
Chapter 14
Distances in Probability Theory

A probability space is a measurable space (Ω,A, P ), where A is the set of all
measurable subsets of Ω, and P is a measure on A with P (Ω) = 1. The set Ω
is called a sample space. An element a ∈ A is called an event. In particular,
an elementary event is a subset of Ω that contains only one element. P (a)
is called the probability of the event a. The measure P on A is called a
probability measure, or (probability) distribution law, or simply (probability)
distribution.

A random variable X is a measurable function from a probability space
(Ω,A, P ) into a measurable space, called a state space of possible values of the
variable; it is usually taken to be the real numbers with the Borel σ-algebra,
so X : Ω → R. The range X of the random variable X is called the support
of the distribution P ; an element x ∈ X is called a state.

A distribution law can be uniquely described via a cumulative distribu-
tion function (CDF, distribution function, cumulative density function) F (x)
which describes the probability that a random value X takes on a value at
most x: F (x) = P (X ≤ x) = P (ω ∈ Ω : X(ω) ≤ x).

So, any random variable X gives rise to a probability distribution which
assigns to the interval [a, b] the probability P (a ≤ X ≤ b) = P (ω ∈ Ω : a ≤
X(ω) ≤ b), i.e., the probability that the variable X will take a value in the
interval [a, b].

A distribution is called discrete if F (x) consists of a sequence of
finite jumps at xi; a distribution is called continuous if F (x) is con-
tinuous. We consider (as in the majority of applications) only dis-
crete or absolutely continuous distributions, i.e., the CDF function
F : R → R is absolutely continuous. It means that, for every num-
ber ε > 0, there is a number δ > 0 such that, for any sequence of
pairwise disjoint intervals [xk, yk], 1 ≤ k ≤ n, the inequality

∑
1≤k≤n

(yk − xk) < δ implies the inequality
∑

1≤k≤n |F (yk) − F (xk)| < ε.
A distribution law also can be uniquely defined via a probability density

function (PDF, density function, probability function) p(x) of the underly-
ing random variable. For an absolutely continuous distribution, the CDF
is almost everywhere differentiable, and the PDF is defined as the deriva-
tive p(x) = F

′
(x) of the CDF; so, F (x) = P (X ≤ x) =

∫ x
−∞ p(t)dt, and
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∫ b
a p(t)dt = P (a ≤ X ≤ b). In the discrete case, the PDF (the density

of the random variable X) is defined by its values p(xi) = P (X = x); so
F (x) =

∑
xi≤x p(xi). In contrast, each elementary event has probability zero

in any continuous case.
The random variable X is used to “push-forward” the measure P on Ω to a

measure dF on R. The underlying probability space is a technical device used
to guarantee the existence of random variables and sometimes to construct
them.

For simplicity, we usually present the discrete version of probability met-
rics, but many of them are defined on any measurable space; see [Bass89],
[Cha08]. For a probability distance d on random quantities, the condi-
tions P (X = Y ) = 1 or equality of distributions imply (and characterize)
d(X,Y ) = 0; such distances are called [Rach91] compound or simple dis-
tances, respectively. In many cases, some ground distance d is given on the
state space X and the presented distance is a lifting of it to a distance on
distributions.

In Statistics, many of the distances below, between distributions P1 and P2,
are used as measures of goodness of fit between estimated, P2, and theoretical,
P1, distributions. Also, in Statistics, a distance that not satisfy the triangle
inequality, is often called a distance statistic; a statistic is a function of a
sample which is independent of its distribution.

Below we use the notation E[X] for the expected value (or mean) of the
random variable X: in the discrete case E[X] =

∑
x xp(x), in the continuous

case E[X] =
∫

xp(x)dx. The variance of X is E[(X −E[X])2]. Also we denote
pX = p(x) = P (X = x), FX = F (x) = P (X ≤ x), p(x, y) = P (X = x,
Y = y).

14.1 Distances on random variables

All distances in this section are defined on the set Z of all random variables
with the same support X ; here X,Y ∈ Z.

• p-average compound metric
Given p ≥ 1, the p-average compound metric (or Lp-metric between
variables) is a metric on Z with X ⊂ R and E[|Z|p] < ∞ for all Z ∈ Z,
defined by

(E[|X − Y |p])1/p = (
∑

(x,y)∈X×X

|x − y|pp(x, y))1/p.

For p = 2 and ∞, it is called, respectively, the mean-square distance and
essential supremum distance between variables.
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• Absolute moment metric
Given p ≥ 1, the absolute moment metric is a metric on Z with X ⊂ R
and E[|Z|p] < ∞ for all Z ∈ Z, defined by

(|(E[|X|p])1/p − (E[|Y |p])1/p|.

For p = 1 it is called the engineer metric.
• Indicator metric

The indicator metric is a metric on Z, defined by

E[1X &=Y ] =
∑

(x,y)∈X×X

1x&=yp(x, y) =
∑

(x,y)∈X×X ,x &=y

p(x, y).

(Cf. Hamming metric in Chap. 1.)
• Ky Fan metric K

The Ky Fan metric K is a metric K on Z, defined by

inf{ε > 0 : P (|X − Y | > ε) < ε}.

It is the case d(x, y) = |X − Y | of the probability distance.
• Ky Fan metric K∗

The Ky Fan metric K∗ is a metric K∗ on Z, defined by

E
[

|X − Y |
1 + |X − Y |

]
=

∑

(x,y)∈X×X

|x − y|
1 + |x − y|p(x, y).

• Probability distance
Given a metric space (X , d), the probability distance on Z is defined by

inf{ε > 0 : P (d(X,Y ) > ε) < ε}.

14.2 Distances on distribution laws

All distances in this section are defined on the set P of all distribution
laws such that corresponding random variables have the same range X ; here
P1, P2 ∈ P.

• Lp-metric between densities
The Lp-metric between densities is a metric on P (for a countable X ),
defined, for any p ≥ 1, by

(
∑

x

|p1(x) − p2(x)|p)
1
p .
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For p = 1, one half of it is called the total variation metric (or vari-
ational distance, trace-distance). For p = 2, it is the Patrick-Fisher
distance. The point metric supx |p1(x) − p2(x)| corresponds to p = ∞.

The Lissak-Fu distance with parameter α > 0 is defined as
∑

x |p1(x)−
p2(x)|α.

• Bayesian distance
The error probability in classification is the following error probability
of the optimal Bayes rule for the classification into 2 classes with a priori
probabilities φ, 1−φ and corresponding densities p1, p2 of the observations:

Pe =
∑

x

min(φp1(x), (1 − φ)p2(x)).

The Bayesian distance on P is defined by 1 − Pe.
For the classification into m classes with a priori probabilities φi, 1 ≤ i ≤

m, and corresponding densities pi of the observations, the error probability
becomes

Pe = 1 −
∑

x

p(x)max
i

P (Ci|x),

where P (Ci|x) is the a posteriori probability of the class Ci given the
observation x and p(x) =

∑m
i=1 φiP (x|Ci). The general mean distance

between m classes Ci (cf. m-hemi-metric in Chap. 3) is defined (Van der
Lubbe 1979), for α > 0 and β > 1, by

∑

x

p(x)(
∑

i

P (Ci|x)β)α.

The case α = 1, β = 2 corresponds to the Bayesian distance in Devijver
(1974); the case β = 1

α was considered in Trouborst, Baker, Boekee and
Boxma (1974).

• Mahalanobis semi-metric
The Mahalanobis semi-metric (or quadratic distance) is a semi-metric
on P (for X ⊂ Rn), defined by

√
(EP1 [X] − EP2 [X])T A−1(EP1 [X] − EP2 [X])

for a given positive-definite matrix A.
• Engineer semi-metric

The engineer semi-metric is a semi-metric on P (for X ⊂ R), defined by

|EP1 [X] − EP2 [X]| = |
∑

x

x(p1(x) − p2(x))|.
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• Stop-loss metric of order m
The stop-loss metric of order m is a metric on P (for X ⊂ R),
defined by

sup
t∈R

∑

x≥t

(x − t)m

m!
(p1(x) − p2(x)).

• Kolmogorov–Smirnov metric
The Kolmogorov–Smirnov metric (or Kolmogorov metric, uniform
metric) is a metric on P (for X ⊂ R), defined by

sup
x∈R

|P1(X ≤ x) − P2(X ≤ x)|.

The Kuiper distance on P is defined by

sup
x∈R

(P1(X ≤ x) − P2(X ≤ x)) + sup
x∈R

(P2(X ≤ x) − P1(X ≤ x)).

(Cf. Pompeiu–Eggleston metric in Chap. 9.)
The Anderson–Darling distance on P is defined by

sup
x∈R

|(P1(X ≤ x) − P2(X ≤ x)|
ln

√
(P1(X ≤ x)(1 − P1(X ≤ x))

.

The Crnkovic–Drachma distance is defined by

sup
x∈R

(P1(X ≤ x) − P2(X ≤ x)) ln
1√

(P1(X ≤ x)(1 − P1(X ≤ x))
+

+ sup
x∈R

(P2(X ≤ x) − P1(X ≤ x)) ln
1√

(P1(X ≤ x)(1 − P1(X ≤ x))
.

The above three distances are used in Statistics as measures of goodness
of fit, especially, for VaR (Value at Risk) measurements in Finance.

• Cramer–von Mises distance
The Cramer–von Mises distance is a distance on P (for X ⊂ R),
defined by ∫ +∞

−∞
(P1(X ≤ x) − P2(X ≤ x))2dx.

This is the squared L2-metric between cumulative density functions.
• Levy–Sibley metric

The Levy metric is a metric on P (for X ⊂ R only), defined by

inf{ε>0:P1(X≤x− ε)− ε≤P2(X ≤ x)≤P1(X≤x+ ε)+ ε for any x∈R}.

It is a special case of the Prokhorov metric for (X , d) = (R, |x − y|).
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• Prokhorov metric
Given a metric space (X , d), the Prokhorov metric on P is defined by

inf{ε>0:P1(X∈B) ≤ P2(X∈Bε) + ε and P2(X∈B)≤P1(X∈Bε) + ε},

where B is any Borel subset of X , and Bε = {x : d(x, y) < ε, y ∈ B}.
It is the smallest (over all joint distributions of pairs (X,Y ) of random

variables X,Y such that the marginal distributions of X and Y are P1

and P2, respectively) probability distance between random variables X
and Y .

• Dudley metric
Given a metric space (X , d), the Dudley metric on P is defined by

sup
f∈F

|EP1 [f(X)] − EP2 [f(X)]| = sup
f∈F

|
∑

x∈X
f(x)(p1(x) − p2(x))|,

where F = {f : X → R, ||f ||∞ + Lipd(f) ≤ 1}, and Lipd(f) =
supx,y∈X ,x &=y

|f(x)−f(y)|
d(x,y) .

• Szulga metric
Given a metric space (X , d), the Szulga metric on P is defined by

sup
f∈F

|(
∑

x∈X
|f(x)|pp1(x))1/p − (

∑

x∈X
|f(x)|pp2(x))1/p|,

where F = {f : X → R, Lipd(f) ≤ 1}, and Lipd(f) = supx,y∈X ,x &=y
|f(x)−f(y)|

d(x,y) .
• Zolotarev semi-metric

The Zolotarev semi-metric is a semi-metric on P, defined by

sup
f∈F

|
∑

x∈X
f(x)(p1(x) − p2(x))|,

where F is any set of functions f : X → R (in the continuous case, F is any
set of such bounded continuous functions); cf. Szulga metric, Dudley
metric.

• Convolution metric
Let G be a separable locally compact abelian group, and let C(G) be the
set of all real bounded continuous functions on G vanishing at infinity. Fix
a function g ∈ C(G) such that |g| is integrable with respect to the Haar
measure on G, and {β ∈ G∗ : ĝ(β) = 0} has empty interior; here G∗ is the
dual group of G, and ĝ is the Fourier transform of g.



14.2 Distances on distribution laws 247

The convolution metric (or smoothing metric) is defined (Yukich
1985), for any two finite signed Baire measures P1 and P2 on G, by

sup
x∈G

|
∫

y∈G
g(xy−1)(dP1 − dP2)(y)|.

This metric can also be seen as the difference TP1(g) − TP2(g) of convolu-
tion operators on C(G) where, for any f ∈ C(G), the operator TP f(x) is∫

y∈G f(xy−1)dP (y).
• Discrepancy metric

Given a metric space (X , d), the discrepancy metric on P is defined by

sup{|P1(X ∈ B) − P2(X ∈ B)| : B is any closed ball}.

• Bi-discrepancy semi-metric
The bi-discrepancy semi-metric is a semi-metric evaluating the prox-
imity of distributions P1, P2 (over different collections A1,A2 of measur-
able sets), defined in the following way:

D(P1, P2) + D(P2, P1),

where D(P1, P2) = sup{inf{P2(C) : B ⊂ C ∈ A2} − P1(B) : B ∈ A1}
(discrepancy).

• Le Cam distance
The Le Cam distance is a semi-metric, evaluating the proximity of
probability distributions P1, P2 (on different spaces X1,X2), defined in the
following way:

max{δ(P1, P2), δ(P2, P1)},

where δ(P1, P2) = infB
∑

x2∈X2
|BP1(X2 = x2)−BP2(X2 = x2)| is the Le

Cam deficiency. Here BP1(X2 = x2) =
∑

x1∈X1
p1(x1)b(x2|x1), where B

is a probability distribution over X1 ×X2, and

b(x2|x1) =
B(X1 = x1,X2 = x2)

B(X1 = x1)
=

B(X1 = x1,X2 = x2)∑
x∈X2

B(X1 = x1,X2 = x)
.

So, BP2(X2 = x2) is a probability distribution over X2, since
∑

x2∈X2

b(x2|x1) = 1.
Le Cam distance is not a probabilistic distance, since P1 and P2 are de-

fined over different spaces; it is a distance between statistical experiments
(models).

• Skorokhod–Billingsley metric
The Skorokhod–Billingsley metric is a metric on P, defined by

inf
f

max

{
sup

x
|P1(X≤x)−P2(X≤f(x))|, sup

x
|f(x)−x|, sup

x&=y

∣∣∣∣ln
f(y)−f(x)

y−x

∣∣∣∣

}
,

where f : R → R is any strictly increasing continuous function.
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• Skorokhod metric
The Skorokhod metric is a metric on P, defined by

inf{ε > 0 : max{sup
x

|P1(X < x) − P2(X ≤ f(x))|, sup
x

|f(x) − x|} < ε},

where f : R → R is a strictly increasing continuous function.
• Birnbaum–Orlicz distance

The Birnbaum–Orlicz distance is a distance on P, defined by

sup
x∈R

f(|P1(X ≤ x) − P2(X ≤ x)|),

where f : R≥0 → R≥0 is any non-decreasing continuous function with
f(0) = 0, and f(2t) ≤ Cf(t) for any t > 0 and some fixed C ≥ 1. It is a
near-metric, since the C-triangle inequality d(P1, P2) ≤ C(d(P1, P3)+
d(P3, P2)) holds.

Birnbaum–Orlicz distance is also used, in Functional Analysis, on the
set of all integrable functions on the segment [0, 1], where it is defined by∫ 1
0 H(|f(x) − g(x)|)dx, where H is a non-decreasing continuous function

from [0,∞) onto [0,∞) which vanishes at the origin and satisfies the Orlicz
condition: supt>0

H(2t)
H(t) < ∞.

• Kruglov distance
The Kruglov distance is a distance on P, defined by

∫
f(P1(X ≤ x) − P2(X ≤ x))dx,

where f : R≥0 → R≥0 is any even strictly increasing function with
f(0) = 0, and f(s + t) ≤ C(f(s) + f(t)) for any s, t ≥ 0 and some
fixed C ≥ 1. It is a near-metric, since the C-triangle inequality
d(P1, P2) ≤ C(d(P1, P3) + d(P3, P2)) holds.

• Burbea–Rao distance
Consider a continuous convex function φ(t) : (0,∞) → R and put φ(0) =
limt→0 φ(t) ∈ (−∞,∞]. The convexity of φ implies non-negativity of the
function δφ : [0, 1]2 → (−∞,∞], defined by δφ(x, y) = φ(x)+φ(y)

2 − φ(x+y
2 )

if (x, y) )= (0, 0), and δφ(0, 0) = 0.
The corresponding Burbea–Rao distance on P is defined by

∑

x

δφ(p1(x), p2(x)).

• Bregman distance
Consider a differentiable convex function φ(t) : (0,∞) → R, and put
φ(0) = limt→0 φ(t) ∈ (−∞,∞]. The convexity of φ implies that the
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function δφ : [0, 1]2 → (−∞,∞] defined by continuous extension of
δφ(u, v) = φ(u) − φ(v) − φ

′
(v)(u − v), 0 < u, v ≤ 1, on [0, 1]2 is non-

negative.
The corresponding Bregman distance on P is defined by

m∑

1

δφ(pi, qi).

(Cf. Bregman quasi-distance.)
• f-divergence of Csizar

The f-divergence of Csizar is a function on P × P, defined by

∑

x

p2(x)f
(

p1(x)
p2(x)

)
,

where f is a continuous convex function f : R≥0 → R.
The cases f(t) = t ln t and f(t) = (t − 1)2/2 correspond to the

Kullback–Leibler distance and to the χ2-distance below, respectively.
The case f(t) = |t−1| corresponds to the L1-metric between densities, and
the case f(t) = 4(1 −

√
t) (as well as f(t) = 2(t + 1) − 4

√
t) corresponds

to the squared Hellinger metric.
Semi-metrics can also be obtained, as the square root of the f -divergence

of Csizar, in the cases f(t) = (t − 1)2/(t + 1) (the Vajda–Kus semi-
metric), f(t) = |ta − 1|1/a with 0 < a ≤ 1 (the generalized Matusita
distance), and f(t) = (ta+1)1/a−2(1−a)/a(t+1)

1−1/α (the Osterreicher semi-
metric).

• Fidelity similarity
The fidelity similarity (or Bhattacharya coefficient, Hellinger affinity)
on P is

ρ(P1, P2) =
∑

x

√
p1(x)p2(x).

• Hellinger metric
In terms of the fidelity similarity ρ, the Hellinger metric (or Hellinger-
Kakutani metric) on P is defined by

(2
∑

x

(
√

p1(x) −
√

p2(x))2)
1
2 = 2(1 − ρ(P1, P2))

1
2 .

Sometimes, (
∑

x(
√

p1(x) −
√

p2(x))2) 1
2 is called the Matusita dis-

tance, while (
∑

x(
√

p1(x)−
√

p2(x))2 is called the squared-chord distance.
• Harmonic mean similarity

The harmonic mean similarity is a similarity on P, defined by

2
∑

x

p1(x)p2(x)
p1(x) + p2(x)

.
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• Bhattacharya distance 1
In terms of the fidelity similarity ρ, the Bhattacharya distance 1 on
P is

(arccos ρ(P1, P2))2.

Twice this distance is used also in Statistics and Machine Learning, where
it is called the Fisher distance.

• Bhattacharya distance 2
In terms of the fidelity similarity ρ, the Bhattacharya distance 2 on
P is

− ln ρ(P1, P2).

• χ2-distance
The χ2-distance (or Pearson χ2-distance) is a quasi-distance on P,
defined by

∑

x

(p1(x) − p2(x))2

p2(x)
.

The Neyman χ2-distance is a quasi-distance on P, defined by

∑

x

(p1(x) − p2(x))2

p1(x)
.

The probabilistic symmetric χ2-measure is a distance on P, de-
fined by

2
∑

x

(p1(x) − p2(x))2

p1(x) + p2(x)
.

The half of the probabilistic symmetric χ2-measure is called squared χ2.
• Separation quasi-distance

The separation distance is a quasi-distance on P (for a countable X )
defined by

max
x

(
1 − p1(x)

p2(x)

)
.

(Not to be confused with separation distance in Chap. 9.)
• Kullback–Leibler distance

The Kullback–Leibler distance (or relative entropy, information devi-
ation, information gain, KL-distance) is a quasi-distance on P, defined by

KL(P1, P2) = EP1 [lnL] =
∑

x

p1(x) ln
p1(x)
p2(x)

,

where L = p1(x)
p2(x) is the likelihood ratio. Therefore,

KL(P1, P2) = −
∑

x

(p1(x) ln p2(x)) +
∑

x

(p1(x) ln p1(x)) = H(P1, P2) − H(P1),



14.2 Distances on distribution laws 251

where H(P1) is the entropy of P1, and H(P1, P2) is the cross-entropy of
P1 and P2.

If P2 is the product of marginals of P1 (say, p2(x, y) = p1(x)p1(y)), the
KL-distance KL(P1, P2) is called the Shannon information quantity and
(cf. Shannon distance) is equal to

∑
(x,y)∈X×X p1(x, y) ln p1(x,y)

p1(x)p1(y) .
• Skew divergence

The skew divergence is a quasi-distance on P, defined by

KL(P1, aP2 + (1 − a)P1),

where a ∈ [0, 1] is a constant, and KL is the Kullback–Leibler distance.
The cases a = 1 and a = 1

2 correspond to KL(P1, P2) and K-divergence.
• Jeffrey divergence

The Jeffrey divergence (or J-divergence, divergence distance, KL2-
distance) is a symmetric version of the Kullback–Leibler distance,
defined by

KL(P1, P2) + KL(P2, P1) =
∑

x

(p1(x) − p2(x)) ln
p1(x)
p2(x)

.

For P1 → P2, the Jeffrey divergence behaves like the χ2-distance.
• Jensen–Shannon divergence

The Jensen–Shannon divergence is defined by

aKL(P1, P3) + (1 − a)KL(P2, P3),

where P3 = aP1 + (1 − a)P2, and a ∈ [0, 1] is a constant (cf. clarity
similarity).

In terms of entropy H(P ) = −
∑

x p(x) ln p(x), the Jensen–Shannon
divergence is equal to H(aP1 + (1 − a)P2) − aH(P1) − (1 − a)H(P2).

• Topsøe distance
Let P3 denote 1

2 (P1+P2). The Topsøe distance (or information statistics)
is a symmetric version of the Kullback–Leibler distance (or rather of
the K-divergence KL(P1, P3)):

KL(P1, P3) + KL(P2, P3) =
∑

x

(
p1(x) ln

p1(x)
p3(x)

+ p2(x) ln
p2(x)
p3(x)

)
.

The Topsøe distance is twice the Jensen–Shannon divergence with
a = 1

2 . Some authors use the term Jensen–Shannon divergence only for
this value of a. It is not a metric, but its square root is a metric.

The Taneja distance is defined by

∑

x

p3(x) ln
p3(x)√

p1(x)p2(x)
.
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• Resistor-average distance
The Johnson–Simanović’s resistor-average distance is a symmetric ver-
sion of the Kullback–Leibler distance on P which is defined by the
harmonic sum (

1
KL(P1, P2)

+
1

KL(P2, P1)

)−1

.

Cf. resistance metric for graphs in Chap. 15.
• Ali–Silvey distance

The Ali–Silvey distance is a quasi-distance on P, defined by the func-
tional

f(EP1 [g(L)]),

where L = p1(x)
p2(x) is the likelihood ratio, f is a non-decreasing function on

R, and g is a continuous convex function on R≥0 (cf. f-divergence of
Csizar).

The case f(x) = x, g(x) = x ln x corresponds to the Kullback–Leibler
distance; the case f(x) = − ln x, g(x) = xt corresponds to the Chernoff
distance.

• Chernoff distance
The Chernoff distance (or Rényi cross-entropy) is a distance on P, de-
fined by

max
t∈[0,1]

Dt(P1, P2),

where 0 ≤ t ≤ 1 and Dt(P1, P2) = − ln
∑

x(p1(x))t(p2(x))1−t (called the
Chernoff coefficient or Hellinger path), which is proportional to the Rényi
distance.

The case t = 1
2 corresponds to the Bhattacharya distance 2.

• Rényi distance
The Rényi distance (or order t Rényi entropy) is a quasi-distance on P,
defined, for any constant 0 ≤ t < 1, by

1
1 − t

ln
∑

x

p2(x)
(

p1(x)
p2(x)

)t

.

The limit of the Rényi distance, for t → 1, is the Kullback–Leibler
distance. For t = 1

2 , one half of the Rényi distance is the Bhattacharya
distance 2 (cf. f-divergence of Csizar and Chernoff distance).

• Clarity similarity
The clarity similarity is a similarity on P, defined by

(KL(P1, P3) + KL(P2, P3)) − (KL(P1, P2) + KL(P2, P1)) =

=
∑

x

(
p1(x) ln

p2(x)
p3(x)

+ p2(x) ln
p1(x)
p3(x)

)
,
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where KL is the Kullback–Leibler distance, and P3 is a fixed prob-
ability law. It was introduced in [CCL01] with P3 being the probability
distribution of English.

• Shannon distance
Given a measure space (Ω,A, P ), where the set Ω is finite and P is a
probability measure, the entropy (or Shannon information entropy) of a
function f : Ω → X, where X is a finite set, is defined by

H(f) = −
∑

x∈X

P (f = x) loga(P (f = x));

here a = 2, e, or 10 and the unit of entropy is called a bit, nat, or dit (digit),
respectively. The function f can be seen as a partition of the measure
space. For any two such partitions f : Ω → X and g : Ω → Y , denote by
H(f, g) the entropy of the partition (f, g) : Ω → X×Y (joint entropy), and
by H(f |g) the conditional entropy (or equivocation); then the Shannon
distance between f and g is a metric defined by

H(f |g) + H(g|f) = 2H(f, g) − H(f) − H(g) = H(f, g) − I(f ; g),

where I(f ; g) = H(f)+H(g)−H(f, g) is the Shannon mutual information.
If P is the uniform probability law, then Goppa showed that the Shannon

distance can be obtained as a limiting case of the finite subgroup metric.
In general, the information metric (or entropy metric) between two

random variables (information sources) X and Y is defined by

H(X|Y ) + H(Y |X) = H(X,Y ) − I(X;Y ),

where the conditional entropy H(X|Y ) is defined by
∑

x∈X

∑
y∈Y p(x, y)

ln p(x|y), and p(x|y) = P (X = x|Y = y) is the conditional probability.
The Rajski distance (or normalized information metric) is defined

(Rajski 1961, for discrete probability distributions X, Y ) by

H(X|Y ) + H(Y |X)
H(X,Y )

= 1 − I(X;Y )
H(X,Y )

.

It is equal to 1 if X and Y are independent. (Cf., a different one, normal-
ized information distance in Chap. 11).

• Kantorovich–Mallows–Monge–Wasserstein metric
Given a metric space (X , d), the Kantorovich–Mallows–Monge–
Wasserstein metric is defined by

inf ES [d(X,Y )],
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where the infimum is taken over all joint distributions S of pairs (X,Y ) of
random variables X,Y such that marginal distributions of X and Y are
P1 and P2.

For any separable metric space (X , d), this is equivalent to the
Lipschitz distance between measures supf

∫
fd(P1 − P2), where

the supremum is taken over all functions f with |f(x) − f(y)| ≤ d(x, y)
for any x, y ∈ X .

More generally, the Lp-Wasserstein distance for X = Rn is defined by

(inf ES [dp(X,Y )])1/p,

and, for p = 1, it is also called the ρ-distance. For (X , d) = (R, |x − y|),
it is also called the Lp-metric between distribution functions (CDF), and
can be written as

(inf E[|X − Y |p])1/p =
(∫

R
|F1(x) − F2(x)|pdx

)1/p

=
(∫ 1

0
|F−1

1 (x) − F−1
2 (x)|pdx

)1/p

with F−1
i (x) = supu(Pi(X ≤ x) < u).

The case p = 1 of this metric is called the Monge–Kantorovich met-
ric or Hutchinson metric (in Fractal Theory), Wasserstein metric,
Fortet–Mourier metric.

• Ornstein d-metric
The Ornstein d-metric is a metric on P (for X = Rn), defined by

1
n

inf
∫

x,y

(
n∑

i=1

1xi &=yi

)
dS,

where the infimum is taken over all joint distributions S of pairs (X,Y ) of
random variables X,Y such that marginal distributions of X and Y are
P1 and P2.


