
Information Theoretic Methods in Probability and Statistics�

I. Csisz�ar, Budapest

Abstract

Ideas of information theory have found fruitful applications not only in various �elds of science and

engineering but also within mathematics, both pure and applied. This is illustrated by several typical

applications of information theory speci�cally in probability and statistics.

1 Introduction

In its early years, information theory (IT) \has perhaps been ballooned to an importance beyond

its actual accomplishments" (Shannon 1956), being applied \to biology, psychology, linguistics,

fundamental physics, economics, the theory of organizations, and many others." While criticizing

these super�cial applications, Shannon did believe that serious applications of IT concepts in other

�elds were forthcoming, \indeed, some results are already quite promising { but the establishing of

such applications is not a trivial matter ... but rather the slow and tedious process of hypothesis

and experimental veri�cation." Shannon (loc. cit.) also emphasized that \the hard core of IT

is, essentially, a branch of mathematics" and \a thorough understanding of the mathematical

foundation ... is surely a prerequisite to other applications."

As \the hard core of IT is a branch of mathematics," one could expect a natural two-way

interaction of IT with other branches of mathematics that, in addition to enriching IT, also leads

to signi�cant applications of IT ideas within mathematics. Indeed, such applications had already

been around in 1956, such as Kullback's information theoretic approach to statistics, and others

were to follow soon. A celebrated example (Kolmogorov 1958) was to use the IT fact that stationary

coding does not increase entropy rate to show that stationary processes of di�erent entropy rate are

never isomorphic in the sense of ergodic theory. This demonstrated that not all i.i.d. processes are

mutually isomorphic, solving a long-standing problem. Kolmogorov's work initiated spectacular

developments in ergodic theory, and entropy became a basic concept in that �eld.

The times when some scientists regarded IT as a panacea have long passed, but today's informa-

tion theorists are proudly aware of well established and substantial applications of their discipline
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in quite a few other ones. This author, a mathematician, is particularly fascinated by the many

applications of IT in various branches of pure and applied mathematics, including combinatorics,

ergodic theory, algebra, operations research, systems theory, and perhaps primarily probability and

statistics. The goal of this paper is to give a avor of such applications, surveying some typical

ones speci�cally in probability and statistics.

For the applications treated in this paper, the main IT tools are the properties of information

measures, the method of types, and the concept of coding. Applications of IT in probability will

be treated in Section 2, and those in statistics in Section 3.

1.1 Preliminaries on I-divergence

The I-divergence (information divergence, also called relative entropy or Kullback-Leibler distance)

of probability distributions (PD's) P;Q on a �nite set X is de�ned as

D(PkQ) =
X
x2X

P (x) log
P (x)

Q(x)
(1.1)

(in this paper, we use natural logarithms). The I-divergence of PD's on an arbitrary measurable

space (X ;F), i.e., of probability measures P;Q on (X ;F), is de�ned as

D(PkQ) = sup
A

D(PAkQA); (1.2)

the sup taken for all F-measurable partitions A = (A1; : : : ; Ak) of X . Here PA denotes the A-

quantization of P de�ned as the PD PA = (P (A1); : : : ; P (Ak)) on f1; : : : ; kg. A well known integral

formula for D(PkQ) is

D(PkQ) =

Z
p(x) log

p(x)

q(x)
�(dx) (1.3)

where p(x) and q(x) are the densities of P and Q with respect to an arbitrary dominating measure

�.

I-divergence is a (non-symmetric) information theoretic measure of distance of P from Q. A

key property is that D(PkQ) � 0, with equality i� P = Q. A stronger property known as Pinsker's

inequality is

jP �Qj �
q
2D(PkQ) (1.4)

where

jP �Qj =

Z
jp(x)� q(x)j�(dx) (1.5)

is the variation distance of P and Q.
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While not a true metric, I-divergence is in many respects an analogue of squared Euclidean

distance. In particular, if � is a convex set of PD's and the minimum of D(PkQ) subject to P 2 �

is attained then the minimizer P �, called the I-projection of Q onto �, is unique and

D(PkQ) � D(PkP �) +D(P �kQ) for each P 2 � (1.6)

(Csisz�ar 1975). If � is de�ned by a �nite number of linear constraints then (1.6) holds with equality.

This is an analogue of the Pythagorean theorem, while (1.6) is an analogue of the cosine theorem

in Euclidean geometry.

2 Applications of IT in probability

2.1 Gaussian measures dichotomy theorem

Let X consist of functions x(t), t 2 T , and let F be the �-algebra spanned by the cylinder sets.

A PD P on (X ;F) is called a Gaussian measure if all of its �nite dimensional distributions Pt1:::tk

are Gaussian. Here, for ft1; : : : ; tkg � T , Pt1:::tk is the image of P under the mapping x(�) !

(x(t1); : : : ; x(tk)).

The dichotomy theorem says that two Gaussian measures P and Q on (X ;F) are either equiv-

alent (mutually absolutely continuous) or orthogonal (singular detection is possible: there exists

A 2 F with P (A) = 1, Q(A) = 0).

The �rst proof of this important result was obtained via IT (H�ajek 1958), by showing that

for Gaussian measures, D(PkQ) + D(QkP ) = 1 implies orthogonality. Of course, D(PkQ) +

D(QkP ) <1 implies equivalence, even if P and Q are non-Gaussian.

Sketch of H�ajek's proof:

\(i)". D(PkQ) = supft1;:::;tkgD(Pt1:::tkkQt1:::tk)

(an easy consequence of eq. (1.2)).

\(ii)". I-divergence is invariant under one-to-one transformations, this permits us to reduce calculation

of D(Pt1:::tkkQt1:::tk) to the \easy case" when Pt1:::tk is (k-dimensional) standard Gaussian and

also Qt1:::tk is of product form.

\(iii)". In the \easy case" above, direct calculation shows that if D(Pt1:::tkkQt1:::tk) +D(Qt1:::tkkPt1:::tk)

is \large" then Pt1:::tk and Qt1:::tk are \almost concentrated on disjoint sets".

3



2.2 Large deviations: Sanov's theorem, Gibbs' conditioning principle

Let X1;X2; : : : be i.i.d. random variables with values in an arbitrary set X (equipped with a �-

algebra F), with common distribution Q. The empirical distribution bPn of Xn = (X1; : : : ;Xn) is

the random probability measure on X de�ned by bPn(A) = 1
n
jfi:Xi 2 Agj. Sanov's theorem (Sanov

1957) says, intuitively, that for any PD P 6= Q,

Prf bPn is close to Pg � expf�nD(PkQ)g: (2.1)

If X is a �nite set, we have more exactly

Prf bPn = Pg = expf�nD(PkQ) +O(logn)g (2.2)

whenever P is a possible type for block-length n (a basic fact of the method of types, cf. Csisz�ar

and K�orner 1981, p.32). Clearly, (2.2) implies that

lim
n!1

1

n
logPrf bPn 2 �g = � inf

P2�
D(PkQ) (2.3)

for any set � of PD's on X in which n-types become dense as n!1.

For arbitrary X , a general form of Sanov's theorem says that for any set � of PD's on X for

which the probabilities Prf bPn 2 �g are de�ned, we have

lim inf
n!1

1

n
logPrf bPn 2 �g � � inf

P2��
D(PkQ) (2.4)

lim sup
n!1

1

n
logPrf bPn 2 �g � � inf

P2�
D(PkQ): (2.5)

Here �� and � denote the interior and closure of � in the � -topology, i.e., the topology of setwise

convergence of probability measures (the � -topology is weaker than the topology of variation dis-

tance). Of course, the equality of the right hand sides of (2.4) and (2.5) is a su�cient condition for

the limit relation (2.3). In particular, (2.3) always holds if � is convex and D(PkQ) <1 for some

P 2 ��.

Of particular interest is the choice

� = fP :

Z
fdP 2 Cg (2.6)

where f is a given (possibly vector valued) function on X and C is a given subset of the range of

f ; then bPn 2 � means that 1
n

nP
i=1

f(Xi) 2 C.
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In the parlance of large deviations theory (cf. Dembo and Zeitouni 1993), the asymptotic bounds

(2.4), (2.5), together with the easily checked compactness (in � -topology) of the divergence balls

B(P; a) = fP 0:D(P 0kP ) � ag; (2.7)

mean that bPn satis�es the large deviation principle, with good rate function D(PkQ).

The simplest available proof of this important result is inherently information theoretic (Groene-

boom, Oosterho� and Ruymgaart 1979; they acknowledge using a suggestion of this author in

proving (2.8) below). We sketch the proof of the more di�cult part (2.5).

For any (measurable) partition A = (A1; : : : ; Ak) of X , Prf bPn 2 �g is bounded above by the

sum of probabilities Prf bPA
n = P 0g for all PD's P 0 on f1; : : : ; kg such that P 0 = PA for some P 2 �

and P 0 is an n-type. This implies by (2.2) that

Prf bPn 2 �g � expf�n inf
P2�

D(PAkQA) +O(log n)g:

This gives

lim sup
n!1

1

n
logPrf bPn 2 �g � � sup

A

inf
P2�

D(PAkQA);

and (2.5) follows by (1.2) if one checks that

sup
A

inf
P2�

D(PAkQA) = inf
P2�

sup
A

D(PAkQA): (2.8)

The latter is non-trivial but not too hard.

Suppose next that � is a convex set of PD's on X and the conditional distribution of X1 on the

condition bPn 2 � belongs to �. This is always the case for � given by (2.6) if C is a convex set

and Ef(X1) exists. Under the above hypotheses, the asymptotic bound (2.5) may be sharpened

to a non-asymptotic bound. More importantly, under mild additional hypotheses, a strong form

of Gibbs' conditioning principle (cf. Dembo and Zeitouni 1993) may be established by a simple IT

reasoning (Csisz�ar 1984).

The following identity

D( ePkQn) = D( ePkPn) + nD(PkQ) (2.9)

holds for any PD eP on X n whose marginals on X are equal to P , and for any PD Q on X .

Take here eP = P
XnjbPn2� (the conditional distribution of Xn on the condition bPn 2 �), then

P = P
X1jbPn2� 2 � by assumption. It follows that

� logPrf bPn 2 �g = D( ePkQn) = D( ePkPn) + nD(PkQ) � n inf
P2�

D(PkQ) (2.10)
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proving the claimed non-asymptotic bound. If P � is the I-projection of Q onto �, from (2.10) and

(1.6) we further obtain

� logPrf bPn 2 �g � D( ePkPn) + nD(PkP �) + nD(P �kQ) = D( ePkP �n) + nD(P �kQ); (2.11)

where the last step follows from (2.9) with Q replaced by P �.

Supposing �nally that the given � satis�es (2.3), it follows from (2.11) { recalling eP = P
XnjbPn2�

{ that
1

n
D(P

XnjbPn2�kP �n)! 0 as n!1: (2.12)

This says, intuitively, that conditionally on bPn 2 �, the random variables X1; : : : ;Xn \almost

behave" as independent ones with common distribution P �. In particular, (2.12) implies that for

any �xed k

D(P
XkjbPn2�kP �k)! 0 as n!1:

Thus the conditional joint distribution of X1; : : : ;Xk on the condition bPn 2 � converges to the

product distribution P �k in a stronger sense than in variation distance, cf. (1.4). This is the

promised strong version of Gibbs' conditioning principle.

The above result may be extended to the case when the I-projection of Q onto � does not exist.

Namely, a unique P � (not necessarily in �) always exists such that D(PnkQ)! inf
P2�

D(PkQ) with

Pn 2 � implies D(PnkP
�)! 0; then (2.12) holds with this \generalized I-projection" P � (Csisz�ar

1984).

2.3 Measure concentration

Measure concentration is currently a hot topic in probability theory (cf. Talagrand 1995, 1996).

A general description of problems pertinent to that topic would lead too far, but one result now

considered as an early example of a measure concentration theorem is well known to information

theorists. It is the blowing up lemma (Margulis 1974, Ahlswede, G�acs and K�orner 1976) that says,

intuitively, that by slightly \blowing up" any set A � X n of not exponentially small probability,

one gets a set of probability close to 1.

In IT, the blowing up lemma was originally just a mathematical tool, particularly useful in

multiuser Shannon theory (cf. Csisz�ar and K�orner 1981). Today it is an integral part of IT due to

its information theoretic proof (Marton 1986) that was, actually, its �rst simple proof. Recently,

Marton extended her approach to prove also other measure concentration results, providing beau-

tiful examples of applications of IT in probability theory. Here we sketch some main ideas of that

approach, restricting attention to the simplest case.
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Let Q1; Q2; : : : be PD's on a �nite set X , let Q(n) = Q1 � : : :�Qn, and let

A" = fyn: d(xn; yn) � " for some xn 2 Ag (2.13)

denote the "-blow up of a set A � X n (where d denotes normalized Hamming distance).

Marton (1996) proved that the distance

d(A;B) = minfd(xn; yn):xn 2 A; yn 2 Bg (2.14)

of two subsets of X n can be bounded in terms of their probabilities as

d(A;B) �

s
1

2n
log

1

Q(n)(A)
+

s
1

2n
log

1

Q(n)(B)
: (2.15)

With the choice B = (A")c, when d(A;B) � ", (2.15) gives the following strong version of the

blowing up lemma:

Q(n)(A") � 1� exp

(
�2n

"
"�

s
1

2n
log

1

Q(n)(A)

#)
: (2.16)

Sketch of proof of (2.15):

(i) The key idea is to show that given Q(n) = Q1 � : : : � Qn and any PD P (n) on X n not

necessarily of product form, there exist random variables Xn = (X1; : : : ;Xn) with distribution

Q(n) and Y n = (Y1; : : : ; Yn) with distribution P (n) such that

Ed(Xn; Y n) �

r
1

2n
D(P (n)kQ(n)): (2.17)

For n = 1, this is obvious by Pinsker's inequality (1.4), since the minimum of PrfX 6= Y g subject

to PX = Q, PY = P equals 1
2 jP �Qj.

For n > 1, the proof of (2.17) goes by induction, using a coupling argument to extend Xn and

Y n satisfying the induction hypothesis by suitable new components Xn+1; Yn+1.

(ii) The result (i) implies, by the triangle inequality, that given arbitrary PD's P (n) and eP (n)

on X n, there exist Y n and eY n with distributions P (n) and eP (n) such that

Ed(Y n; eY n) �

r
1

2n
D(P (n)kQ(n)) +

r
1

2n
D( eP (n)kQ(n)): (2.18)

(iii) Finally, (2.15) follows from (2.18), letting P (n) and eP (n) be the conditional distributions

obtained from Q(n) by conditioning on A and B, respectively. Indeed, with that choice, the left

hand side of (2.18) is lower bounded by d(A;B) since d(Y n; eY n) � d(A;B) with probability 1.
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This approach to derive bounds like (2.15) has been extended to distributions of certain processes

with memory in the role of Q(n), including mixing Markov chains (Marton 1996). So far, other

approaches to measure concentration could not be so extended. It should be noted that a weaker

asymptotic form of the blowing up lemma has been established for a rather broad class of processes,

again with substantial use of IT ideas (Marton and Shields 1994).

2.4 Other topics

There are many other applications of IT to probability that can not be covered here.

Let us just mention that various limit theorems of probability theory have been given informa-

tion theoretic proofs. These include:

Central limit theorem (Linnik 1959, Barron 1986);

Ergodicity of Markov chains (R�enyi 1961, Kendall 1963, Fritz 1973);

Limit theorem for the convolution powers of a PD on a topological group (Csisz�ar 1965).

A promising recent idea is to prove bounds for recurrence and matching problems, utilizing the

non-existence of codes beating the entropy bound (Shields 1996, Section II.5).

3 Information theoretic methods in statistics

Statistics, the science of extracting information from data, appears the most natural �eld of ap-

plications of IT, besides communication theory. Historically, an information measure had been

used by statisticians prior to Shannon (Fisher's information, Fisher 1925). I-divergence was �rst

explicitly introduced for purposes of statistics, though motivated by Shannon's work (Kullback and

Leibler 1951). Implicitly it had played a role also in earlier statistical works (Wald 1947, Good

1950), and Kullback soon developed a uni�ed approach to testing statistical hypotheses based on

this information measure (Kullback 1959).

Several results considered in retrospect as applications of IT in statistics were actually estab-

lished by statisticians independently of IT. \Although Wald did not explicitly mention information

in his treatment of sequential analysis, it should be noted that his work must be considered a major

contribution to the statistical applications of IT" (Kullback 1959, p.2). This author shares this

view, and he also considers the results in Subsection 3.2 below as applications of a typical IT tool,

viz. the method of types. The proof of these results, however, preceded the development of the

method of types in IT; indeed, it represented one of the origins of that method. Some would prefer
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to speak in this context about interplay of statistics and IT rather than statistical applications of

IT.

There are two major inference methods motivated by IT: The methods of maximizing entropy

(or minimizing I-divergence) and of minimizing \description length." Their coverage is impossible

here, for lack of space, but perhaps not necessary, either, since most information theorists have at

least some familiarity with these methods. We will but illustrate them by simple examples.

3.1 Early results

Let us start with Wald's inequality relating the expected sample size of a sequential test to the

type 1 and type 2 error probabilities.

Assuming i.i.d. sampling from a distribution known to be either P or Q , a sequential test

accepts one of these hypotheses on the basis of a sample XN = (X1; : : : ;XN) of random length N .

Here N is a stopping time, i.e., knowledge of X1; : : : ;Xn determines whether or not N = n. Wald

(1947) proved that

EP (N)D(PkQ) � (1� �) log
1� �

�
+ � log

�

1� �
(3.1)

where � is the probability under P of accepting Q and � is the probability under Q of accepting

P . Moreover, Wald showed that his sequential probability ratio test nearly attains the equality in

(3.1).

The IT interpretation makes this result easy to understand: Denoting by PN and QN the

distribution ofXN under P andQ, the left hand side of (3.1) equalsD(PNkQN ) (this can be checked

using Wald's identity), whereas the right hand side is the I-divergence of the A-quantizations of

PN and QN for A = (A1; A2), A1 and A2 being the acceptance regions of P and Q. Were the

likelihood ratio constant on both A1 and A2, the equality would hold in (3.1). While no test can

achieve this exactly, in general, the sequential probability ratio test comes close.

Another early result in statistical IT is the celebrated \Stein's lemma" (Cherno� 1952; Stein

apparently disowns it). It provides an operational meaning to I-divergence: For testing a simple

hypothesis P against a simple alternative Q, the best test of sample size n and type 1 error

probability � " (for any 0 < " < 1) has type 2 error probability expf�nD(PkQ)+o(n)g. Notice that

if the type 1 error were required to go to zero, rather than just � ", the special case N = const = n

of Wald's inequality (3.1) would already imply that the type 2 error probability exponent can not

exceed D(PkQ).

9



3.2 Hypothesis testing: exponential rate optimal tests

Let X be a �nite set and P a given PD on X . Suppose the null-hypothesis that an i.i.d. sample of

size n comes from P is to be tested; the alternative hypothesis Q is not speci�ed.

Then the test that accepts the null-hypothesis when the empirical distribution bPn of the sample

belongs to the divergence ball B(P; a) = fP 0:D(P 0kP ) � ag, is universally exponential rate optimal

in the following sense.

The probability of type 1 error goes to 0 exponentially, with exponent a, and for any alternative

hypothesis Q such that b(P;Q; a) below is positive, the probability of type 2 error goes to zero with

exponent

b = b(P;Q; a) = min
P 02B(P;a)

D(P 0kQ): (3.2)

Even if the alternative hypothesis Q were speci�ed, no tests with type 1 error probability exponent

� a could have type 2 error probability that decreases with a larger exponent than b(P;Q; a); in

particular, against an alternative Q with b(P;Q; a) = 0, an exponential decrease of type 2 error is

not achievable.

Also of interest is the modi�cation of the above test replacing the constant a by a sequence

an ! 0 such that n
lognan !1. Then the type 1 error probability still goes to 0 (though no longer

exponentially), and the probability of type 2 error against any alternative Q goes to zero with

exponent D(PkQ). The latter is best possible, by Stein's lemma.

The above results are due to Hoe�ding (1965). For today's information theorists, their proof is

an easy exercise in the method of types (cf. Csisz�ar and K�orner 1981, p.44).

The extension to testing composite hypotheses is straightforward. To test the null-hypothesis

that the true distribution belongs to a given set � of PD's on X , take the union of the divergence

balls B(P; a), P 2 �, and accept the null-hypothesis when bPn is in that union. Then the type 1

error probability still goes to 0 with exponent a, and for any (simple) alternative Q, the type 2

error probability exponent will be the in�mum of b(P;Q; a) subject to P 2 �, the best possible.

Notice that the acceptance criterion bPn 2 [P2�B(P; a), i.e., infP2�D( bPnkP ) � a, is equivalent

to

supP2�
Q
P (x)nbPn(x)Q bPn(x)nbPn(x) � exp(�na):

Thus the above universally rate optimal tests are what statisticians call likelihood ratio tests.

Consider next hypothesis testing for PD's on an arbitrary set X (equipped with a �-algebra

F). Then the previous acceptance criterion does not make sense, as for a continuous distribution
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P always D( bPnkP ) = 1. One way out is to consider a re�ning sequence of partitions An =

(An1; : : : ; Anm(n)) of X that generates F , and accept the null-hypothesis that the true distribution

belongs to a given set � of PD's when infP2�D( bPAn
n kPAn) � a. Assuming that m(n) = o(n)

when the number

 
n+m(n)� 1

m(n)� 1

!
of n-types for alphabet size m(n) is exp(o(n)), the type 1

error probability of this test is still � exp(�na+ o(n)), while the type 2 error probability (against

any given Q) will be � exp(�nbn + o(n)) where

bn = inf
P2�

min
P 0:D(P 0AnkPAn)�a

D(P 0AnkQAn): (3.3)

This approach is due to Tusn�ady 1977. He showed under a compactness assumption on � that bn in

(3.3) approaches infP2� b(P;Q; a), and then the above test is universally exponential rate optimal.

In particular, rate optimality always holds when the null-hypothesis is simple.

Notice the relationship of the results in this Subsection to those in Subsection 2.2.

3.3 Iterative scaling, EM algorithm

Iterative scaling is a familiar procedure to infer a matrix with non-negative entries pij when the

row and column sums

pi� =
X
j

pij p�j =
X
i

pij (3.4)

are known, say pi� = pi, p�j = pj , and a prior guess p0ij = qij is available. The procedure consists in

iteratively adjusting the row and column sums, setting

pkij =

8<
:

pk�1ij
pi�
pi

k odd

pk�1ij
p�j

pi
k even

(3.5)

and taking the limit

p�ij = lim
k!1

pkij: (3.6)

To this author's knowledge, iterative scaling was �rst used (Kruithof 1937) to estimate telephone

tra�c, viz. the number pij of calls from exchange i to exchange j on a given day, from the counts

pi� and p�j of outgoing and incoming calls, and from the exact knowledge of the tra�c qij on some

previous day. In statistics, the same procedure was �rst proposed by Deming and Stephan 1943 to

infer a two dimensional distribution P = (pij) with known marginals P = (pi�), P = (p�j), using

the empirical distribution of the observed sample (\contingency table") as prior guess Q.

The IT nature of this procedure has been recognized by Ireland and Kullback 1968. Suppose

w.l.o.g. that P;P and Q are PD's, let �1 and �2 denote the set of (two-dimensional) PD's with

11



�rst marginal P , respectively with second marginal P . Then P k belongs to �1 or �2 according as

k is odd or even, and

D(PkP k�1) = D(PkP k) +D(P kkP k�1) (3.7)

for each P 2 �1 (k odd) or P 2 �2 (k even). Due to this Pythagorean identity, P
k is the I-projection

of P k�1 onto �1 or �2, respectively.

We show (following Csisz�ar 1975, �lling a gap in the proof of Ireland and Kullback 1968) that

if �1 \�2 \ fP :D(PkQ) <1g 6= ;, the limits (3.6) exist and P � = (p�ij) equals the I-projection of

Q onto �1 \ �2.

By the uniqueness of I-projection, it su�ces to show that for any convergent subsequence

Pni ! P 0, say, we have P 0 2 �1 \ �2 and for each P 2 �1 \ �2

D(PkQ) = D(PkP 0) +D(P 0kQ): (3.8)

Since (3.7) holds for each k if P 2 �1 \ �2, summing these identities from k = 1 to ni and letting

i!1 gives

D(PkQ) = D(PkP 0) +
1X
k=1

D(P kkP k�1): (3.9)

If D(PkQ) < 1, (3.9) implies that D(P kkP k�1) ! 0, consequently limPni+1 = limPni = P 0,

establishing P 0 2 �1 \ �2. Thus (3.9) applies to P = P 0, yielding that the sum in (3.9) equals

D(P 0kQ). This completes the proof.

A similar convergence result had been claimed (Kullback 1968) also for iterative scaling of

densities. That case, however, is much harder; the above proof essentially relies upon the continuity

of I-divergence as a function of its second variable, and this no longer holds if the underlying set

is in�nite. A convergence proof for iterative scaling of densities appears available under additional

assumptions only (R�uschendorf 1995).

There is a large variety of problems requiring to infer a PD or, more generally, a non-negative

valued function, when the available information consists in certain linear constraints. The popular

\maximum entropy" method suggests to take the feasible P closest in I-divergence to a default

model Q, i.e., the I-projection of Q onto the feasible set of P 's satisfying the given constraints. The

I-divergence of non-negative valued functions P and Q, not necessarily PD's, on a �nite set X , is

de�ned by the following extension of eq. ( 1.1):

D(PkQ) =
X�

P (x) log
P (x)

Q(x)
� P (x) +Q(x)

�
: (3.10)

Often, the feasible set can be represented as �1 \ : : : \ �m such that I-projection onto each

�i is easy to compute. Then, as in iterative scaling, the desired I-projection (\maxent solution")
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can be computed by iterating successive I-projections onto �1; : : : ;�m starting with P 0 = Q.

Convergence to the I-projection P � of Q onto �1\ : : :\�m follows in the same way as above, using

the Pythagorean theorem for I-projections (eq. (1.6) with equality), provided that �1 \ : : :\�m \

fP :D(PkQ) <1g 6= ;.

Some other iterative algorithms often used in statistics and elsewhere can also be given intuitive

IT interpretations. One such algorithm, designed to compute I-projection onto an arbitrary feasible

set de�ned by linear constraints (when the underlying set is �nite) is generalized iterative scaling

(Darroch and Ratcli� 1972), also known as SMART algorithm (Byrne 1993). This has been shown

(Csisz�ar 1989) equivalent to iterative I-projection performed in a suitable product space.

The so-called EM algorithm (Dempster, Laird and Rubin 1977), designed to compute maximum

likelihood estimates from incomplete data, has been shown (Csisz�ar and Tusn�ady 1984) equivalent

to an alternating minimization of D(PkQ) for P 2 �1 and Q 2 �2 with suitably constructed �1

and �2. Convergence of the latter was proved under some technical conditions, the most important

being convexity of �1 and �2. The general result implies convergence of the EM algorithm in the

particular case of decomposition of mixtures. Remarkably, the same general result implies also the

convergence of familiar algorithms for computing channel capacity (Arimoto 1972, Blahut 1972),

rate-distortion functions (Blahut 1972) and optimum portfolios (Cover 1984).

Recent works related to the topics in this Subsection include Byrne 1993, 1996, Della Pietra,

Della Pietra and La�erty 1997, Matus 1997.

3.4 Minimum description length (MDL)

MDL is a statistical inference principle motivated by IT (Rissanen 1978, 1989). It says that

among various possible stochastic models (or model classes) for a data sequence xn = x1 : : : xn,

one should select that yielding the shortest code for xn, taking into account also the bits needed

to describe the model (model class) that has been used for the encoding. MDL has naturally lead

to a strong interplay with statistics of the theory of universal data compression in IT. This would

deserve detailed coverage, but because of limited space we will consider just one example, the MDL

approach to Markov order estimation.

For binary sequences xn, consider the model classes \i.i.d.," \�rst order Markov," \second order

Markov," ..., order k0 Markov. A (pre�x condition) code may be regarded optimal for a model

class if the maximum over the model class of either its mean-redundancy or its max-redundancy is

the smallest possible. It is known from IT that a code fk: f0; 1g
n ! f0; 1g� optimal in either sense
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for the \order k Markov" model class (k = 0 meaning i.i.d.), has codeword length

` (fk(x
n)) = � log2 P

(k)
M (xn) + 2k�1 log2 n+O(1): (3.11)

Here P
(k)
M is the maximum of the probability of xn for order k Markov sources. Hence, disregarding

the O(1) term, the order k yielding minimum codelength for xn will be

k� = argmax
h
logP

(k)
M (xn)� 2k�1 log n

i
: (3.12)

This k� is taken as the MDL estimate of the Markov order k. Notice that now the description

length for the model class is constant over the considered (�nite number of) classes, hence it does

not enter the above comparison.

Eq. (3.12) is an instance of a more general result that to chose among model classes involving

di�erent number of parameters, the criterion given by MDL is maximized log-likelihood minus the

number of parameters times 1
2 log n. In statistics, this is known as the BIC criterion, and it enjoys

desirable properties.

It is interesting to note that a previous \penalized maximum likelihood criterion" known as

AIC had also been derived using IT considerations (Akaike 1973).

3.5 Mutual information in statistics

Using IT ideas in statistics comes most naturally when adopting the Bayesian approach. Indeed,

suppose the joint distribution of Xn = (X1; : : : ;Xn) depends on an unknown parameter #, say

X1; : : : ;Xn are i.i.d. with distribution P#. Then, in order the amount of information provided by

the observation Xn about the parameter #, viz. the mutual information I(# ^Xn), be de�ned, it

is necessary that # be assigned a distribution (called prior distribution). The latter plays the role

of input distribution for the channel de�ned by the possible distributions of Xn, corresponding

to the possible values of #. Of course, as an input distribution is often assigned in IT just as a

technical tool, a prior can always be so assigned. For this reason, the statistical applicability of

mutual information and related IT tools { such as Fano's inequality { is by no means restricted to

Bayesian statistics.

In the sixties, R�enyi studied in several papers the asymptotics of I(# ^Xn) when the set � of

possible values of # was �nite, cf. R�enyi 1969. He showed that I(# ^Xn) ! H(#) exponentially

fast, and related this to the asymptotic behavior of the error probability of the Bayesian (maximum

a posteriori probability) estimate of #.

When � is a subset of IRk of positive Lebesgue measure, the mutual information I(# ^ Xn)

typically goes to in�nity as n ! 1. Its asymptotics was studied in the seventies by Russian
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researchers (Pinsker 1972, Ibragimov and Hasminskii 1973, and others). Recently, Clarke and

Barron 1994 obtained sharp results. In Bayesian statistics, Bernardo 1979 suggested to use a

so-called reference prior selected by the IT criterion of yielding maximum I(# ^ Xn) is the limit

n!1. He argued that this criterion leads to the familiar Je�reys prior; Clarke and Barron 1994

provide a rigorous proof, under not too restrictive hypotheses on the family fP#g.

In many statistical problems, the parameter set � is in�nite dimensional, e.g., it may be the

set of all probability densities on IR or IRd, or the class of densities satisfying some smoothness

conditions. In this context, it is a good idea to consider I(# ^Xn) for # restricted to and having

uniform distribution on a suitable �nite subset �n of �. Suppose the problem is to estimate

# 2 � from the observations Xn, an estimator T (Xn) being evaluated by the supremum over �

of the expected loss E#d(#; T (X
n)), for a given loss function d. Subject to suitable assumptions,

E#d(#; T (X
n)) may be bounded below, for # 2 �n, in terms of P#(Tn(X

n) 6= #), where Tn is a

�n-valued approximation of the estimator T . Then the sup expected loss may be bounded below

in terms of

sup
#2�n

P#(Tn(X
n) 6= #) �

1

j�nj

X
#2�n

P#(Tn(X
n) 6= #):

Here the right hand side equals PrfTn(X
n) 6= #g, for # uniformly distributed on �n. Hence by

Fano's inequality, it is bounded below by

1

log j�nj
[H(#jTn(X

n))� log 2] = 1�
I(#^Tn(Xn))

log j�nj
� log 2

log j�nj
� (3.13)

� 1�
I(#^Xn)
log j�nj

� log 2
log j�nj

: (3.14)

If here I(#^Xn) < c log j�nj, for some c < 1, one arrives at a useful lower bound to sup#2�Ed(#; T (X
n)),

valid for any estimator T (Xn).

Ideas as hinted to above have been used to derive risk bounds tight up to a constant factor

in non-parametric density estimation. Works in this direction include Hasminskii 1978, Ibragimov

and Hasminskii 1982, Efroimovich and Pinsker 1982, and recently Yu 1995, Yang and Barron 1997;

the results of the latter are particularly impressive.

3.6 Other topics

In this Section, only a fraction of statistical applications of IT could be covered. For others, and

for more information about those only tangentially mentioned here, let me refer to the excellent

survey Barron 1997.

Let me just mention one �eld that jointly belongs to IT and statistics, and obviously requires

methods of both disciplines: hypothesis testing and estimation based on remote observations,
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subject to rate constraints on permissible communication. Works about hypothesis testing and

estimation problems, respectively, with communication constraints, include Ahlswede and Csisz�ar

1986, Han 1987, Shalaby and Papamarcou 1992, respectively Zhang and Berger 1988, Ahlswede

and Burnashev 1990, Han and Amari 1995.
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