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ties in other branches of mathematics is developed.
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I. PREFACE: INEQUALITIES IN INFORMATION THEORY

NEQUALITIES in information theory have been

driven by a desire to solve communication theoretic
problems. To solve such problems, especially to prove
converses for channel capacity theorems, the algebra of
information was developed and chain rules for entropy
and mutual information were derived. Fano’s inequality,
for example, bounds the probability of error by the condi-
tional entropy. Some deeper inequalities were developed
as early as Shannon’s 1948 paper. For example, Shannon
stated the entropy power inequality in order to bound the
capacity of non-Gaussian additive noise channels.

Information theory is no longer restricted to the do-
main of communication theory. For this reason it is inter-
esting to consider the set of known inequalities in infor-
mation theory and search for other inequalities of the
same type. Thus motivated, we will look for natural fami-
lies of information theoretic inequalities.

For example, the entropy power inequality, which says
that the entropy of the sum of two independent random
vectors is no less than the entropy of the sum of their
independent normal counterparts, has a strong formal
resemblance to the Brunn Minkowski inequality, which
says that the volume of the set sum of two sets is greater
than or equal to the volume of the set sum of their
spherical counterparts. Similarly, since the exponentiated
entropy is a measure of volume it makes sense to consider
the surface area of the volume of the typical set associ-
ated with a given probability density. Happily, this turns
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out to be another information quantity, the Fisher infor-
mation.

A large number of inequalities can be derived from a
strengthened Young’s inequality. These inequalities in-
clude the entropy power inequality, the Brunn Minkowski
inequality and the Heisenberg uncertainty inequality.
These inequalities are extreme points of the set of in-
equalities derivable from a central idea. Logically inde-
pendent derivations of these inequalities exist and are
based on Fisher information inequalities such as the
Cramér-Rao inequality.

Turning our attentiofi to simple inequalities for differ-
ential entropy, we apply them to the standard multivari-
ate normal to furnish new and simpler proofs of the major
determinant inequalities in classical mathematics. In par-
ticular Hadamard’s inequality, Ky Fan’s inequality and
others can be derived this way. Indeed we find some new
matrix inequalities by this method. Moreover the entropy
power inequality, when specialized to matrices, turns out
to yield Minkowski’s determinant inequality, yet another
tangency with the Minkowski of Brunn—Minkowski.

In the process of finding determinant inequalities we
derive some new differéntial entropy inequalities. We
restate one of them as follows. Suppose one is looking at
ocean waves at a certain subset of points. Then the
average entropy per sample of a random subset of sam-

_ples can be shown to increase as the number of sampling

points increases. On the otHer hand, the per sample
conditional entropy of the samples, conditioned on the
values of the remaining samples, monotonically decreases.
Once again using these entropy inequalities on the stan-
dard multivariate normal leads to associated matrix in-
equalities and in particular to an extension of the se-
quence of ineilualities found by Hadamard and Szasz.

By turning our attention from the historically necessary
inequalities to the natural set of inequalities suggested by
information theory itself, we find, full circle, that these
inequalities turn out to be useful as well. They improve
determinant inequalities, lead to overlooked inequalities
for the entropy rate of random subsets and dembnstrate
the unity between physics, mathematics, information
theory and statistics (through unified proofs of the
Heisenberg, entropy power, Fisher information and
Brunn-Minkowski inequalities). :

The next section is devoted to differential entropy
inequalities for random subsets of samples. These in-
equalities when specialized to multivariate normal vari-
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ables provide the determinant inequalities presented in
Section V. Section III focuses on the entropy power
inequality (including the related Brunn-Minkowski,
Young’s and Fisher information inequalities) while Sec-
tion TV deals with various uncertainty principles and their
interrelations.

1I. INFORMATION INEQUALITIES
A. Basic Inequalities

In this section, we introduce some of the basic informa-
tion theoretic quantities and a few well-known simple
inequalities using convexity. We assume throughout that
the vector X =(X,, X,, - -, X,) has a probability density
f(xy, x5, <+, x,). We need the following definitions.

Definition: The entropy h(X,X,, -, X,), sometimes
written h(f), is defined by

WX, Xy, X,) == [fInf=E(~Inf(X)).

The entropy may be infinite and it is well defined as
long as either E(max{ln f(X),0}) or E(max{—In f(X),0})
are finite.

The entropy is a measure of the number of bits re-
quired to describe a random variable to a particular
accuracy. Approximately b + h(X) bits suffice to describe
X to b-bit accuracy. Also, e "X can be interpreted as
the effective support set size for the random variable X.
This point is further explored in Section III.

Definition: The functional

D(fllg) = [f(x)In(f(x)/8(x)) dx

is called the relative entropy, where f and g are probabil-
ity densities.

The relative entropy D(fllg) is also known as the
Kullback Leibler information number, information for dis-
crimination, and information distance. We also note that
D(fllg) is the error exponent in the hypothesis test of
density f versus g.

Definition: The conditional entropy h(X|Y) of X given
Y is defined by

h(XIY)= —ff(x,y)lnf(xly) dxdy.

We now observe certain natural properties of these
information quantities.
Lemma 1: D(fllg) =0, with equality iff f=g a.e.

Proof: Let A be the support set of f. Then, by
Jensen’s inequality,

—D(fllg)=fAfln(g/f)

slanf(g/f)=langsln1=0,

with equality only if g /f=1, a.e., by the strict concavity
of the logarithm (see [18], [29]. O

Lemma 2: 1f (X,Y) have a joint density, then A(X[Y)
=h(X,Y)— h(Y).

Proof:

R(XIY) == [f(x,y)In f(xly) dxdy
=~ [ ) (f(x,9)/f()) dedy

= — [f(x.¥)In f(x,y) dedy + [f(y)In f(3) dy
=h(X,Y)-h(Y). o

Lemma 3: W(XY) < h(X), with equality iff X and Y
are independent.

Proof:
h(X)—h(XIY) = [f(x,y)In(f(xly)/f(x))

= [F(x3)In(f(x.3)/F()f() 20,

by D(f(x, PIf(x)f(y)=0. Equality implies f(x,y)=
f(x)f(y), a.e., by strict concavity of the logarithm. m]

Lemma 4 (Chain Rule, Subadditivity of the Entropy):

WX, Xy, X,) = L h( XX, X a0, X))
i=1

= i h(X;)

i=t
with equality iff X,, X,,* -, X, are independent.

Proof: The equality is the chain rule for entropies,
which we obtain by repeatedly applying Lemma 2. The
inequality follows from Lemma 3, and we have equality iff
X,, X,, -+, X, are independent. 0O

We will also need the entropy maximizing property of
the multivariate normal. Throughout we denote by ¢ x(x)
the joint density of the multivariate normal vector with
zero-mean and covariance K.

Lemma 5: Let the random vector X € R" have zero-
mean and covariance K = EXX', ie., K;; = EXin, 1<i,
j<n.Then h(X) < InQ2me)"| K|, with equality iff f(x)=
P (x).

Proof: Let g(x) be any density
fg(x)x,x;dx = K, for all i,j. Then,

0<D(gllx)

= [gIn(g/x)

satisfying

——h(g)~ [glndx

= _h(g)_f¢K1n¢K
=—h(g)+h(dx), (1

where the substitution [gln¢y = [¢x Indy follows from




DEMBO et al.: INFORMATION THEORETIC INEQUALITIES

the fact that g and ¢, vield the same expectation of the
quadratic form In ¢4 (x). ]

B. Subset Inequalities for Entropy

Motivated by a desire to prove Szasz’s generalization of
Hadamard’s inequality in Section V, we develop a new
inequality on the entropy rates of random subsets of
random variables.

Let X;, X,,---, X, be a set of n random variables with
an arbitrary joint distribution. Let § be any subset of the
indices {1,2,---,n}. We will use X(S) to denote the
subset of random variables with indices in § and S¢ to
denote the complement of S with respect {1,2, - -, n}. For
example, if S ={1,3}, then X(§)={X,, X3} and X($°)=
{X,, X,, Xs,- -+, X,}. Recall that the entropy A(X) of a
random vector X € R* with density function f(x) is

h(X) =~ [f(x)In f(x) dx.
I S={i,,iy, .3}, let

h(X(S))=h(Xil,X,-2,"',X,-k).
Let )
h(kn)=_rll_ E m
(k) S:|S|=k k

be the entropy rate per element for subsets of size k
averaged over all k-element subsets. Here, A{" is the
average entropy in bits per symbol of a randomly drawn
k-element subset of {X|, X,, -, X,}. This quantity is
monotonically nonincreasing in k as stated in the follow-
ing theorem (due to Han [27]).
Theorem 1:
h(1n)> h(zn)> N 2
> > > h.

Proof: (Following [16]). We first prove the inequality
R < B . We write

(X, X5y, X)) =h( X, Xy, X, y)
+h(XnIX1,X2,‘ ! '7Xn—1)’
(X, Xy, X)) = (X, Xy, 00, X, 0, X))
+h(Xn—11X1’X27’ ’ ':Xn—z’Xn)
Sh(X), Xy, 00, X, 5, X,)
+h(Xn-1lX1’X2" "an—z)’

Xy, Xy X)) Sh( X, X5, 00, X)) + R(X).
Adding these n inequalities and using the chain rule,
we obtain
nh(Xl’Xz"“vXn)
n
ED) (X Xy X Xirqs
i=1

+h( X, Xy, X,)

- X,)
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h(XDXZ" XX X)

n—1

1 n
<- Z ’ (2)

nioy
which is the desired result A < A" .

We now prove that A <A™ for all k <n, by first
conditioning on a k-element subset, then taking a uni-
form choice over its (k —1)-element subsets. For each
k-element subset, A < h{¥,, and hence, the inequality
remains true after taking the expectation over all k-ele-
ment subsets chosen uniformly from the n elements. O

Corollary 1: Let r >0, and define

1
sP= L et HOb, 3)
(k) S:ISI=k
Then,
528> - 250 (4

Proof: Starting from (2) in Theorem 1, we multiply
both sides by r, exponentiate, and then apply the arith-
metic-mean, geometric-mean inequality to obtain

e/ Mrh(Xy, Xa5, Xy) < e/ NI h(X 1, X o Xy, Xy Xp)/n= 1)

<

S| =

n
E e('h(Xj,Xg.‘“‘X,',l,X,H;",Xn)/'l—1),
i=1

forall r > 0,

(5)
which is equivalent to s¢” < s{”,. Now we use the same
arguments as in Theorem 1, taking an average over all

subsets to prove the result that for all k <n, s{™ <s{,.
O

The conditional entropy rate per element for a k ele-
ment subset S is A(X(S)|X(S))/k.

Definition: The average conditional entropy rate per
element for all subsets of size k is the average of the

previous quantities for k-element subsets of {1,2,---,n},
ie.,
o 1 h(X($)IX(5%)
T Y
(k) S:1S1=k

Here, g,(5) is the entropy per element of the set S
conditional on the elements of the set §¢. When the size
of the set S increases, one could expect a greater depen-
dence between the elements of the set S, and expect a
decrease in the entropy per element. This explains Theo-
rem 1.

In the case of the conditional entropy per element, as &
increases, the size of the conditioning set S¢ decreases
and the entropy of the set S increases since conditioning
reduces entropy. In the conditional case, the increase in
entropy per element due to the decrease in conditioning
dominates the decrease due to additional dependence
between the elements and hence, we have the following
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theorem that is a consequence of the general formalism
developed by Han [27].

Theorem 2:
gP<gP< - g
Proof: The proof proceeds on lines very similar to

the proof of the theorem for the unconditional entropy
per element for a random subset. We will first prove that
g > g™, and then use this to prove the rest of the
inequalities.

By the chain rule, the entropy of a collection of random
variables is less than the sum of the entropies, i.€.,

n
h(Xy, Xy, 05 X,) < L B(X).
i=1
Subtracting both sides of this inequality from nh(X,,
X, -+, X,), we have

(n=1)h(X,, X5, "5 X,)

n
2 Z (h(Xl’Xz:' ' '>Xn)_h(X1))
i=1
= Zh(XlaXZ""’Xi-l’Xiﬂ,“"anxi)-
i=1
Dividing this by n(n —1), we obtain
h(Xl’sz”"Xn)

h(Xl’Xz" ! "Xi—l’XH»lv' : "anxi)
n—-1 ’

which is equivalent to g > g¢?,.

We now prove that g{” > g{™, for all k <n, by first
conditioning on a k-element subset, then taking a uni-
form choice over its (k —1)-element subsets. For each
k-element subset, g’ > g{¥,, and hence, the inequality
remains true after taking the expectation over all k-ele-

ment subsets chosen uniformly from the n elements. O
C. Inequalities for Average Mutual Information
between Subsets

The previous two theorems can be used to prove the
following statement about mutual information.

Corollary 2: Let

N 1(X(5); X(5%))
ey BTk
(k) S:1Sl=k
Then,
fe f0z 2 0.
Proof: This result follows from the identity

I(X(S); X(S9) = h(X(8)) — h(X(S)X($)) and Theo-
rems 1 and 2. ]

We now prove an inequality for the average mutual
information between a subset and its complement, aver-
aged over all subsets of size k in a set of random
variables. This inequality will be used to prove yet an-
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other determinant inequality along the lines of Szasz’s
theorem; however, unlike the inequalities in the previous
section, there is no normalization by the number of ele-
ments in the subset.

Let

= T I(X(5);X(59)
(k) S:IS1=k

be the average mutual information between a subset and
its complement averaged over all subsets of size k. By the
symmetry of mutual information and the definition of i{?,

it is clear that i{" =i,
Theorem 3:
M <i§V < i)
Remark: Note that the dependence between sets and
their complements is greatest when they are of equal size.

Proof: Let k <|n /2]. Consider a particular subset S
of size k. S has k subsets of size k —1. Let §; denote the
subset S —{j}. Then

WX(8); X(59) = I 1(X(5): X(57)

- Zsz(x(sj),Xj;X(SC))— 1(X(S;): X(59), X;)

= Y I(X(S,); X(5))+ I(Xj;X(S“)IX(Si))

— H(X(S,); X(59)) ~ I(X(S)); X X(59))
T a(X1X(S;))- h(X;1X(S;), X(59))

jeS

— h( X\ X(5))+h( X X(5), X(5)))
T A(X1X(S))) - h(X1X(59).

j€Ss

1l

Summing this over all subsets of size k, we obtain
r [kI(X(S);X(SC))— = I(X(Sj);X(SJ»”))]
jes

S:1SI=k
= Y ¥ h(XjIX(Sj))— h(XjIX(S‘)).
S:|S|=kjE€S
Reversing the order of summation, we obtain

T [kI(X(S);X(Sf))—_ZSI(X(S,-);X(SJF))]

S:iS|=k

=X X

h(X;1X(S;)) - h(X;1X(5°))

j=18:|Sl=k,83]j

ry =
ji=18:18=k-1,82j
- h(x1x((8'V 1Y)

n

-z )»

j=1[8:8cti),181=k-1

- Y n(X,1x(5")|-

§7 S Uiy, 18" =n—k

h(X;\X(S"))

h(X1X(S"))

(6)
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Since k<|n/2|, k~1<n—-k. So we would expect
that the second sum in (6) to be less than the first sum,
since both sums have the same number of terms but the
second sum corresponds to entropies with more condi-
tioning. We will prove this by using a simple symmetry
argument.

The set §” with n— k elements has ( ::f) subsets of
size k —1. For each such subset ' of size k — 1, we have

h(X,1X(5")) < h(X,1X(S")), (7)

since conditioning reduces entropy. Since (7) is true for
each subset §'C §”, it is true of the average over subsets.

Hence,
1
(i 71)
k—1
(8)

Summing (8) over all subsets $” of size n — k, we get

Yy h(X,lX(S"))

h(X1X(S")) < Y h(X;1X(S)).

§:85cs", I8N =k-1

S 18" =n—k
1
s ¥ o T M)
8" |S"l=n—k ( ) S8 CS, I8 = k-1
k—1
= T K(xix(s)), 9)
SIS =k —1
since by symmetry, each subset S’ occurs in
("jz‘k’:l)=(::’;) sets S”.

Combining (6) and (9), we get
Y [kI(X(S);X(SC))— Y I(X(S]-);X(Sj‘)) >0.
S:|Si=k JES

Since each set of size k —1 occurs n — k +1 times in the
second sum, we have

L KI(X(S);X(59))

S:1Sl=k
> Y ZI(X(Sj);X(Sf))
S:iS|l=kjeS
=(n—k+1) ¥ I(X(5);X(5)).

SIS =k -1
Dividing this equation by k(:), we have the theorem

1
L I(X(S); X(5%))

=

(Z) S:iSl=k
1

zmz

1) S:i81=k -1

I(X(S'): X(5%)) = i,

III. THE ENTROPY POWER AND RELATED
ANALYTICAL INEQUALITIES

The entropy power inequality, which says that the en-
tropy of the sum of two independent random vectors is no
less than the entropy of the sum of their independent
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normal counterparts, has a strong formal resemblance to
the Brunn Minkowski inequality, which says that the
volume of the set sum of two sets is greater than or equal
to the volume of the set sum of their spherical counter-
parts. Both are interpreted here as convexity inequalities
for Rényi entropies that measure the uncertainty associ-
ated with a random variable X via the pth norm of its
density (see Section III-A). A strengthened version of
Young’s inequality about the norms of convolutions of
functions, due to Beckner [3] and Brascamp and Lieb [8]
is equivalent to a more general convexity inequality, with
both the entropy power and the Brunn-Minkowski in-
equality being extreme points (see Section III-B).

This proof of the entropy power inequality (due to Lieb
[30D is different from Stam’s [38] proof, which relies upon
a convexity inequality for Fisher information. Neverthe-
less, the interpretation of the entropy power inequality as
a convexity inequality for entropy allows for a new, sim-
pler version of Stam’s proof, presented here in Section
ITI-C.

Isoperimetric versions of the entropy power and the
Fisher information inequalities have derivations that par-
allel the classical derivation of the isoperimetric inequal-
ity as a consequence of the Brunn—Minkowski inequality
(see Section II-D following Costa and Cover [14] and
Dembo [19]).

A. Entropy Power and Brunn— Minkowski Inequalities

The definition of the entropy power and the associated
entropy power inequality stated next are due to Shannon
[37]. The entropy power inequality is instrumental in
establishing the capacity region of the Gaussian broadcast
channel ([5]) and in proving convergence in relative en-
tropy for the central limit theorem ([2]).

Definition: The entropy power of a random vector X €
R”™ with a density is

N(X)=5117—eexp(§h(X)).

In particular, N(X)=[K|"" when X ~ k-

Theorem 4 (Entropy Power Inequality): If X,Y are two
independent random vectors with densities in R” and
both A(X) and A(Y) exist, then,

N(X+Y) > N(X)+N(Y). (10)

Equality holds iff X and Y are both multivariate normal
with proportional covariances.

In the sequel (see Section III-C), we shall present a
simplified version of Stam’s first proof of this inequality
(in [38]) as well as a less known proof due to Lieb [30].

The next matrix inequality (Oppenheim [36], Marshall
and Olkin [32, p. 475)) follows immediately from the
entropy power inequality when specialized to the multi-
variate normal.
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Theorem 5 (Minkowski’s Inequality [34]): For any two
nonnegative definite matrices K, K,

K, + KV = 1K V" + K,
with equality iff K, is proportional to K,.

Proof: Let X,, X, be independent with X;~ ¢g.
Noting that X,+ X, ~ ég, .x, and using the entropy
power inequality yields

K, + K,/'/" = N(X;+ X,)
> N(X,)+ N(X;)
=K "+ 1K, O
The following alternative statement of the entropy
power inequality is given in Costa and Cover [14].

Theorem 6: For any two independent random vectors
X, Y such that both A(X) and A(Y) exist,

RX+Y)=h(X+Y), (11)

where X, Y are two independent multivariate normal with
proportional covariances, chosen so that #(X) = h(X) and
h(Y)= h(Y).

Proof: For X and Y multivariate normal, Minkowski’s
inequality and the entropy power inequality (10), hold
with equality. Furthermore, X and Y are chosen so that

N(F+F)=N(X) +N(F) =N(X) +N(¥) SN(X+),

where the last inequality follows from (10). Thus (10) and
(11) are equivalent. =]

Alternatively, the entropy power inequality also
amounts to the convexity of the entropy under the “co-
variance preserving transformation” VAX+V1-2Y as
follows.

Theorem 7: For any 0 < A <1,
R(AX +VI=XY)= Ah(X)—(1-2)h(Y) 2 0. (12)

Proof: For X and Y the inequality (12) holds trivially
with equality. Therefore, (12) is equivalent to

A(XX +VI=AY) 2 h(YAX +VI=2T).
The latter inequality is merely (11) with VA X substituted
for X and v1— A Y substituted for Y. a

Remark: Theorem 7 parallels part of Lieb’s proof of
Theorem 4 (in [30]).

In parallel with the above derivation of Minkowski’s
inequality, the following theorem due to Ky Fan [22]
results from specializing (12) to the multivariate normal.

Theorem 8 (K. Fan [22]) In |K| is concave.

Proof:_Consider (12) for X ~ ¢ and Y ~ ¢, . Then,
VAX +V1— 1Y is also multivariate normal with covari-
ance AK, +(1— A)K,, and (12) becomes

InIAK, + (1= A)K,| = Aln K|+ (1- ) In|K,l.
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Remark: See Section V-A for an alternative informa-
tion theoretic proof of both Theorems 5 and 8, which
avoids the entropy power inequality.

The entropy power inequality has a strong formal re-
semblance of the Brunn—Minkowski inequality. For defin-
ing the latter, let u denote Lebesgue measure in R” (i.e.,
set volume in R”) and A + B denote the Minkowski sum
(in R™) of the (measurable) sets A4 and B, that is

A+B={x+y:x€A,yEB}.
Theorem 9 (Brunn-Minkowski Inequality [24]):
p(A+B) "z u( )+ u(B) (14)

Proof: For a very simply geometric proof, see [24].
An alternative proof of this inequality as an extreme point
of Young’s inequality (which is due to Brascamp and
Lieb, see [7] and [9)) is presented in Section III-B.

The entropy power is a measure of the effective vari-
ance of a random vector while u(A4)'/" measures the
effective radius of a set A. Thus, the entropy power
inequality, which says that the effective variance of the
sum of two independent random vectors is no less than
the sum of the effective variances of these vectors, is the
dual of the Brunn—Minkowski inequality, which says that
the effective radius of the set sum of two sets is no less
than the sum of the effective radii of these sets. In this
formal duality normal random variables are the analog of
balls (being the equality cases for the previously men-
tioned inequalities), and the sum of two independent
random vectors is the analog of the Minkowski sum of
sets. This analogy is suggested in [14], where the existence
of a family of intermediate inequalities is conjectured.

We shall further develop this issue here and show in
Section III-B that Young’s inequality is the bridge be-
tween the entropy power and the Brunn—Minkowski in-
equalities. The following family of Rényi entropies helps
in illustrating these relationships.

Definition: The pth Rényi entropy h,(X) of a random
variable X with density f in R" is defined by

hy(X)= 1plnE[f(X)(”_”]=

p
— ~In(If1,),

1-
(15)

for 0< p<w, p#1, where |Ifll, =[[f(x)Pdx]'/?. The
Rényi entropies for p=0 and p=1 are defined as the
limits of h,(X) as p—0and p—1, respectively. It fol-
lows directly from the previous definition that

ho(X) = lim h,(X) =lnu({x: (x) > 0}), (16)

and

h(X)= limlhp(X)=h(X). (17)
po
Therefore, the (Shannon) entropy is identified with the
Rényi entropy of index p =1, while the logarithm of the
essential support of the density is identified with the

O (13) Rényi entropy of index p=0.
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A convexity inequality for Rényi entropies of index
p =0, which is the dual of (12), is the following.

Theorem 10: For any 0 <A <1 and any two indepen-
dent random vectors X, Y,

Ro(AX +(1=A)Y) = Mrg(X) — (1= A)hy(¥) > 0. (18)

Remarks:

a) While Theorem 7 deals with convexity under the
“variance preserving transformation” VAX +
V11— AY, this theorem deals with convexity under
the “support size preserving transformation” AX +
(1-2)Y.

b) The proof of Theorem 10 is deferred to Section
II-B. A family of convexity inequalities for Rényi
entropies is derived there as consequences of
Young’s inequality and both Theorems 7 and 10 are
obtained as extreme (limit) points. Here we derive
only the Brunn—Minkowski inequality as a conse-
quence of Theorem 10.

Proof of Theorem 9: Choose a pair of independent
random vectors X and Y in R” such that the support of
the density of AX is the set 4 and the support of the
density of (1-A)Y is B. Clearly, the support of the
density of AX +(1— A)Y is the (essential) Minkowski sum
A+ B, while (1/A)A and (1/(1—A)B are the support
sets of the densities of X and Y, respectively. Therefore,
taking (16) into account, the inequality (18) specializes for
these random vectors to

Inu(A+B)=Alnu((1/1)A)
+(1=A)Inp((1/(1= A))B). (19)

Observing that In p((1/A)A4) =In u(A)—nln A and
Inu((1/(1=A)B)=Inw(B)—nin(1—A), the Brunn-—
Minkowski inequality results when rearranging the above
inequality for the particular choice of A =

w( A" f(u( A"+ wW(BV™), O

B. Young's Inequality and Its Consequences

There is a strong formal resemblance between the
convexity inequalities (12) and (18) (where the former
yields the entropy power inequality while the latter results
in the Brunn-Minkowski inequality). This resemblance
suggests the existence of a family of intermediate inequal-
ities. Young’s inequality, which is presented in the sequel,
results after few manipulations with these inequalities
(see (21)). In particular, we follow Lieb’s (in [30]) and
Brascamp and Lieb’s (in [9]) approach in regarding and
proving Theorems 7 and 10 (respectively) as limits of (21).

For that purpose let L,(R") denote the space of com-
plex valued measurable functions on R” with I|f]|, <o
and let f*g(x)= [f(x — y)g(y)dy denote the convolution
operation.

The following sharp version of Young’s inequality is
due to Beckner [3] and Brascamp and Lieb [8].

o
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Theorem 11 (Young’s Inequality): If 1/r+1=1/q+
1/p, thenfor 1 <r,p,q <o,

sup  {(lIf*gll) /(IF1ligly)) < (e e, /)% (20)
feL(RY
g€ L(R™)

Here,

¢, =(0)""/1p1"7,
where p’ is the Holder conjugate of p (i.e., 1/p+1/p =
1) and ¢, and c, are likewise defined. The converse

inequality holds for the infimum of |If*gl,/lfll,lgll,
when 0 <r, p,g<l.

Remark: For the multivariate normal densities f = ¢,
and g=d,_,yx, (where A=(1/p')/(1/r'), and conse-
quently 1-A=(/q)/(1/r")), Young’s inequality re-
duces to K. Fan’s matrix Theorem 8. Actually, (20) is
established in [8] by showing that the supremum is
achieved by multivariate normal densities, where the con-
stants in the right side of (20) are determined by applying
K. Fan’s matrix Theorem 8. For a detailed study of cases
of equality in this and related inequalities see [31].

The following convexity inequality for Rényi entropies
(which is the natural extension of Theorem 7) is a direct
consequence of Young’s inequality.

Theorem 12: For any 0<r <, r+1 and any 0 <A <
1, let p,q be such that 1/p'=A1/r and 1/q =
(1-M1/r', then for any two independent random vectors
X,Y with densities in R",

B (VAX +VI=XY)= A, (X) = (1= A)h(Y)
Zhr(¢1)_Ahp(gbl)_(l_)‘)hq((b[)’ (21)
provided that both 4 ,(X) and 4 (Y) exist.

Here, ¢, stands for the standard normal density in R”".
In establishing the inequality (21) we use the well-known
scaling property of Rényi entropies

h,(aX)=h,(X)+nlnlal. (22)

This identity follows from the definition in (15) by a
change of variable argument.

Proof: Fix r and A. We plan to apply Young’s in-
equality for f the density of YAX and g the density of
V1—AY. Since h,(X) and £ ,(Y) are well defined, so are

n
h,(VAX)=—p'Inlfll,=h,(X)+ SnA
and
n
h,(V1-AY)= —q’lanqu=hq(Y)+Eln(1—A).

These identities are applications of (15) and (22), and in
particular they imply that f € L (R") and g € L (R").
Further, since X and Y are assumed independent,

~r'Inlifxgl, =h,(VAX +/1=2Y).

Observe that p,q in Theorem 12 are such that 1/p' +
1/q¢'=1/r (sothat 1/r+1=1/q+1/p), and 1/r' <0
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implies 0 <r,p,q <1, while 1/7'>0 implies 1<r,p,q.
Therefore, Theorem 11 is applicable for f and g, result-
ing in
n
—rIn{(lf*gll,) /(IfUlgllg)} = = r' 5 In(c,ce/c,)-
(23)

This inequality holds with equality for f=d,; and g =
by _py e, X~dp Y~ ¢,) since for any p#0, p#1

(24)

n
hp(¢,)=§[ln2-n'+ ll‘l'p— .

1 —_
Combining all these identities, the inequality (23) results
in (21). 0

We now show that the convexity Theorems 7 and 10
(i.e., the inequalities (12) and (18) respectively) are the
extreme limit points » — 1 and r — 0 of the Rényi entropy
convexity Theorem 12.

Proof of Theorem 7: Fix 0 <A <1, and assume that
h(X) and A(Y) are well defined. Further assume that QD
‘holds for some r,# 1. Then, Theorem 12 holds for any
choice of r between r, and 1 (i.e., the entropies h,(X)
and h(Y) exist for the resulting p and g). It is easily
verified that r — 1 with A fixed implies that p—1 and
g — 1. Therefore, by the continuity of entropies (17) in
the limit as  — 1, the inequality (21) reduces to (12), thus
completing the proof of Theorem 7. O

Proof of Theorem 10: Again fix 0 <A<L Now
assume that hy(X) and hy(Y) are well defined and that
(21) holds for some r,<1. Then Theorem 12 holds for
any choice of r between ry and 0 (ie., the entropies
h,(X) and h(Y) exist for the resulting p and g). Fur-
ther, as r =0, also p=1/(1-A(1—-1/r))—0 and g=
1/(1—=(1—AX1—1/r)) = 0. Thus, in the limit -0, the
inequality (21) reduces by (16) to

Bo(VAX +VI= X Y) = Aho(X) = (1= A)ho(Y)
2rli_r’no{h,(¢1)_’\hp(¢1)_(14’\)hq(‘t’l)}
) 1 1 A 1 (1-2) 1
rll {1—rln;_T——Dln;— 1_q ln;}’
(25)

where the right-hand equality is in view of (24).

Note that A /(1—p)+(1-A)/A-q@)=U+r)/(1-7r)
and lim, ,(r/p)=A while lim _,(r/q)= 1-2).
Therefore,

1 1 A 1 (1-a) 1
In—— In—
14

ro0 | 1=r r 1- )/ 1-¢g q
) —r 1 A r (1=a) r
= lim n—-———In—- In —
;-0\1l=r r 1-p p (1-q) 4
r
= H(A)+ lim Inr=H(A
( ) rl—>0 1-r nr ( ),
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where H(A)2 = —AlnA—(1—A)In(1—2). Combining
this limit with (25) yields

Bo(VX X +VT=AY) = Ahg(X) — (1= D) ho(¥) = %H(,\).

Inequality (18) is now obtained by the rescaling X « VA X
and Y« +v1—AY (using the scaling property (22)). This
completes the proof of Theorem 10. jm]

Remarks:

a) The proof of Theorem 7 follows Lieb’s proof of the
entropy power inequality (see [30]).
b) In [9], Brascamp and Lieb prove the Prékopa-
Liendler inequality
x—y\mr yy
fs‘;p{f( 1—/\) g(/\) }del’ (26)
for every pair of densities f,g in R" and any 0<A
< 1. For g(+) a uniform density on A /A and f(-) a
uniform density on B/(1—A), this inequality re-
duces to the Brunn-Minkowski inequality (19). The
proof of Theorem 10 is a simplified version of
Brascamp and Lieb’s proof of (26).
¢) Theorem 7 of [8] deals with X,," - -, X,, independent
random variables with densities in R", and (k —1) =
1> 1 deterministic linear combinations of these vari-
ables Y,,- - -, ¥,. Let ¥ have the density of ¥, condi-
tional upon ¥, = - -+ =Y, then this theorem implies
that the minimum of

h(V)— }E Ah,(X;)
i=1

is obtained for X, -+, X, normal random varia-
bles with appropriate diagonal covariance matrices.
This theorem holds for any 1 <r <o, and any A; =
r'/p; =0 such that Tk A =1+r(~1). For I=1,
Tk A;=land V=Y,=X + - +X,, this inequal-
ity results in Young’s inequality. It seems plausible
that new entropy inequalities may be derived by
considering limits of this more general inequality for
1>1.

C. Fisher Information and the Entropy Power Inequality

Stam’s proof of the entropy power inequality (see [38])
is based on a simple inequality about Fisher information
coupled with a continuous normal perturbation argument.
A simplified version of this proof is presented here, where
a simple explicit normal perturbation yields the convexity
inequality (12). As we have seen already, inequality (12) is
equivalent to the entropy power inequality (10).

Definition: The Fisher information of X with respect to
a scalar translation parameter is

dx

1(X) = [V V) 7y (27)

Equivalent statements of the following convexity in-
equality about Fisher information are proved in [6], [14],
[38). (For matrix versions see [20]).
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Theorem 13 (Fisher Information Inequality): For any
two independent random vectors X, ¥ and any 0 < A <1,

A(X)+(1=X)J(Y)=J(VAX +VI=AY)=0. (28)

This is the first instrumental tool for the proof of the
entropy power inequality presented in the sequel. The
second tool is DeBruijn’s identity, the link between en-
tropy and Fisher information (for proofs consider [6], [14],
[38)]).

Theorem 14 (DeBruijn’s identity [38]): Let X be any
random vector in R" such that J(X) exists and let Z ~ ¢,
be a standard normal, which is independent of X. Then

4 h(X+VeZ Lx 29
— + 0= = .
de ( € )'E—O 2 ( ) ( )

We are now ready to present the simplified version of

Stam’s proof.!

Proof of Theorem 7 (by normal perturbations): Con-
sider the continuous family of pairs of independent ran-
dom vectors

X, =Vtx+Vi-1X,, 0<t<l,
Y,=ViY+V1-1Y,, O<t<l,

where the standard multivariate normals X,~ ¢, and
Y, ~ ¢, are independent of X,Y and of each other. Fix
0<A<landlet ¥,=VAX,+V1- 1Y, Clearly, ¥, ~ ¢, is
also a standard normal, and ¥, =Vt ¥, +V1—¢ V, for all
0 <t <1. We now consider the function

s(t) =h(V)) = Ah(X,) = (1= A)h(Y,),

Theorem 7 (i.e., inequality (12)) amounts to s(1) > 0, and
since ¥, X,, and Y, are identically distributed s(0)= 0.
Therefore, our goal is to establish the differential inequal-
ity

forO0<t <.

d
= (1)} =20, O0<r<l1, (30)

which clearly implies inequality (12) and thus completes
the proof. By virtue of the scaling property (22) (applied

here for p=1, @=4/1/¢ and for the variables X,, Y, and
V,) the function s(¢) may also be expressed as

s(1) =h(V, + /e, Vo) = Ah(X + /e, X,)

~(1=MhA(Y +/e 1),

where €, =((1/1)—1). Therefore, by DeBruijn’s identity
29

d 14
atiQ) :EZ{EI}{J(Vﬁ\/;Vo)
-AJ(X+‘/Exo)—(l—,\)J(Yﬂ/ZYO)}.

'At the time of the writing of this paper, the same result was
independently derived by Carlen and Soffer and will appear in [13].
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Since de, /dt = —1/t* we obtain by an application of the
well-known scaling property J(X) = a*J(aX)

2:%{s(t)} =M(X,)+(1-N)JI(Y)-J(¥). (31)

Since ¥,=VAX,+y1—2Y, the Fisher information in-
equality (28) applies to (31) and thus establishes the
differential inequality (30). m]

Remarks:

a) The representation (31) is very similar to the one in
[1]. Such a representation was also used in {2] for
proving a strong version of the central limit
theorem.

b) Two independent proofs of the entropy power in-

equality vig the equivalent convexity inequality (12)

have been presented. In the first proof, the underly-

ing tool is Young’s inequality from mathematical
analysis, and results about (Shannon’s) entropy are
the limit as r — 1 of analogous results about Rényi

entropies (i.e., about norms of operators in L,(R")).

In the second proof, the underlying tool is a suffi-

cient statistic inequality for Fisher information, and

results about entropy are obtained by integration
over the path of a continuous normal perturbation.

This proof also settles the cases of equality that are

not determined in the first proof. We will encounter

this duality again in Section IV where uncertainty
principles are derived by similar arguments.

The strong formal resemblance between convexity

inequalities (12) and (18) dealing with entropies and

the Minkowski sum of sets suggests the following
inequality:

~—

C

u(A+ B) N n(A)
S(A+B) = 5(A)

u(B)
S(B)’

(32)

as the dual of the Fisher information inequality (37).
Here, S(C) denotes the outer Minkowski content of
the boundary of a set C, which is defined as

S(C) = liminf é[,...(c+ €B))— u(C)],

where B, denotes a ball of radius p centered at the
origin (in particular, when C is a convex set or a set
with piecewise smooth boundary then S(C) coin-
cides with the usual surface area of C; see [10],
p. 69).

When inequality (32) holds, the Brunn—Minkowski
inequality follows by a continuous perturbation (by
balls) argument paralleling Stam’s proof of the en-
tropy power inequality. However, (32) does not hold
in general for nonconvex sets. For example, it is
false when A is the unit ball and B is the union of
two balls of distance 3 apart (so that A + B is also
the union of two disjoint balls).
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Does (32) hold when both 4 and B are compact,
convex and nonempty sets? Alternatively, is the ratio
of volume-to-surface area increased by Minkowski
sums for such sets? When in addition A4 (or B) is a
ball the inequality (32) indeed holds as a direct
consequence of the Alexandrov—Fenchel inequality
(see [10], p. 143).

d) Consider the functions

s,(1) =h, (V) = Ah,(X,) — (1= M)A, (Y,),
O0<t<l.

Theorem 7 (inequality (12)) amounts to s(1)
—5,(0)> 0 and therefore is a direct consequence of
2t(ds(t)/dt)=0. It can be shown that Young’s
inequality (20) is in essence equivalent to s,(1)—
5,(0) = 0. Therefore, it is tempting to suggest that
the stronger inequality 2¢(ds,(¢)/dt) >0, holds for
all 0 <t <1 and for some (or all) r # 1. The latter
inequality holds iff for every X~ f and Y~ g

(T} < ¥ ((1=1)r+ ){J(X)}
+(1=D(Ar+ (1= AN}, (33)

where the density of V, is proportional to

[ff(v _ y)((l—A)+A/r>g(y)(A +(1—).)/r)dy

Note that for r =1, ¥ = X + Y and (33) is merely the
Fisher information inequality (28). In conclusion, if
(33) holds for r #1 then this remark is the skeleton
of a new proof of Young’s inequality for these values
of r, a proof which is orthogonal to the existing
proofs of [3] and [8].

r

D. Isoperimetric Inequalities

The classical isoperimetric inequality states that balls
have the smallest surface area per given volume. Recall
that S(A4) is the surface area of a set 4 and that B is the
unit ball. So, an alternative statement of the isoperimetric
inequality is as follows.

Theorem 15 (The Classical Isoperimetric Inequality):
S(A) > n'u(A)(nfl/n)M(Bl)(]/n)
with equality if A4 is a ball in R”".

Proof: Consider the nth power of the Brunn-
Minkowski inequality (14) for B, = eB, (so that u(B,)"/"
= eu(B,)'/"). The isoperimetric inequality results by sub-
tracting u(A4), dividing by € and considering the limit as
€l0. 0

A dual “isoperimetric inequality” was derived by such
an approach out of the entropy power inequality (see [14]
following [38]).

Theorem 16 (Isoperimetric Inequality for Entropies): For
any random vector X in R” for which the Fisher informa-
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tion J(X) exists,

1
—J(X)N(X)=1. (34)
n

Proof (following [14]): For Y=VeZ, where Z is a
standard multivariate normal (so N(Y)=¢), the entropy
power inequality (10) reduces to

E[N(x+\f£z)—N(X)]zl. (35)

Clearly,

d 2 d
S IN(X +Vez)) = ;N(X)Z{h(xﬂ/f—z)}xFo-
Therefore, in the limit € |0, inequality (35) yields the
isoperimetric inequality for entropies by DeBruijn’s iden-
tity (29). ]

Remark: Inequality (34) is equivalent to Gross’s loga-
rithmic Sobolev inequality (see [25]). This is discussed in
[12]. For more literature on this subject see [26].

The same approach is applied in [19] for deriving the
following isoperimetric inequality about Fisher informa-
tion.

Theorem 17 (Fisher Information Isoperimetric Inequal-
ity): When the Fisher information J(X) of a random
vector X in R™ exists and is differentiable with respect to
a small independent normal perturbation then

d

E{[i{J(xa/Zz)}]ﬁl}é:OzL

Proof (following [19]): While the Fisher information
inequality (28) is the dual of the convexity inequality (12),
the inequality

JX+Y) ' —I(x) ' =uy)'=0,  (37)
where X,Y are any two independent random vectors, is
the dual of the entropy power inequality (10). This equiva-
lent statement of the Fisher information inequality is
proved for example in [6] (for n = 1) and [20] (for n # D).

For Y=ve Z (so that J(¥Y)"'=¢/n) and in the limit
€ | 0 this inequality yields

(36)

lim l{J(X+\/e_Z)_l— J(X)“}—%

-0 €
d 1 1
=8;<J(X+\EZ) }\e:O—;ZO'

Since this is the same inequality as (36) the proof is
completed. m]

Remark: Inequality (36) is equivalent to the “T, in-
equality” of Bakry and Emery (see [1]).

The Fisher information isoperimetric inequality sug-
gests that the sensitivity of the inverse of the Fisher
information with respect to a small independent normal
perturbation is minimal when the unperturbed variable
already possesses a multivariate normal distribution. Note
that the inverse of the Fisher information is exactly the
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Cramér-Rao lower bound for the error of the estimate of
a translation parameter (see also Section IV-B).

The concavity of the entropy power, which is proved
directly in great length in [15], is the following immediate
corollary of the Fisher information isoperimetric inequal-
ity (36).

Corollary 3 (Concavity of the Entropy Power): When
the Fisher information of X exists and is differentiable
with respect to a small independent normal perturbation
then

dz
F{N(Xﬂ/zz)},s:()s(). (38)
Proof (following [19]): Two applications of DeBruijn’s
identity (29) yield
2

d
d—EZ{N(X + \/EZ)}IE=0
- N Al ED) )

e

The isoperimetric Fisher information inequality is clearly
equivalent to

L |

30|+l o)y 0

and the proof of (38) is thus completed. m]

In conclusion, the entropy power of X, =X +V1Z is
concave with respect to the variance ¢ of the additive
normal perturbation. Moreover, since DeBruijn’s identity
holds for any random vector Z whose first four moments
coincide with those of the standard multivariate normal,
so does the concavity inequality (38).

IV. UNCERTAINTY PRINCIPLES

In [38], the Weyl-Heisenberg uncertainty principle is
derived from a specific version of the Cramér-Rao in-
equality. This idea is further developed here in Section
IV-B, where we rederive the well-known fact that the
Cramér-Rao inequality for location parameter is exactly
the Weyl-Heisenberg uncertainty principle. Strong ties
between Young’s inequality, the entropy power and the
Fisher information inequalities where explored in Section
III. Similarly, Hirschman’s uncertainty principle, which is
presented in Section IV-C, is a consequence of the
Hausdorff-Young inequality and it involves entropy pow-
ers of conjugate variables. Hausdorff- Young inequalities
exist for various groups and result in the corresponding
uncertainty principles. One such example, which is pre-
sented in Section IV-D, is related to bounds on the sizes
of support sets of conjugate variables (see [21] for many
other bounds of this type).

A new proof of Wehrl’s conjecture about the minimal
possible value of the classical entropy associated with
certain quantum systems is presented in Section IV-E.2

%It was brought to our attention by an anonymous referee that this
result was obtained independently by Carlen and will appear in [11].
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While Lieb’s proof of this conjecture (in [30]) is based on
Hausdorff-Young and Young inequalities, here a stronger
“incremental” result is derived as a direct consequence of
the isoperimetric inequality for entropies. This demon-
strates once again the close relationship between Fisher
information and entropy.

A. Stam’s Uncertainty Principle

We adopt the following definition of conjugate vari-
ables in quantum mechanics.

Definition: Associate with any complex wave amplitude
function ¢ in L,(R") a probability density

Fu(x) =19 (x) P/ Iwli2.

Let ¢(y) € L,(R™) be the Fourier transform of ¢(x), and
g,(y) the density similarly associated with ¢. Then, the
random vectors X ~ f, and Y~ g, are called conjugate
variables.

Stam’s uncertainty principle relates the Fisher informa-
tion matrix associated with a random vector (defined
next) with the covariance of its conjugate variable.

Definition: The Fisher information matrix J(X) of a
random vector X with a density f is

dx

J(X) = | VF(x)(Yf(x)) .
(X) = [FD I 75
Theorem 18 (Stam’s Uncertainty Principle): Let K, and

K, be the covariance matrices of the conjugate random
variables X and Y. Then

16772KY—J(X)20, (39)
or, by the symmetrical roles of X and Y,
167r2KX—.I(Y) > 0. (40)

Proof: See [38]. a

Remark: The left side of the matrix inequalities above

is a nonnegative definite matrix. This is the interpretation
of all matrix inequalities in the sequel.

The following identities, which are important conse-
quences of Stam’s proof of Theorem 18, are derived
in [20].

Stam’s Identities:

if §(x)/¥(x)=exp(ip), (41)
where ¢ is a constant independent of x. Similarly,

if $(y)/d(y) =exp(ip). (42)

J(X)=167%K,,

J(Y)=167K,

B. Heisenberg’s Principle and the Cramér — Rao Inequality

Heisenberg’s uncertainty principle is often stated as
h

Oy Oy = —,

X0y 25
where 4 is Planck’s constant and oy and oy are the
standard deviations of a pair X,Y of conjugate variables
in R'. However, the definition of conjugate variables in
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Section IV-A corresponds to a proper normalization, in
which h /2 is replaced by 1/4m. This normalization
yields the following multivariate uncertainty relationships.

Theorem 19: The n-dimensional Weyl-Heisenberg un-
certainty principle may be stated in any of the following
four equivalent forms:

16m2KY 2Ky Ky — 120 (43)
16m2 KKy KY?—120 (44)
167K, — Kx'=0 (45)
16m?Ky — Ky' =0, (46)

where X,Y are any pair of conjugate vectors (see Section
IV-A for definition).

There exists a simple and direct proof of this inequality
as a consequence of an appropriate Cauchy-Schwartz
inequality. Here we present an alternative proof illustrat-
ing the connection of this uncertainty principle with the
Cramér—Rao inequality:

Theorem 20 (Cramér — Rao Inequality):
J(X)-Kz'=20, 47
J(Y) - Ky'>0. (48)
Proof of the Weyl— Heisenberg Inequality: Adding
Stam’s uncertainty principle (39) and the Cramér-Rao

inequality (47) yields the Weyl-Heisenberg principle (45).
O

We interpret this relationship by suggesting that Stam’s
uncertainty principle “measures” the fluctuations in the
phase of the amplitude wave functions Y(x) and ¢(y),
while the Cramér—Rao inequality “measures” the amount
of “nonnormality” of the associated densities f,(x) and
8 4,()’ ).

Actually, Stam’s identities (41), (42) establish the equiv-
alence of the Weyl-Heisenberg principle and the specific
Cramér—Rao inequality given in Theorem 20. This equiv-
alence is established by proving the Cramér-Rao inequal-
ity as a consequence of the Weyl-Heisenberg principle.

Proof of the Cramér — Rao Inequality (47): Suppose
that X is a random variable in R” with a density f(x) for
which J(X) <w. Let ¢(x)=+/f(x) be the associated real
valued amplitude wave function. Clearly, Stam’s identity
(41) holds. Substituting this identity into the Weyl-
Heisenberg principle (45) yields the Cramér—Rao inequal-
ity (47). m]

Remark: This equivalence is generalized in [20], and
shown there to hold between general families of
Weyl-Heisenberg and Cramér—Rao inequalities.

C. Hausdorff - Young Inequality and Hirschman’s
Uncertainty Principle

An immediate consequence of Stam’s uncertainty prin-
ciple (39) is that

16m2K, 1V = 1(x)]",
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where throughout this section X,Y is any pair of conju-
gate variables. A seemingly unrelated fact, a stronger
version of Theorem 16 (the isoperimetric inequality for
entropies) whose detailed derivation is given.in [20], states
that

NI =1.
By combining the above two inequalities one obtains
167K, |Y"N(X) = 1.

Now, the maximum entropy inequality N(Y)_<_|KY|1/ "
(Lemma 5) suggests the following sharper uncertainty
principle.

Theorem 21 (Hirschman’s Uncertainty Principle):

16m2N(Y)N(X) = 1. (49)

This uncertainty principle was conjectured by Hirschman
(in [28]) who proved a weaker version with a smaller
constant. It follows as a corollary of the following strong
version of Hausdorff—Young inequality (due to Beckner

[3D.

Theorem 22 (Hausdorff —Young Inequality): Let ¢( y)
be the Fourier transform of ¥(x) € L,(R™). Then for any
1<p<2

oll,r < cp/?ligll, (50)

where 1/p)+(1/p')=1,and c, = pl/”/p'(l/"’).
Remarks:

a) In [40], the time duration of the function P(x) is
measured via 7, = exp{h, ,(X)} and its bandwidth is
measured by 8, =exp{h, ,2(Y)}. In this terminol-
ogy, Hirschman’s uncertainty principle amounts to
the following “time-bandwidth” uncertainty relation

e n
7,0, = (E) .

b) One can also establish Young’s inequality in the
range 1< p, g <2 <r out of the Hausdorff—Young
inequality (Theorem 22) and elementary properties
of the Fourier transform (see [3]).

¢) Cases of equality in (50) are studied in [31].

d) Carlen [12] obtains the isoperimetric inequality (34)
as a consequence of Hirschman’s uncertainty princi-
ple.

D. A Discrete Version of Hirschman’s Uncertainty Principle

Hausdorff—Young inequalities exist for Fourier trans-
forms on groups other than R”. Each of these inequalities
yields the corresponding Hirschman’s uncertainty princi-
ple by considering the limit as p—2. As an explicit
example to demonstrate this idea we show here that any
unitary square matrix U (possibly of infinite dimension),
with sup;lu,;| =M <1, yields a nontrivial Hausdorff—
Young inequality and consequently the following uncer-
tainty principle.
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Theorem 23: The mteger valued random variables X,Y
with P(X = i) = |x; |2 /llxll3 and P(Y = i) =
I(Ux); [2 / lUx|l3 are “conjugate” variables, where x is any
vector with [lx|l, <. For any such pair

1
H(X)+H(Y)221n(ﬁ). (51)
Proof: The unitary matrix U is an isometry on the
appropriate Hilbert space, i.e., for every x, [Ux||; = ||x]|5.
Furthermore, clearly ||Ux|l. < Mllx[l;, where [xIl, =
X _ilx; l”]l/p and [lx|l. = sup;_{|x,}. Riesz’s interpola-
tion theorem (between the extreme bounds above for
p=1and p =2) yields the following “Hausdorff- Young”
inequality for any vector x and any 1< p <2

Uxll,y < ME=P/7||x]i,,, (52)

where 1/p'+1/p=1. Consider now a pair of conjugate
variables X and Y with distribution functions as previ-
ously defined. Then (52) implies an uncertainty principle
for the (discrete) Rényi entropies of X and Y. Specifi-
- cally, let

1
Hyp(X) = 1= 7y " LP(X=i)"""
14
=mln(ﬂx”p/”x”2),
and
1
o) = =y M EP(V =0

p
= =52 In(llUxll» / Uxll2),

then (52) reads
1 1 1 1
> 2 H, (X)+ 27y Hy (YY)
(1 1) 1
>(———= 21n(—).
p 2 M

For(1/p)=(1/2)+¢,(1/p)=(1/2)— € and as € | 0 this
inequality (when divided by €) yields the uncertainty
principle (51). |

Remarks: This uncertainty principle is nontrivial for
M < 1. For example, consider the discrete Fourier trans-
form of size n that corresponds to a unitary matrix U for
which M =lu;|=1/ Vn . Here, Hirschman’s uncertainty
principle becomes

1
ZIP(X k)logzP—(X:—k)

1
+ P(Y=k)I _—
k§1 ( )log, PY=0) >log,n, (53)

where the vector P(Y=k) is the discrete Fourier

transform of the vector yP(X =k).

This inequality is sharp. For example, starting with
P(X =1)=1 results in a uniform distribution P(Y = k)=
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1/n for k=1,2,---,n, and for this pair of distributions
the previous inequality holds with equality.

The discrete entropy is bounded above by the base 2
logarithm of the size of the support set of the distribution.
Therefore, the uncertainty principle (53) implies that the
product of the support sets of the vector x and its discrete
Fourier transform is at least the dimension n of the
Fourier transform. This is Theorem 1 of [21] (where
similar support-set inequalities are derived also for x such
that (1—€) of |lx|l; is concentrated over a relatively small
index set).

E. Wehrl’s Conjecture

Wehrl introduced a new definition of the “classical”
entropy corresponding to a quantum system in an attempt
to build a bridge between quantum theory and thermody-
namics (see [39]). Consider a single particle in R". The
(quantum) state of the particle is characterized by the
“density matrix” p, a nonnegative definite linear operator
on L,(R") of unit trace (i.e., whose eigenvalues are
nonnegative real numbers that sum to one). The coherent
states are the normalized L,(R") functions

Y(xip,q)

_ (%)/(l) /4exp{—§(x—q>'(x—q)+ip’x},

w

where p € R" and g € R” are respectively the momentum
and position parameters associated with the coherent
state. Note that when the particle is in quantum state
¥(x|p, q) then its associated probability density
[y(xlp, @/ g3 is ¢, ,(x — q).

For any quantum operator p one can associate the
following classical probability density function f, on the
parameter space R2"

f(p.a) = [#(xlp,a)pl¥(xIp, )] dx,  (54)
where ¢ denotes the complex conjugate of ¢. Wehrl
argued that the proper definition of the “classical” en-
tropy associated with the operator p is the normalized
(Shannon) entropy of fps i€ (X, )= nln(27), where X,
is a random variable on IRZ" w1th density f,. Wehrl and
others have studied the properties of this cla551cal entropy
(see, for example, [39]). One of the appealing properties
they demonstrate is that the classical measure of uncer-
tainty h(X,,) is an upper bound to the quantum measure
of uncertainty, ie., the discrete quantum entropy
—tr(plnp). As the quantum entropy is always nonnega-
tive they argue that while the differential entropy A(-)
may well be negative it is never so for the physically
meaningful variables, i.e., for those of the form of X , for
some quantum operator p.

The quantum entropy is zero on any pure state (i.c.,
whenever the operator p is of rank 1). On the other hand,
Wehrl conjectured that the classical entropy is never zero,
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i.e., in the “classical” theory there is an inherent minimal
level of uncertainty (due to “quantization”) the value of
which is n. Further, this minimal uncertainty is obtained
iff the operator p is a projection operator on one of the
coherent states.

Wehrl’s conjecture, which is restated below as a lower
bound on the entropy power of X, was proved in [30] by
an application of the strong versions of Young and
Hausdorff-Young inequalities (cases of equality were later
determined by Carlen [11]).

Theorem 24 (Wehrl - Lieb): For X , a random variable
in R?" with density f, of the form of (54)

N(X,)=1,

and equality holds iff p is of rank 1 and Xp has a
standard normal distribution.

Remarks:

a) It is fairly easy to show that the above conditions for
equality are equivalent to p being a projection oper-
ator on exactly one coherent state.

b) Both the previous discussion and statement of Theo-
rem 24 correspond to the normalization under which
h /2 is replaced by 1/4m. In the real world all
levels of uncertainty are to be appropriately restated
in terms of multiples of Planck’s constant A.

Recall the isoperimetric inequality for entro-
pies (34)

1
T (X)N(X,) =1,

with equality iff X, has a standard normal distribu-
tion. Because of this result, the above theorem
(Wehrl’s conjecture) is an immediate consequence
of the following stronger “incremental” version.

Theorem 25 (Carlen [11] Dembo [20]): For X,, as be-
fore,

1
(X)) =<1,

with equality iff p is an operator of rank 1.

Remark: Starting with Theorem 25 and applying a per-
turbation argument similar to the one presented in Sec-
tion I11-C yields the monotonicity of N(Vt X L HV1I— X ,4),
with respect to ¢ <€[0,1], where p* is any projection
operator on a coherent state and X, and X« are inde-
pendent random vectors. The appropriate interpretation
of this result is, however, unclear.

Proof: The operator p may be decomposed into p =
Y7 AP, where A;>0, £7_;A; =1, and P, are rank one
projection operators. Therefore, by (54) and the linearity
of p and P,

fo(p.a) = L AuSe(P0).
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The projection operators P; correspond to densities

2
fr(pa)=|[ e(x)w(xlp.a) x| .

where ¢; € L,(R") and |le{l; = 1. Theorem 25 is thus the
immediate consequence of the following two lemmas.

Lemma 6: For any two random vectors X,Y in R?*" and
any 0 < A <1, let Z= B,X +(1—- B,)Y, where B, denotes
a Bernoulli (1) random variable, independent of both X
and Y. The density of Z is therefore the convex combina-
tion Af +(1— A)g, where f, g are the densities of X and
Y, respectively. Then,

M(X)+(1=-A)J(Y)-J(Z)=0.

Proof- With this notation, after some manipulations
we obtain

AM(X)+(1=N)J(Y)-J(2Z)

g(p.a)f(p,q)

Af(p,a)+(1-A)g(p,q)
p.a)\ p.q
A ) ) (Vln K ) )dpdq. (55)
g(p,q) g(p.q)

Since (VIn f(p,q)/g(p,@))(VIn f(p,q)/g(p,a) =0,
the integral in the right side of (55) is nonnegative and the
proof is complete. ]

=/\(1—/\)f

-(Vln

Lemma 7: For any random vector X in R?" with a
density of the form f(p,q)= | fe(x)y(x| p,q)dx|* where
e L,(R?) and llell, =1,

J(X)=12n.

The proof of this lemma is by direct calculation. (For
details see [20]).

V. DETERMINANT INEQUALITIES
A. Basic Inequalities

Throughout we will assume that K is a nonnegative
definite symmetric n X n matrix. Let |K| denote the de-
terminant of K. In Section III, we have seen that the
entropy power inequality yields the Minkowski inequality
(see Theorem 5) and the concavity of In|K| (see Theo-
rem 8).

We now give Hadamard’s inequality using the proof in
[17]. See also [33] for an alternative proof.

Theorem 26 (Hadamard): |K| <T17_,K;;, with equality
iff K,;=0, i % .
Proof: Let X ~ ¢¢. Then

1
51n(2we)"|1<| =h(X,, X5, ", X;)

n n 1
< Y h(X))= Y —In2mwelK,,
i=1 i=12
with equality iff X, X,, -, X, are independent, i.e.,
K;j=0,i#]. m]
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We now provide a direct information theoretic proof of
Fan’s (see [22]) Theorem 8 (which states that In|K| is a
concave function of K). This proof does not use the
entropy power inequality, and provides an alternative to
the proof in Section III.

Proof of Theorem 8: Let X, and X, be normally
distributed n-vectors, X; ~ ¢ (x), i =1,2. Let the random
variable 6 have dlstrlbutlon Pr{g = 1} =A, Prig=2}=
1-2,0<A<1. Let 6, X;, and X, be independent and
let Z = X,. Then Z has covariance K, = AK, +(1 - M)K,.
However, Z will not be multivariate normal. By first using
Lemma 5, followed by Lemma 3, we have

%m(zm)"p.Kl +(1- MK, |= h(Z) = h(ZI0)

1 . 1 .
= /\5 In(27e)"|K [+ (1- 1) 3 In(2me) |K,).
Thus,
[AK,+(1- M) K, | = K MNK,' 2, (56)
as desired. O

Taking logarithms and letting AK, = A4, (1 MK, =
we. obtain

log|A + B> Alog

§'+(1—A)mg

B

e

= Alog|Al+(1- A)log|Bl+ nH(A). (57)
Maximizing the right-hand side over A, we obtain the
optimum value of A as |A|"" /(| 4]"" +|B[/"). Substi-
tuting this in (57), we obtain the Minkowski inequality
(Theorem 5).

We now prove a property of Toeplitz matrices. A
Toeplitz matrix K, which arises as the covariance matrix
of a stationary random process, is characterized by the
property that K;; =K, if |i ~j|=|r —s|. Let K, denote
the principal minor K(1,2,- - -, k). The following property
can be proved easily from the properties of the entropy
function.

Theorem 27: If the positive definite n X n matrix K is
Toeplitz, then

K| 2 |K,|'? >
and |K,|/|K,_,| is decreasing in k.
Proof: Let (X, X,,"**, X,)~ ¢ . Then the quanti-
ties h(X,|X,_,, -+, X,) are decreasing in k, since
h(Xk'Xk—n' o 9X1) = h(Xk+1|Xk»' : "Xz)
2 (Xl X, o, Xy, X)) (58)
where the equality follows from the Toeplitz assumption

and the inequality from the fact that conditioning reduces
entropy. Thus the running averages

1/(n-1 1
“2|K, [TV KV

%h(Xl, : X)—— Zh(XIX

l—1

X))

are decreasing in k. The theorem then follows from
h(Xl,Xz;'-,Xk)=(1/2)ln(2n-e)lekl. m]
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Remark: Since (X, |X,_,,"*-,X,) is a decreasing se-
quence, it has a limit. Hence, by the Cesaro mean limit
theorem,

h(Xl’XZv“

n-—wo n

5 X,)

1
= lim — 2 R(X X, _,,

n—;oonk

">X1)

= lim A(X,|X, -

n—-wo

X)) (59)

Translating this to determinants, one obtains the result

IK,|
lim |K, /" = lim

e e 1K, |

B. Inequalities for Ratios of Determinants

We first prove a stronger version of Hadamard’s theo-
rem due to K. Fan [23].

Theorem 28: For all 1< p <n,
IK| [K(i,p+1,p+2,---,n)|

< .
|K(p+1,p+2,---,n)| ~ ;5 |[K(p+1,p+2,--,n)]

Proof: We use the same idea as in Theorem 26,
except that we use the conditional form of Lemma 4, to
obtain

L n(2me)” K]
—In
A T TP ey
=h(X,X,, X)X, i1 Xpi2: 0 X,)
r
< Zh(XIX +17Xp+2’”"Xn)
i-1
LA |K(i,p+1,p+2,---,n)|
= —1In2 .. O (60
i§12 neme ’K(p+1,p+2,-'-,n)| ( )
If (X3, X5, -+, X,) ~ ¢ , we know that the conditional

density of X, given (X, X,,---, X, _,) is univariate nor-
mal with mean linear in X}, X,,---, X,_, and conditional
variance ¢,”. Here 0,7 is the minimum mean- -square error
E(X, - X )2 over all linear estimators X, based on
X, Xy Xn—l

Lemma8 ol =K,/ |1K,_,I

Proof: Using the conditional normality of X, Lemma
2 results in

1
Eanﬂ'eUHZ =h(X,,|X1,X25A ! .7Xn—l)

=h(X;, X, LX) —h(X, X, X, 1)

1 1
=5 In(2me)"|K, |- 3 In(2mwe)" 'K, _,|

1
=§ln27relKn|/lKn,]f. o (61)
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Minimization of o2 over a set of allowed covariance
matrices {K,} is aided by the following theorem.

Theorem 29: In(|K,|/|K,_,) is concave in K,.

Proof- We remark that Theorem 8 is not applicable
because In(|K,,|/|K,_,D is the difference of two concave
functions. Let Z=X,, where X;~ ¢5(x), X;~ ¢7(x),
Pr{f=1)=A=1-Pr{#=2}, and X,, X,,0 are indepen-
dent. The covariance matrix K, of Z is given by

K,=AS,+(1-M)T,.

The following chain of inegualities proves the theorem:
1 1
A5 In(2me)?1S,1/ 18, 1+ (1~ N3 in(2we)’ T,/ 1T, _,]

(a)
=/\h(X1’,,,X14,,_],' ";Xl,n_,ﬁulle,lv' ! '7X1,n—p)+
(1- A)h(Xz,n’Xz,n—m' ’ .’X2<n*p+1|X2,1’. “’XZ,n—V)

=h(Zn’Zn—17. .'VanerlIZlv' “’anp’e)

(b) ‘
SW(ZpZy i s Znpiil 21y 20 y)
IK,|

K,

1
< 5 In(2me)”

(62)

where a) follows from

h(X"’Xﬂ-l’. “7Xn—p+1}X19” ’7Xn_p)
=h(X15'",X,,)_h(Xl,"',Xnvp),

b) follows from the conditioning lemma, and c) follows
from a conditional version of Lemma 5.

Theorem 29 for the case p =1 is due to Bergstrgm [4].
However, for p =1, we can prove an even stronger theo-
rem, also due to Bergstrgm [4]. m]

Theorem 30: |K,|/|K, _,|is concave in K,.

Proof: Again we use the properties of normal ran-
dom variables. Let us assume that we have two indepen-
dent normal random vectors, X ~¢, and Y~y . Let
Z=X+Y.

Then
1 |4,+B,] W

—1n2 =h(Z,Z .
2 n ’n.eIA +Bn-1| ( n| n—l’Zn—29

n—1

(b)
> h(Zn|Z,,_1,Zn_2,' 2 X X SXLY, LY

(c)
= h(Xn +Y1X,_ ., X,

@ 1

= EEln[quevar(Xn+Y,,\Xn,1,X,,_2,' XY Y

e 1

= Eiln[2we(var(X,,|X,,_l,X,l,z,"

|B,| )
|B, 4l
|B,|

—‘BH_J)). (63)

»n 1 |4,

11 2 4]
=-In|2me{ —— +
2 IAn—-ll

SE-In|2me| —" +
2 ( ('An—1|

In this derivation, a) follows from Lemma 8, b) from
the fact the conditioning decreases entropy and c) follows
from the fact that Z is a function of X and Y. The sum
X, +Y, is normal conditioned on X, X5, *, X, 1, Y,
Y,,+,Y,_,, and hence, we can express its entropy in
terms of its variance, obtaining equality d). Then e) fol-
lows from the independence of X,, and Y, conditioned on
the past X,, Xy, -+, X,_1, Yy, Ya,"* .Y, _y, and ) follows
from the fact that for a set of jointly normal random
variables, the conditional variance is constant, indepen-
dent of the conditioning variables (Lemma 8).

In general, by setting 4=AS and B=(1-MT, we
obtain

S, + (=M1 1S 3 IT,|
> +(1=-A)
FCRNETT Ry Rk T A
ie., |K,l/1K,_,lis concave. o

Simple examples show that |K,|/|K,_,| is not neces-
sarily concave for p > 2.

C. Subset Inequalities for Determinants

We now prove a generalization of Hadamard’s inequal-
ity due to Szasz [35]. Let K(i,i,, - *,i;) be the principal
submatrix of K formed by the rows and columns with
indexes i,i5, " ", -

Theorem 31 (Szasz): If K is a positive definite n X n

matrix and P, denotes the product of all the principal
k-rowed minors of K, i.e.,

P, = H 'zik)|’

1<i)<ip<---

\K(il’izv"

<ip<n

”’Zl)

.7Y1)

v XY LY ',Y1)

)]
'sYI))]

SXp)+var (VY Y, o,
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then

PzPV() =P/ )2 =P,

Proof: Let X ~ ¢4. Then the theorem follows di-
rectly from Theorem 1, with the identification A{» =
(1/mnP, +(1/2)In2e. a

We can also prove a related theorem.

Theorem 32: Let K be a positive definite n X n matrix
and let

1 - . k
Ty > |K(117127""’k)|1/ .

Sg =
(k) l<ij<iy<- <ig<n

Then,
1 1
—tr(K)=5">8"> - >8M=|K["".
n

Proof: This follows directly from the corollary to

Theorem 1, with the identification s{ =(2me)S{™, and
O

r=21in(3) and (4).

Define the geometric mean of (|K|/|K(S)MV/* over
k-element subsets by

Qk = ( l_[
S:|8t=
Theorem 33:

K|
x [K(59)]

)l/k(i).

[Mo?=0,<0,<- <0, ,<0,=IKI'"

i=1

Proof: The theorem follows immediately from Theo-
rem 2 and the identification

IK|

1
h(X(8)IX(8)) =5 1n(2we)km.

The outermost inequality, Q, < Q,,, can be rewritten as

n
K= T2

i=1
where

’= l (64
FTIKQ 2, i-Litl, o n)] )

is the minimum mean-squared error in the linear predic-
tion of X; from the remaining X’s. It is the conditional
variance of X; given the remaining X/’s if X, X,, -+, X,,
is jointly normal. Combining this with Hadamard’s in-
equality gives upper and lower bounds on the determi-
nant of a positive definite matrix.

Corollary 4:
[Tk =Kz 1

Hence, the determinant of a covariance matrix lies be-
tween the product of the unconditional variances K,; of
the random variables X; and the product of the condi-
tional variances o
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Let

1K($)IK(59) ]| 74()
|K]| '

Rk
S:18I=k

Theorem 34:

R,2R,2+2R,_2R,.

n—1

Proof: The theorem follows immediately from Corol-
lary 2 and the identification

IK(S)IK(S)]
K|

In particular, the outer inequality R, > R,, results in

|K”||K({l}c)| )1/)1

K|
Finally, we can convert Theorem 3 into a statement about
determinants by considering X,, X,,"" -, X, to be nor-
mally distributed with covariance matrix K.

I(X(S); X(59)) =%ln

>1.

o (65)
i=1

n

Let
( IK(S)IIK(SC)\)I/(k)
T, = _ .
s:isi=k |K|
Theorem 35:
I <T,< - <1,

Proof: The theorem follows directly from Theorem 3
and (64). O
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