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Problem 1 (This Only Looks Complex)

i) Take X = e−
j2π
N

m, then :

S =
N−1∑
n=0

e−
j2π
N

mn =
N−1∑
n=0

Xn = 1 + X + · · ·+ XN−1.

If X = 1, then S = N . Otherwise, it is a geometric series and

S =
1−XN

1−X
= 0 since XN = (e−

j2π
N

m)N = e−j2πm = 1.

ii) XN − 1 = (X − 1)(1 + X + · · ·+ XN−1) = 0.

From the previous part, we know that X = e−
j2π
N

m for m = 0, 1, . . . , N − 1 are the
roots of XN − 1 = 0.

iii) Note that

cos2 θ =
1 + cos 2θ

2
and ejθ = cos θ + j sin θ ⇒ cos θ = Re{ejθ}.

Therefore,

N−1∑
n=0

cos2(
2π

N
kn) =

N−1∑
n=0

1 + cos(2π
N

2kn)

2
=

N

2
+

1

2

N−1∑
n=0

cos(
2π

N
2kn).

But,
N−1∑
n=0

cos(
2π

N
2kn) =

N−1∑
n=0

Re{ej 2π
N

2kn} = Re

{
N−1∑
n=0

ej 4π
N

kn

}

Since for 2k 6= iN, i ∈ Z,
∑N−1

n=0 ej 4π
N

kn = 0, we conclude that

N−1∑
n=0

cos
4π

N
kn = Re{0} = 0.

Finally :
N−1∑
n=0

cos2(
2π

N
kn) =

N

2
.

Problem 2 (Black Box)



i) A complex signal c[n] can be written as a summation of two real signals : real part
and imaginary part which is multiplied by j. It means that

c[n] = x[n] + jy[n]

where x[n] = c[n]+c∗[n]
2

is the real part of the signal and y[n] = c[n]−c∗[n]
2j

is the imaginary

part of the signal. Note that c∗[n] is the complex conjugate of c[n].

Since DFT operator is a linear operator, i.e. DFT (αa[n] + βb[n]) = αDFT (a[n]) +
βDFT (b[n]), we can conclude that

DFT (c[n]) = DFT (x[n]) + jDFT (y[n]) = F k
N(x[n]) + jF k

N(y[n])

⇒ Gk
N(c[n]) = F k

N

(
c[n] + c∗[n]

2

)
+ jF k

N

(
c[n]− c∗[n]

2

)

We could also reach to the above equation by explicitly using the DFT expansion.

ii) By using Problem (6.3) of homework 2, if C[k] is the N-point DFT of the signal c[n],
then

c[n]
DFT−→ Nc[(−k)modN ]

or equivalently,

C[(−n)modN ]
DFT−→ NC[k].

Therefore,

c[k] =
1

N
Gk

N(C[(−n)modN ]).

iii) Since Gk
N(·) functionals can operate on signals with length at most N , we should

divide x[n] into two signals with length N . One way is to divide x[n] to odd and even
components :

xe[`] = x[2`] and xo[`] = x[2` + 1], for ` = 0, 1, . . . , N − 1.

Then, for K = 0, 1, . . . , 2N − 1,

X[K] =
2N−1∑
n=0

x[n]e−j 2π
2N

Kn =
N−1∑

`=0

x[2`]e−j 2πK
2N

(2`) +
N−1∑

`=0

x[2` + 1]e−j 2πK
2N

(2`+1)

=
N−1∑

`=0

xe[`]e
−j 2πK

N
` + e−j πK

N

N−1∑

`=0

xo[`]e
−j 2πK

N
` = Xe[K] + e−j πK

N Xo[K].

Note that the DFT of xe[n] and xo[n] is N -point DFT and therefore Xe[K+N ] = Xe[K]
for K = 0, 1, . . . , N − 1. Hence,

X[K] =

{
Xe[K] + e−j πK

N Xo[K] 0 ≤ K < N

Xe[K −N ] + e−j πK
N Xo[K −N ] N ≤ K < 2N

or

X[K] =

{
GK

N [xe[n]] + e−j πK
N GK

N [xo[n]] 0 ≤ K < N

GK−N
N [xe[n]] + e−j πK

N GK−N
N [xo[n]] N ≤ K < 2N

Problem 3

2



i) We show that it is not summable. On the contrary, assume that it is summable. Then
for every ε > 0, there exists a finite set Jε ∈ N such that for every finite set K ∈ N,∣∣∑

n∈K an

∣∣ < ε if K ∩ Jε = ∅.

We show that it is not possible to have such Jε. As Jε is finite set in N, then it
has a maximum member. Let M = max Jε then Jε ⊆ {1, 2, . . . , M}. Define K(L) =
{2M, 2(M + 1), . . . , 2(M + L)}. K(L) ∩ Jε = ∅ for all L values but :

∑

n∈K(L)

an =
1

2

L+M∑
n=M

1

n
>

1

2

∫ M+L

M

1

x
dx +

1

2M
=

1

2
ln

M + L

M
+

1

2M
.

The inequality could be easily verified similar to what we did in Problem (2.b) in
homework 1. Hence, ∑

n∈K(L)

an >
1

2
ln(1 +

L

M
) +

1

2M
.

For arbitrary large L,
∣∣∑

n∈K(L) an

∣∣ could take any large value. Therefore, there exists
many K ∈ N such that K ∩ Jε = ∅ and

∑
n∈K an > ε for every finite Jε and ε > 0.

ii)
∑∞

n=1
(−1)n

n
is absolutely convergent if

∑∞
n=1

1
n

is convergent.

∑∞
n=1

1
n

is harmonic series and in the Problem (2.b) of homework 1 we have shown that

it is divergent. Hence,
∑ (−1)n

n
is not absolutely convergent. However, it is convergent.

iii) Let’s begin with the sufficient condition. If
∑∞

n=1 an converge absoutely, then {an} is
summable.

Consider Sn =
∑n

i=1 |ai|. Since Sn < ∞ (it is bounded) and Sn is an increasing
sequence, then it converges to a value, call it S. In other words, for every ε > 0,

∃M(ε) ∈ N such that n ≥ M(ε) :

∣∣∣∣∣
n∑

i=1

|ai| − S

∣∣∣∣∣ < ε

For a given ε > 0, let n = M(ε). Thus,

∣∣∣∣∣∣

M(ε)∑
i=1

|ai| − S

∣∣∣∣∣∣
=

∣∣∣∣∣∣

M(ε)∑
i=1

|ai| −
∞∑
i=1

|ai|
∣∣∣∣∣∣
< ε

But
∑M(ε)

i=1 |ai| −
∑∞

i=1 |ai| =
∑∞

i=M(ε)+1 |ai|. Therefore,
∑∞

i=M(ε)+1 |ai| < ε. Let Jε =

{1, 2, . . . , M(ε)}, then every finite set K ∈ N such that K ∩ Jε = ∅ is a subset of
{M(ε) + 1, M(ε) + 2, . . . } and consequently,

∑
i∈K

|ai| <
∞∑

i=M(ε)+1

|ai| < ε.

It means that {ai} is summable.

Now, we prove the necessary condition. If {an} is summable, then
∑

an converges
absolutely.
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Let us first assume that {an} is a real sequence. If {an} is summable, for a given ε > 0,
there exists Jε such that for every K finite set and K ∩ Jε = ∅ :

∣∣∑
n∈K an

∣∣ < ε.

Consider a given set K. We split it into the finite set K+ with positive elements and
the finite set K− with negative elements. Therefore, K+ ∩ Jε = ∅ and K− ∩ Jε = ∅.
Then :

∣∣∣∣∣
∑

n∈K+

an

∣∣∣∣∣ =
∑

n∈K+

|an| < ε

⇒
∑

n∈K+∪K−=K

|an| < 2ε.

∣∣∣∣∣
∑

n∈K−
an

∣∣∣∣∣ =
∑

n∈K−
|an| < ε

Therefore, for every finite set K such that K ∩ Jε = ∅ :

∑
n∈K

|an| < 2ε.

Since we can take K arbitrarily large, thus
∑

n∈N |an| =
∑

n∈Jε
|an| +

∑
n/∈Jε

|an| is
bounded and then it is absolutely convergent.

For the complex sequence, every complex sequence can be written as a summation of
two (real and imaginary) sequences :

an = xn + jyn, xn, yn ∈ R

where |xn| < |an| and |yn| < |an| and |an| < |xn|+ |yn|.
It can be easily verified that if {an} is summable then {xn} and {yn} are summable
and consequently

∑
xn and

∑
yn are absolutely convergent. Hence,

∑ |an| <
∑ |xn|+∑ |yn| < ∞ is absolutely convergent.

Problem 4

i) We are looking for the coefficients {α0, α1, . . . , αn} such that :

α0 + α1x + · · ·+ αnxn = 0 ∀x ∈ [0, 1]

If αn 6= 0, then the above polynomial with degree n has at most n different solutions
but it should be zero for all x ∈ [0, 1]. Therefore, it is not possible unless all coefficients
are equal to zero. Thus, {1, x, . . . , xn} are linearly independent.

ii) To find the orthonormal basis for a given set of vectors, we use Gram-Schmidt proce-
dure. In the space of C[0, 1] define v0 = 1, v1 = x1, . . . , vn = xn.

Then u0(x) = v0

||v0|| = 1, ||v0|| =
√

< 1, 1 > =
√∫ 1

0
1dx = 1

u1(x) =
v1− < u0, v1 > u0

||v1− < u0, v1 > u0|| =
x− < 1, x >

||x− < 1, x > ||

< 1, x >=

∫ 1

0

xdx =
1

2
, ||x−1

2
|| =

√
< x− 1/2, x− 1/2 > =

√∫ 1

0

(x− 1

2
)2dx =

1√
12
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Therefore, u1(x) =
√

12(x− 1/2).
The other orthonormal elements of the basis can be made by the following recursion :

u`(x) =
x` −∑`−1

i=0 < x`, ui(x) > ui(x)

||x` −∑`−1
i=0 < x`, ui(x) > ui(x)|| .

iii) By the projection theorem, vp ∈ B is the projection of a vector v in the Hilbert
subspace B, if

||v − vp|| = inf
w∈B

||v − w||.

To find a polynomial with degree n, Pn(x), which has the minimum total squared error
with p(x), i.e. ||p(x)−Pn(x)||2, we should look for the projection of p(x) in the Hilbert
space of all polynomial functions of degree n with the norm || · ||.
Assume that Pn(x) =

∑n
i=0 biui(x), then :

bi =< Pn(x), ui(x) >=< p(x), ui(x) >=

∫ 1

0

p(x)u∗i (x)dx.

iv) We should find the projection of sin π
2
x in the space of polynomials with degree 2. The

orthonormal basis {u0(x), u1(x), u2(x)} is equal to :

u0(x) = 1,

u1(x) =
√

12(x− 1/2),

u2(x) =
x2− < x2, 1 > − < x2, u1(x) > u1(x)

||x2− < x2, 1 > − < x2, u1(x) > u1(x)|| = 6
√

5(x2 − x + 1/6).

Therefore,

b0(x) =< sin
π

2
x, 1 >=

∫ 1

0

sin π/2xdx =
2

π
,

b1(x) =< sin
π

2
x, u1(x) >=

√
12

4

π2
−
√

12
1

π
,

b2(x) =< sin
π

2
x, u2(x) >= 6

√
5(

4

π2
− 16

π3
) +

2
√

5

π
.

The two last are concluded since :
∫ 1

0

x sin
π

2
xdx =

−2x

π
cos

π

2
x|10 +

2

π

∫ 1

0

cos
π

2
xdx

=
4

π2
sin

π

2
x|10 =

4

π2
,

∫ 1

0

x2 sin
π

2
xdx =

−2x2

π
cos

π

2
x|10 +

4

π

∫ 1

0

x cos
π

2
xdx

=
8

π2
x sin

π

2
x|10 −

8

π2

∫ 1

0

sin
π

2
xdx

=
8

π2
+

16

π3
cos

π

2
x|10

=
8

π2
+

16

π3
.
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Figure 1: Plot of sin π
2
x and its approximated polynomials of degree 2 and 3.

We solved the two integrals by using integration by part. Finally,

P2(x) = b0 + b1u1(x) + b2u2(x) = −0.024 + 1.878x− 0.834x2.

If we proceed one degree more, the degree 3 approximated polynomial is :

P3(x) = P2(x) + b3u3(x) = −0.002 + 1.6134x− 0.1724x2 − 0.4413x3.

In figure 1, the plots of sin π
2
x, P2(x) and P3(x) are depicted. We can see that P3(x) is

located very close to sin π
2
x.
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