

Adding the two components, we obtain

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2. (2)

(c) Note first that

‖αx+ βy‖ = < αx+ βy, αx+ βy >

= |α|2 < x, x > +αβ̄ < x, y > +βᾱ < y, x > +|β|2 < y, y >

Hence we get,

1

4
{‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− y‖2}

=
1

4
{ < x, x > + < x, y > + < y, x > + < y, y >

− < x, x > + < x, y > + < y, x > − < y, y >

+i < x, x > + < x, y > − < y, x > −i < y, y >

−i < x, x > + < x, y > − < y, x > +i < y, y >}

=
1

4
< x, y >

as required.
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Now we check that the polarization identity does indeed satisfy the properties of an
inner product.

1)

< x, x > =
1

4
{4‖x‖2 + i|1 + i|2‖x‖2 − i|1− i|2‖x‖2}

= ‖x‖2 ≥ 0 with equality iff x = 0.

2)

< y, x > =
1

4
{‖y + x‖2 − ‖y − x‖2 − i‖y + ix‖2 + i‖y − ix‖2}

=
1

4
{‖x+ y‖2 − ‖x− y‖2 − i|i|2‖x− iy‖2 + i|i|2‖x+ iy‖2}

=
1

4
{‖x+ y‖2 − ‖x− y‖2 + i‖x− iy‖2 + i‖x+ iy‖2}

= < x, y > .

3)

< x+ y, z > =
1

4
{‖x+ y + z‖2 − ‖x+ y − z‖2 + i‖x+ y + iz‖2 − i‖x+ y − iz‖2}

Let us first compute

‖x+ y + z‖2 − ‖x+ y − z‖2 =
∥∥∥(x+

z

2

)
+
(
y +

z

2

)∥∥∥2

−
∥∥∥(x− z

2

)
+
(
y − z

2

)∥∥∥2

= 2‖x+
z

2
‖2 + 2‖y +

z

2
‖2 − ‖x− y‖2

− ‖x− z

2
‖2 − 2‖y − z

2
‖2 + ‖x− y‖2

= 2{‖x+
z

2
‖2 − ‖x− z

2
‖2 + ‖y +

z

2
‖2 − ‖y − z

2
‖2}

Similarly when z is replaced by iz, we have

i‖x+ y + iz‖2 − i‖x+ y − iz‖2 = 2{i‖x+ i
z

2
‖2 − i‖x− iz

2
‖2 + i‖y + i

z

2
‖2 − i‖y − iz

2
‖2}

Therefore,

< x+ y, z >= 2 < x,
z

2
> +2 < y,

z

2
>

As we have already assumed < αx, y >= α < x, y > holds and we get the
additivity in the first component property

< x+ y, z >=< x, z > + < y, z > .
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