ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 23	Signal Processing for Communications
Homework 9	May 2, 2011, INF 1 - 10:15-12:00

- **Problem 1** (DFT Revisit). (i) Let x[n] be a real N-point sequence and X[k] be its N-point DFT. Let $x_1[n]$ be a sequence such that $X_1[k] = \text{real}\{X[k](-1)^k\}$. Given that N is even, find $x_1[n]$ in terms of x[n].
 - (ii) Let $x_1[n]$ and $x_2[n]$ be two real N-point sequences such that $x_1[n]$ is symmetric, and $x_2[n]$ is anti-symmetric. Let $X_1[k]$ and $X_2[k]$ denote their corresponding N-point DFTs. Given $y[n] = x_1[n] + x_2[n]$ with its DFT denoted as Y[k], explain how $X_1[k]$ and $X_2[k]$ can be recovered from Y[k].

Problem 2 (Limits of Z-transform). Let X(z) be z-transform of a causal discrete signal x[n], compute the following equations in terms of x[n]:

- (i) X(1). What does it show?
- (ii) $\lim_{z\to\infty} X(z)$.
- (iii) $\lim_{z\to\infty} z(X(z) x[0]).$

(iv)
$$-z \frac{\mathrm{d}X(z)}{\mathrm{d}z}$$
.

(v) $\lim_{z\to\infty} -z^2 \frac{\mathrm{d}X(z)}{\mathrm{d}z}$.

Problem 3 (Stochastic Processes). Consider a discrete random process $X[n] = \sin(\omega n + \theta)$ such that θ is a random variable with uniform distribution on $[0, 2\pi]$ and $\omega \in \mathbb{R}$.

(i) Find the mean and autocorrelation function of X[n]. Is it a wide-sense stationary process?

Define

$$Y[n] = X[n] + \beta X[n-1],$$

where $\beta \in \mathbb{R}$.

(ii) Compute the power spectral density $P_Y(e^{j2\pi f})$.

Now assume that X[n] is a zero-mean wide-sense stationary process with autocorrelation function given by

$$R_X[k] = \sigma^2 \alpha^{|k|}$$

for $|\alpha| < 1$.

- (iii) Compute the power spectral density $P_Y(e^{j2\pi f})$.
- (iv) For which values of β does Y[n] corresponds to a white noise?

Problem 4 (Min. Mean Squared Error Estimator*). In this problem, we want to approximate random variable X in terms of a given set of observations $\{Y_1, \dots, Y_l\}$ such that Y_i , for $1 \leq i \leq l$, is a random variable correlated to X.

Consider the case that we have only one observation, Y. Define $\hat{X} = h(Y)$ as an estimator of X. Then, we estimate the value of X by knowing the value of observation Y. An estimator is called **unbiased** estimator, if $\mathbb{E}(X) = \mathbb{E}(\hat{X})$. Assume that X and Y are continuous random variables with the joint probability density function (PDF) $P_{X,Y}(x,y)$. The marginal PDF of X and Y are denoted by $P_X(x)$ and $P_Y(y)$.

Let \mathcal{H} be a Hilbert space of random variables with an inner product defined by

$$\langle U, V \rangle = \mathbb{E}(UV^*) = \int uv^* P_{X,Y}(x,y) \mathrm{d}x \mathrm{d}y,$$
 (1)

where $U, V \in \mathcal{H}$. the space \mathcal{H} contains X and Y and all the random variables f(X, Y) such that $f(\cdot)$ is a continuous function. Moreover, the subspace of random variable Y contains random variables Y and f(Y) for all continuous function $f(\cdot)$.

i) Prove that $\langle U, V \rangle$ in (1) is an inner product?

Define mean squared error as

$$\langle x - \hat{x}, x - \hat{x} \rangle = \mathbb{E}(|x - \hat{x}|^2) = \int |x - \hat{x}|^2 P_{X,Y}(x, y) \mathrm{d}x \mathrm{d}y.$$

- ii) Among the linear unbiased estimators, i.e. $\hat{X} = aY + b$, find the estimator with the minimum mean squared error.
- iii) Prove that $\hat{X} = h(Y) = \mathbb{E}(X \mid Y)$ has the minimum mean squared error among all unbiased estimators.

Hint 1: Use projection theorem.

Hint 2: Due to definition of conditional expectation, if $Z = \mathbb{E}(X \mid Y)$ then $\mathbb{E}((X - Z)f(Y)) = 0$ for all continuous function of $f(\cdot)$.

(*) Just for fun. Such problems are out of focus of this course :-).