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Similarly, we derive

DIF

for an odd , since from (7). Therefore, we obtain
for an odd . Q.E.D.

Example 3: We are interested in the difficulty DIF for -phase
bent sequences with period , since signals with -phase have
often been used in some communications.We compute DIF fromThe-
orem 3 as shown in Table I. In order to get large difficulty, we need a
bent sequence set with long period or many phases.

V. CONCLUSION

We have tried to construct a DS-SSMA system, in which the dif-
ficulty of wiretapping from interception increases and the worst case
error probability decreases as much as possible. Bent sequences with
optimal periodic correlation properties and high linear span have been
applied as spreading sequences corresponding to secret keys.
The difficulty of wiretapping has been defined, and derived for a
-phase bent sequence set. If a bent sequence set possesses long pe-

riod or many phases, the DS-SSMA system seems to be able to protect
information data from interception, as shown in Example 3.
If we allow the bent functions to take real values, the difficulty seems

infinite.

REFERENCES

[1] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spec-
trum Communications. Rockville, MD: Computer Science, 1985, vol.
1, ch 5.

[2] H. Imai, R. Kohno, and T. Matsumoto, “Information security of spread
spectrum system,” IEICE Trans. Commun., vol. E74, no. 3, Mar. 1991.

[3] T. Kohda and A. Tsuneda, “Pseudonoize sequences by chaotic nonlinear
maps and their correlation properties,” IEICE Trans. Commu., vol.
E76-B, no. 8, Aug. 1993.

[4] G. H. Bateni and C. D. McGillem, “A chaotic direct-sequence
spread-spectrum communication system,” IEEE Trans. Commum., vol.
42, Feb./Mar./Apr. 1994.

[5] T. Kasami, “Weight distribution formula for some classses of cyclic
codes,” Coordinated Sci. Lab., Univ. Illinois, Urbana, Tech. Rep. R-285,
Apr. 1966.

[6] D. V. Sarwate and M. B. Pursley, “Crosscorrelation properties of pseu-
dorandom and related sequences,” Proc. IEEE, vol. 68, pp. 593–619,
May 1980.

[7] E. L. Key, “An analysis of the structure and complexity of nonlinear
binary sequence generator,” IEEE Trans. Inform. Theory, vol. IT-22, pp.
732–736, Nov. 1976.

[8] R. Gold, “Optimum binary sequences for spread spectrum multi-
plexing,” IEEE Trans. Inform. Theory, vol. IT-13, pp. 619–321, Oct.
1967.

[9] M. B. Pursley, “Performance evaluation for phase-coded spread-spec-
trum multiple-access communication—Part 1,” IEEE Trans. Commun.,
vol. COM-24, pp. 795–799, Aug. 1977.

[10] K. H. A. Karkkainen, “Mean-square cross-correlation as a performance
measue for spreading code families,” in Proc. ISSSTA’92, 1992, pp.
147–150.

[11] L. R. Welch, “Lower bound on the maximum cross correlation of sig-
nals,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 397–399, May 1974.

[12] J. D. Olsen, “Nonlinear Binary Sequences with Asymptotically
Optimum Periodic Cross-Correlation,” Ph.D. dissertation, Elec. Eng.
Dept., Univ. Southern Calif., Los Angeles, 1977.

[13] P. V. Kumar, “On Bent Sequences and Generalized Bent Functions,”
Ph.D. dissertation, Elec. Eng. Dept., Univ. Southern Calif., Los Angeles,
Aug. 1983.

[14] S. Matsufuji and K. Imamura, “Real-valued bent function and its ap-
plication to the design of balanced quadriphase sequences with optimal
correlation properties,” in Lecture Notes in Computer Science. Berlin,
Germany: Springer Verlag, Mar. 1991, vol. 508, pp. 113–121.

[15] , “Balanced quadriphase sequences with optimal correlation prop-
erties constructed by real-valued bent functions,” IEEE Trans. Inform.
Theory, vol. 39, pp. 305–310, Jan. 1993.

A Short Proof of the “Concavity of Entropy Power”

Cédric Villani

Abstract—We give a simple proof of the “concavity of entropy power.”
Index Terms—Entropy power, Fisher information, heat semigroup.

I. INTRODUCTION

Let be a probability measure on We define the action of the
heat semigroup on , by the solution of the partial differential
equation

Equivalently, is the convolution of with the -dimensional
Gaussian density having mean vector and covariance matrix ,
where is the identity matrix. The “concavity of entropy power”
theorem states that

(1)

Here

The functional is the so-called “entropy power” of , as intro-
duced by Shannon, while is Shannon’s entropy functional (which
coincides with Boltzmann’s entropy up to a change of sign). The nor-
malizing factor is nonessential and we mention it only to stick to
the conventions of Shannon.
Inequality (1) is due to Costa [4]. Later, Dembo [5], [6] simplified

the proof, by an argument based on the Blachman–Stam inequality [3]

Here and are two arbitrary probability densities, and

stands for the Fisher information of Actually, Dembo proved in-
equality (1) in the equivalent form

(2)
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Using basic considerations on the heat equation, like the continuity of
with respect to (when varies in a class s.t. stays

bounded), it is sufficient to prove (1), or equivalently (2), for a very
smooth initial datum , with fast decay at infinity. In order not to worry
about logarithms, we may also impose that
for some constant The general case will follow by density.
Our goal here is to give a direct proof of (2), in a strengthened form,

with an exact error term. Our proof relies on the following lemma, well-
known in certain circles.

Lemma: Let be a smooth, rapidly decaying probability density,
such that has growth at most polynomial at infinity. Then

Here the summation is taken over all indices ,
This computation (or actually a variant of it) was performed byMcKean
[7] in one dimension of space, and easily generalized by Toscani [8] to
the -dimensional case. But this lemma is also a particular case of the
identities of Bakry and Emery [2], established through the so-called
calculus as part of their famous work on logarithmic Sobolev inequali-
ties and hypercontractive diffusions. For the sake of completeness, we
give here a simple proof which is inspired from Bakry and Emery.

Proof of Lemma: Write the Fisher information in the form

so that, by differentiation under the integral sign,

(3)

We express in terms of , thanks to the elementary identity

so that (3) becomes

(4)

The first integral in (4) can, of course, be rewritten as

while the third one is

On the whole, (3) is equal to

We conclude by the elementary identity (in which the reader may rec-
ognize a trivial particular case of Bochner’s formula)

With this lemma at hand, the proof of (2) is almost immediate.

Proposition: Let be a smooth, rapidly decaying probability den-
sity, such that has growth at most polynomial at infinity. Then

Proof: Consider the nonnegative quantity

and expand this expression as a trinom in Since

we obtain

Now, the choice yields the equality

(5)

Remarks:
1) It is easy to check that, at least under suitable smoothness as-

sumptions, equality in (2) occurs if and only if is an isotropic
Gaussian.

2) As one of the referees pointed out, a proof of the Proposition in
the same spirit as the above argument is implicit in the notes by
D. Bakry [1, p. 103, remarks following the proof of Proposition
6.7]. Namely, applying the Cauchy–Schwarz inequality twice

(where we used again While this proof does not
give any simple remainder term, one advantage is that—as again
pointed out by the referee—it also works for Riemannian mani-
folds with nonnegative Ricci curvature.
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