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Problem 1 (This Only Looks Complex)

i) Take X = e~'¥'™ then
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If X =1, then S = N. Otherwise, it is a geometric series and
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S = T—x 0 since XV = (e ¥ ™M)V = g2 — 1,
i) XV 1= (X -1+ X+ + XV =0
From the previous part, we know that X = e~ XM for m — 0,1,...,N — 1 are the

roots of XN —1=0.
iii) Note that
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Since for 2k # iN,i € Z, Zfzv

Finally :

Problem 2 (Black Box)
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and e/ = cosf + jsinf = cosf = Re{e!’}.
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i) A complex signal c[n] can be written as a summation of two real signals : real part
and imaginary part which is multiplied by j. It means that

c[n] = z[n] + jy[n]

c[n]+c*[n] C[n] "] s
2

where z[n| = is the real part of the signal and y[n] = is the imaginary

part of the signal. Note that ¢*[n] is the complex conjugate of c[ ]

Since DFT operator is a linear operator, i.e. DFT(aaln] + (b[n]) = aDFT(a[n]) +
BDFT(b[n]), we can conclude that

DFT(c[n]) = DFT(x[n]) + jDFT(y[n]) = Fy(x[n]) + j Fy (y[n])

= GR(c[n]) = Fy <—C[n] EC*[n]> + jFN <—C[n] ;C*[n]>

We could also reach to the above equation by explicitly using the DFT expansion.

ii) By using Problem (6.3) of homework 2, if C[k] is the N-point DFT of the signal ¢[n],
then
DFT

c[n] = N¢[(—k)modN]

or equivalently,
DFT

Cl(—n)modN] — NC|[k].
Therefore,

qm:%amqpmmmmy

iii) Since G%(-) functionals can operate on signals with length at most N, we should
divide z[n] into two signals with length N. One way is to divide z[n] to odd and even
components :

z[l] = x[20] and x,[¢] = z[2¢ + 1], for £ =0,1,...,N — 1.

Then, for K =0,1,...,2N — 1,

2N-1 N-1 N-1 .
- 27 -2 K
X[K] = Z x[n)e I En = E :c[%]e*jw(%) + x[20 + 1)e” iGN 26+
n=0 =0 =0
N-1 N-1
2r K K 2 K
= T[lle N4 e N Y g [fle TN = X K]+ eV X [K]
=0 £=0

Note that the DF'T of z.[n| and x,[n] is N-point DFT and therefore X . [K+N] = X [K]
for K =0,1,..., N — 1. Hence,

X[K] = X [K] 4 % X,[K] 0<K<N
| XJK - N+ e?% X,[K—-N] N<K<2N
or X
GRze[n]] + e 7% GE[z,[n]] 0<K<N
X[K] = GE-N _jTE ~NK-N
N [en]] + eV G wo[n]] N < K <2N
Problem 3



i)

ii)

iii)

We show that it is not summable. On the contrary, assume that it is summable. Then
for every € > 0, there exists a finite set J. € N such that for every finite set K € N,
‘ZHGK%‘ <eift KNJ. =0.

We show that it is not possible to have such J.. As J. is finite set in N, then it
has a maximum member. Let M = maxJ. then J. C {1,2,..., M}. Define K(¥) =
{2M,2(M +1),...,2(M + L)}. KX N J. =0 for all L values but :

L+M M+L
15 1 1 1. M+L 1
= — - > = —d — =1 —.
;L)“ 2ZMn Q/M Y VA R VATV
ne n=

The inequality could be easily verified similar to what we did in Problem (2.b) in
homework 1. Hence,

Za 42y L
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neK (L

neK (@) an| could take any large value. Therefore, there exists
many K € N such that K N J, = () and ZneK a, > ¢ for every finite J. and € > 0.

> (D" s absolutely convergent if $°°° . L is convergent.
n=1 n Y 8 n=ln &

> o2 | % is harmonic series and in the Problem (2.b) of homework 1 we have shown that

it is divergent. Hence, ) (Tl is not absolutely convergent. However, it is convergent.
Let’s begin with the sufficient condition. If Y >°  a, converge absoutely, then {a,} is

summable.

Consider S, = > |a;|. Since S, < oo (it is bounded) and S, is an increasing
sequence, then it converges to a value, call it S. In other words, for every € > 0,

M (e) € N such that n > M (e) | =S

For a given € > 0, let n = M(€). Thus,

M () M(e) 0o
S ail =S| =D lail = ail| < e
i=1 i=1 i=1
But S"M ;] — S°%° Ja;| = > ienr( lail. Therefore, 377% 1 |a;| < e. Let J. =
{1,2,. ,M(e)} then every finite set K € N such that K N J. = 0 is a subset of
{M{e ) 1,M(e) +2,...} and consequently,
Yl < D il <e
i€k i=M(e)+1

It means that {a;} is summable.

Now, we prove the necessary condition. If {a,} is summable, then > a, converges
absolutely.



Let us first assume that {a,} is a real sequence. If {a, } is summable, for a given & > 0,
there exists J. such that for every K finite set and K NJ, =0 : |Zn€ K an‘ <e.

Consider a given set K. We split it into the finite set K with positive elements and
the finite set K~ with negative elements. Therefore, K* NJ. = 0 and K~ N J. = 0.
Then :

2 an

neK+

=) an|<e

neK+

= Z la,| < 2e.

neKtUK—=K

S

nekK—

=Y an|<e

nekK—

Therefore, for every finite set K such that K N J, =0 :

D lan| < 2.

neK

Since we can take K arbitrarily large, thus 3° i lan| = 30,c5 lan] + 32,0 lanl is
bounded and then it is absolutely convergent.

For the complex sequence, every complex sequence can be written as a summation of
two (real and imaginary) sequences :

ap = Tp +jyn7$n7yn cR

where [z, < |an| and |y,| < |an| and |an| <|za| + |yal-

It can be easily verified that if {a,} is summable then {z,} and {y,} are summable
and consequently Y z,, and Y y, are absolutely convergent. Hence, > |a,| < > |z, |+
> |yn| < o0 is absolutely convergent.

Problem 4

i)

ii)

We are looking for the coefficients {«ag, a1, ..., a,} such that :
o +oqr+ -+ oz, =0 Vo € [0, 1]

If a, # 0, then the above polynomial with degree n has at most n different solutions
but it should be zero for all x € [0, 1]. Therefore, it is not possible unless all coefficients
are equal to zero. Thus, {1,z,...,2"} are linearly independent.

To find the orthonormal basis for a given set of vectors, we use Gram-Schmidt proce-

dure. In the space of C[0, 1] define vy = 1,v; = 2',... v, = 2™
Then ug(x) = ooy = 1, llool| = V< 1,1 > = \/fol lde =1
v1— < Ug, V1 > U r—<1l,z>
||U1—<UO,U1>U()|| ||ZL'—<1,{L’>||

1 1
1 1 1 1
<1,.:L'>:/;de:—, r——|l=v/<zx—-1/2,z—-1/2 > = / x— =)2dr = —
i 5 llz=5]] i / / \/0( 5) i
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iii)

iv)

Therefore, ui(z) = V12(x — 1/2).
The other orthonormal elements of the basis can be made by the following recursion :

() a— Zf:é < 2% ui(r) > u(x)
L = — :
||2f — 3200 < 2t ui(z) > wi(z)]

By the projection theorem, v, € B is the projection of a vector v in the Hilbert
subspace B, if
— = inf ||v — wl|.
o = wyl] = inf [Jo - w]

To find a polynomial with degree n, P,(x), which has the minimum total squared error
with p(z), i.e. ||p(z) — P,(z)||?, we should look for the projection of p(x) in the Hilbert
space of all polynomial functions of degree n with the norm || - ||.

Assume that P,(z) =Y ., biu;(x), then :

by =< Py(x),ui(x) >=<p(z),u;(z) >= /0 p(x)u; (z)dx.

We should find the projection of sin $x in the space of polynomials with degree 2. The
orthonormal basis {ug(x), u1(x), us(x)} is equal to :

up(z) =1,
uy () = V12(z — 1/2),

= <2 1> — <22 u(z) > u(x)
22— < 22,1 > — < 22, uy(x) > uy ()|

= 6V5(2? — x4 1/6).

us(x) = |

Therefore,

1

2
bo(z) =< sin zx, 1>= / sinm/2zdr = —,
2 0 m

4 1
bi(x) =< sin zx,ul(:p) >= V12— —V12=,
2 7T2 T

ba(x) =< sin zx,m(m) >= 6\/3(i - E) + %

2 2 73 T

The two last are concluded since :

1 1
0 —2z T 2 T
/ rsin —wdr = —~ cos —x|y + = / cos —xdx
0 2 m 0 2

2 T
4 . m 4 4
:FSIH§I|0:—2,
1 2 1
-2 4
/ZL‘QSiDEIdI: ’ coslﬂé—i——/ z cos —xdx
0 2 m 2 T Jo 2
8 . L 8 /1- T
= —xsin —z|; — — [ sin—xdr
72 2710 q2 2
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Figure 1: Plot of sin §x and its approximated polynomials of degree 2 and 3.
We solved the two integrals by using integration by part. Finally,
Py(z) = by + byug (z) + boug(z) = —0.024 + 1.878x — 0.8342°.

If we proceed one degree more, the degree 3 approximated polynomial is :

Py(z) = Py(x) + bzuz(x) = —0.002 + 1.6134x — 0.17242* — 0.44132°.

In figure 1, the plots of sin §z, Py(x) and P3(x) are depicted. We can see that Ps(x) is
located very close to sin Sz.



