Problem 1 (Gibbs Phenomenon)

i) We obtained \(h[n] \) in problem 2 of HW 6 and it is equal to

\[
h[n] = \frac{\sin(2\pi f_c n)}{\pi n}
\]

ii) According to problem 2 of HW 6:

```matlab
function H = LowPass(fc,N)

fc = 0.25;
if (N/2 == floor(N/2)) \% Check N is even
    h = [sin(2*fc*pi*[-N/2:-1])./([-N/2:-1]*pi),2*fc... 
         ,sin(2*fc*pi*[1:N/2-1])./([1:N/2-1]*pi)];
else \% N is odd
    h = [sin(2*fc*pi*[-(N-1)/2:-1])./([- (N-1)/2:-1]*pi),2*fc... 
         ,sin(2*fc*pi*[1:(N-1)/2])./([1:(N-1)/2]*pi)];
end
H = fft(h,N);
subplot(2,1,1)
plot((-N/2:N/2-1)/N,abs(fftshift(H)));
subplot(2,1,2)
stem((-N/2:N/2-1)/N,angle(fftshift(H)));
```

iii) The maximum value of frequency responses does not depend on \(N \). It always remains fixed around 1.09 (9% overshoot). See figure 1 for the results.
Figure 1: Plots of the magnitude (upper sub figures) and phase (lower sub figures) of H for different N.

(a) $N = 10$

(b) $N = 100$

(c) $N = 500$

(d) $N = 1000$

(e) $N = 10000$
Here is the code to compute it:

```matlab
% Fourier Transform of w[n]:
% Set a maximum for sequence:
close all
Max = 1000;
% The length windowing:
N = 100;
w = zeros(1,Max);
w(Max/2-N:2:1:Max/2+N/2) = ones(1,N+1);
W=fft(w);
% Supress the Phase shift:
% The Phase shift for DFT coefficeint k is
% e^{-j*2*pi*(k/Max) * Max/2} = (-1)^k
W = W.* (-1).^(0:Max-1);

subplot(2,1,1)
plot((-Max/2:Max/2-1)/Max,fftshift(W));
title('Fourier transform W');
subplot(2,1,2)
stem(w);
title('Initial signal w[n]');

tf_N increases by growing N and for large values of N, it gets close to 0.25 (from left).
See figure 2 for the results.
```

v) SHOULD RUN AFTER hw84.m
% Fourier Transform of Ideal LowPass filter with cut-off .25 Hz:
H = zeros(1,Max);
% Frequency responses for frequencies -.25 ≤ k/Max ≤ .25 are equal to 1:
H(1:Max/4) = ones(1,Max/4);
H(Max-Max/4+1:Max)= ones(1,Max/4);
h = ifft(H);
figure
subplot(2,1,1)
plot((-Max/2:Max/2-1)/Max,abs(fftshift(H)));
subplot(2,1,2)
plot(abs(h));

Hhat = cconv(H,W,Max)/Max;
figure
%Find the index that the frequency response gets maximized:
ind = find(Hhat(1:Max/2) ≥ max(Hhat(1:Max/2)));
% The frequency of maximazed frequency response.
frequency = ind/Max

% Do the Convolution to find out why it is maximum:
circH = circshift(H,[1,ind]);
D = circH.*W;
hold on
plot((-Max/2:Max/2-1)/Max,fftshift(W));
plot((-Max/2:Max/2-1)/Max,fftshift(D),'r');
Figure 2: Plots of $W(e^{j2\pi \theta})$ and $H(e^{j2\pi (f-\theta)}) \cdot W(e^{j2\pi \theta})$ for different N
vi) We know that,
\[W(e^{j2\pi \theta}) = \frac{\sin((N+\frac{1}{2})2\pi \theta)}{\sin(\pi \theta)} \text{ for } \frac{1}{2} \leq \theta \leq \frac{1}{2}. \]

The maximum value of frequency response takes place when the window of \(H(e^{j2\pi(f-\theta)}) \) doesn’t cover one of the main negative lope and the remaining lopes before that. Indeed, the integral value behind this part of \(W(e^{j2\pi \theta}) \) is about -0.089. Therefore, since

\[\int_{-1/2}^{1/2} W(e^{j2\pi \theta}) d\theta = 1, \]

we can conclude that

\[\int_{-1/2}^{1/2} W(e^{j2\pi \theta}) H(e^{j2\pi(f-\theta)}) d\theta \approx 1.089. \]

By changing \(N \), the integral under the rescaled frequency response does not change. Therefore, the maximum value remains about 1.089.

Problem 2 (Weighted Least-Squares Filter Design)

i) Due to

\[E(f) = W(e^{j2\pi f}) \left[D(e^{j2\pi f}) - H_d(e^{j2\pi f}) \right] \]

we can easily compute the matrices \(W \) and \(U \) and the vector \(d \).

Consider \(f = f_i = \frac{i}{K} \)

\[e_i = E(f_i) = W(e^{j2\pi \frac{i}{K}}) \left[D(e^{j2\pi \frac{i}{K}}) - H_d(e^{j2\pi \frac{i}{K}}) \right]. \]

Therefore, for the vector \(d = [d_0, \ldots, d_K] \) :

\[d_i = \begin{cases}
0 & i < f_p K \\
1 & i \geq f_p K
\end{cases} \]

In fact the interval between \(f_s K \) and \(f_p K \) is not important since the weight considered for this interval is zero. Therefore, we can set it anything, so we let that 0.

And then the \(i \)-th row of matrix \(U \) is

\[U_i = [1, 2 \cos(2\pi \frac{i}{K}), 2 \cos(2\pi \cdot 2 \cdot \frac{i}{K}), \ldots, 2 \cos(2\pi \frac{M-1}{2} \cdot \frac{i}{K})] \]

The matrix \(W \) is a diagonal matrix such that :

\[W_{ii} = W(e^{j2\pi \frac{i}{K}}) = \begin{cases}
\delta_p & i \leq f_s K \\
1 & i \geq f_p K \\
0 & \text{otherwise}
\end{cases} \]

ii) We know that

\[e = W(d - Uh) \]

for every \(e_i \), we have two conditions:

\[e_i \leq \delta_p \quad \text{and} \quad -e_i \leq \delta_p \]
Therefore we make the following vector

\[
\begin{bmatrix}
 e \\
 \vdots \\
 -e \\
 e_K \\
 \vdots \\
 -e_1 \\
 e_K
\end{bmatrix}
\]

\[
\leq \begin{bmatrix}
 \delta_p \\
 \delta_p \\
 \vdots \\
 \delta_p
\end{bmatrix} = \delta_p
\]

Hence,

\[
\begin{bmatrix}
 e \\
 \vdots \\
 -e \\
 e_K \\
 \vdots \\
 -e_1 \\
 e_K
\end{bmatrix} = \begin{bmatrix} W_{K \times K} & 0_{K \times K} \\
 0_{K \times K} & W_{K \times K} \end{bmatrix} \begin{bmatrix}
 d \\
 \vdots \\
 d \\
 d' \\
 \vdots \\
 d' \\
 U_{K \times K}
\end{bmatrix} h \leq \delta_p
\]

\[
W'(d' - U'h) \leq \delta_p \Rightarrow -W'U'h \leq \delta_p - W'd'
\]

Thus, \(A = -W'U' \) and \(b = \delta_p - W'd' \)

In part (iii) we should insert the above matrices in the code to obtain the desired WLS filter.