Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

April 20, 2011
Common model

- Messages
- Frequencies
- Coding
- Entropy

$H_n(p_1, \ldots, p_n) = - \sum p_k \log p_k$
Properties

- Bounded, nonnegativity
- Subadditivity (Additivity): $H(PQ) \leq H(P) + H(Q)$
- Conditional Entropy: $H(PQ) = H(P) + H(Q|P)$
- Mutual Information: $I(P, Q) = H(Q) - H(Q|P)$
Source Entropy

- Source entropy:
 \[H^\infty = \lim_{r \to \infty} H(P^r)/r = \lim_{r \to \infty} H(P/P^{r-1}) \]
- Bounded, nonnegative.
- Expansibility
- Recursivity (Branching property)
 \[H_{n+1}(p_1 * q_1, p_2 * q_2, p_2, \ldots, p_n) = H_n(p_1, \ldots, p_n) + p_1 * H_2(q_1, q_2) \]
Other Measures

- Subadditivity, additivity, expansibility:
 \[a \log\#(p_k \neq 0) + b \sum_{k=1}^{n} p_k \log p_k \quad (a \geq 0 \geq b) \]

- Replace the subadditivity by its generalization:
 \[H(PQ|R) \leq H(P|R) + H(Q|R) \] then \(a = 0 \)
Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

Forecasting theory. Divergence

- $\sum^n p_k \ast f(q_k) \leq \sum^n p_k \ast f(p_k)$
- $f(q) = a \ast \log q + b$
- $\sum^n p_k \ast f(p_k) = a \ast \sum^n p_k \ast \log p_k + b$
- Directed divergence $\sum^n p_k \ast \log(p_k/q_k)$
Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

Sum-Form

- \(H_n(p_1, \cdots, p_n) = \sum^n \phi(p_k) \)
- Branching Property: \(H_n(p_1, p_1, p_2, \cdots, p_n) = H_{n-1}(p_1 + p_2, \cdots, p_n) + J_n(p_1, p_2) \)
Expected Information

- $\Psi H_n(p_1, \cdots, p_n) = \Psi^{-1}(\sum^n p_k \ast \Psi(-\log p_k))$ where \(\Psi]0, \infty[\rightarrow \mathbb{R}\) is continuous and strictly increasing.
- Renyi Entropy: $aH_n(p_1, \cdots, p_n) = \frac{1}{1-a} \ast \log \sum^n p_k^a$
Measuring information beyond communication theory. Why some generalized information measures may be useful, others not

J. ACZEL

Mixed theory of information

- Events + Messages
- \(H_n\left\{ \frac{E_1, \ldots, E_n}{p_1, \ldots, p_n} \right\} \) (\(E_j \cap E_k = \emptyset \) if \(j \neq k \), \(p_k \geq 0 \), \(\sum^n p_k = 1 \))
- \(a \ast \sum^n p_k \ast \log p_k + \sum^n p_k \ast g(E_k) - g(\bigcup^n E_k) \)