Maximum Entropy and the Lottery

HAL STERN and THOMAS M. COVER*

The distribution on m-tuples of the first M integers is estimated from marginals of the distribution. This problem is of interest
in determining unpopular numbers in lotto games. In Canada's Lotto 6/49 the proportion of tickets purchased in previous
games containing each number is available. Under certain conditions the limiting distribution subject to the observed marginals
is the constrained maximum entropy distribution. This distribution is estimated, and Monte Carlo methods are used to estimate
the expected return of various lottery strategies. Tickets consisting of unpopular numbers may have.expected return greater
than their cost when the weekly sales are large or there are large carryover prizes (prizes not won in earlier games). The
maximum entropy distribution is a rough approximation of the true distribution of tickets purchased. Certain aspects of the
empirical distribution are not consistent with the maximum entropy distribution. Alternative methods, which attempt to model

the behavior of ticket buyers, are considered.
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1. INTRODUCTION

Each year hundreds of millions of dollars are spent on
tickets in government lotteries characterized by an ex-
tremely low probability of winning a multimillion dollar
jackpot. The most common lottery game is lotto, in which
participants choose m distinct numbers from among the
first M integers. The jackpot prize is awarded if the m
numbers chosen match the m winning numbers; smaller
prizes are given for fewer matches. Much evidence exists
(Ziemba, Brumelie, Gautier, and Schwartz 1986) that the
only way to improve the expected return from playing lotto
is to select numbers that are unpopular with the other
bettors. This strategy takes advantage of the pari-mutuel
prize payouts.

Here we consider several estimates of the distribution
of tickets purchased by the betting public. Careful study
of this distribution enables us to estimate the distribution
of prizes won when a particular m-tuple is chosen. The
analysis here is concentrated on the Canadian lotto game,
with m = 6 numbers chosen from M = 49 choices. For
this game the marginal probability of a number being se-
lected as part of a sixtuple is available. That is, after each
game the proportion of tickets purchased that contain each
integer is known. Without such information little can be
done to estimate the unknown distribution. Under certain
conditions the distribution of tickets purchased is the max-
imum entropy distribution subject to the given marginal
constraints. The maximum entropy distribution is used to
provide an idea of the expected return from various lottery
strategies. The data, however, do not seem to support the
necessary assumptions, so alternatives to the maximum
entropy distribution are also considered.

2. LOTTO GAMES AND TESTS OF RANDOMNESS

Players select 6 numbers from the first 49 integers on a
$1 ticket to participate in Canada’s Lotto 6/49. No number
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may be selected more than once. Six winning numbers and
a bonus number are selected at random by the Lottery
Commission. If a player matches fewer than three of the
winning numbers then no prize is won. Three winning
numbers entitles the player to a $10 prize. If four or more
numbers match, then the player wins an amount deter-
mined as follows. First, 55% of the lottery sales is used
to pay lottery costs and to provide revenue for the gov-
ernment. Then all of the $10 prizes are awarded. The
remaining money in the prize pool is split among four
groups of prizewinners. Twenty-five percent of the pool
is split among tickets with four winning numbers, 13% is
split among tickets with five winning numbers that do not
have the bonus number as their sixth number, 17% among
tickets that include five winning numbers and the bonus
number, and 45% among tickets with six winning numbers
(the jackpot). Any prizes that are not won (this is usually
limited to the jackpot) are added to the jackpot for the
following game. In Canada the jackpot is guaranteed to
be at least one million dollars.

Based on the rules described previously the obvious
strategy is to try to figure out which numbers will be win-
ning numbers. Sadly, much evidence indicates that the
winning numbers are selected at random. Figure 1 shows
the number of times that each number was a winning num-
ber in 161 games through July 6, 1985. They are well
scattered around the mean (6/49) x 161 = 19.7. The chi-
squared statistic comparing observed and expected counts
1s 54.12 on 48 df. In this case the usual chi-squared statistic
is multiplied by 48/43; this is an adjustment for sampling
without replacement. There is thus no evidence that some
numbers tend to be good numbers., A variety of random-
ness tests have been applied (Ziemba et al. 1986) and,
typically, no pattern is found. These tests include exami-
nation of whether there are such things as “hot” numbers
(those that have won often recently). Lottery organizers
in Canada and the United States expend considerable ef-
fort to ensure that lotto games are unpredictable,

It has long been observed that players in a random lot-
tery game with pari-mutuel prizes win large prizes if they
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Figure 1. The Number of Times That Each Number Appeared as a
Winning Number in 167 Games. These data are consislent with the
hypothesis that each number is equally likely to win.

choose numbers that are not popular with other players.
In the context of modern lottery games this has been stud-
ied by Chernoff (1981) and Ziemba et al. (1986). Do un-
popular numbers exist in the Canadian Lottery? Figure 2
shows the number of times each number was selected in
the game of July 6, 1985. This data is available to the
public through the British Columbian lottery newsletter.
If numbers are chosen at random by the public, then each
number should appear approximately 539,000 times. The
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Figure 2. The Number of Times (in thousands) That Each Number
Was Selected by the Public (July 6, 1985). These dala reject the hy-
Pothesis that each number is equally likely to be selected. The number
7 is selected 50% more often than the average number.
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number 7 appears more than 750,000 times. This fact alone
causes the chi-squared test to reject randomness at all the
usual significance levels. In addition, both Ziemba et al.
and Chernoff found that unpopular numbers tend to re-
main unpopular (with more publicity this may stop). In
the Canadian lottery, unpopular numbers tend to be those
larger than 30 and those ending in 8, 9, or 0.

Given the rules for determining prizes in Canada, un-
popular numbers lead to large prizes in two ways. There
are fewer $10 winners, so a large amount of money is
available for other prizes. There are also fewer prize win-
ners with whom the pari-mutuel prizes must be split. The
distribution of tickets purchased must be estimated to es-
timate the advantage that is obtained by choosing un-
popular numbers.

3. THE DISTRIBUTION ON TICKETS

Let T, j=1 . , 1) be n independent tickets from
the unknown distribution P(f). Each ticket T} is a random
m-tuple chosen from the first M integers. The probability
that T; is the m-tuple ¢ is given by Pr(T; = 1) = P(z). The
information in Figure 2 represents the marginals of this
distribution. The ith marginal r; is the empirical probability
that a ticket includes the number i. The goal here is to
estimate the distribution P(-) consistent with the con-
straints implied by the marginals.

Initially, suppose that the distribution on tickets is uni-
form, so each ticket has the same probability of being
selected. Then the marginals r, can be treated as con-
straints and the conditional distribution given these con-
straints can be determined. This distribution is given in
the limit as the number of tickets n tends to infinity by
the following theorem.

Theorem 1 (Csiszar 1984; Van Campenhout and Cover
1981). If the unconditional distribution on tickets is uni-
form [Pr(T, = ¢) = 1/(%) for each ¢], then

o

Pr{ %Zrk(n)=rk,k=1,
— P*(1),

where P*(f) maximizes H(P) = — Z, P(9)In P(f) over prob-
ability mass functions P(#), which satisfy

SPOLE =n, k=1,...,M.

(1)

The functional H(-) is the Shannon entropy function. It
is a measure of the randomness of a discrete distribution
and is a concave function over the set of probability mass
functions. The form of the maximum entropy distribution
can be determined by the method of Lagrange multipliers.
The result is neatly given in the following theorem.

Theorem 2 (Kagan, Linnik, and Rao 1973). The dis-
tribution P*(¢) that maximizes —Z P()ln P(f) subject to
the constraints 2 P()L(1) = r, (k = 1, , M) is

. M ) M -
P*) = exp(lo + 2 AJ.I}.(:)) = ¢ [] 64,
j=1 j=1
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where 4y, 4, .. ., Ayandc, 8, . .., @, are chosen to
satisfy 2 P*(¢) = 1 and the constraints (1).

Proof. Suppose that Q(¢) is another distribution that
satisfies the constraints. Then

H(Q) = -2 0(nin Q1)

IA

- Q®In P*()

-2 00 (ﬂo + ; ifn’;(t))

—-> P (AD + g} Ajl',.(t))

- P*()In P*(t) = H(P),

where the inequality follows directly from the fact that
the Kullback-Leibler divergence (Kullback 1959) 2 Q(r)
In(Q(r)/P*(¢)) is nonnegative. The equality on the fourth
line is true, since P*(r) and Q(r) each satisfy the same
constraints. '

Note that the maximum entropy distribution has the
form of a multinomial model. The probability of an m-
tuple is obtained by multiplying the factors ¢; correspond-
ing to the numbers in the ticket.

The maximum entropy distribution can be found nu-
merically using the generalized iterative scaling algorithm
(Darroch and Ratcliff 1972). Let PO = II ¢ for any
choice of the starting values ¢, where the product in-
cludes each number j on the ticket 7. For Canada’s Lotto
6/49 the choice ¢ = 1/(%)" for each j corresponds to
the uniform distribution. The (n + 1)st estimate of the
probability of the ticket ¢ is computed from the nth esti-
mate

M 7 I(Oim
——
k=1 \Tk

where r{’ = Pr{l,(r) = 1} under P®)(r). At each step of
the iteration the probability for every ticket is updated.
We would like to avoid this, since the distribution puts
mass on () tickets and M may be large. A modified al-
gorithm simply updates the ¢'s,

¢£n+1) = w)(f_fc_) m, k = 1’ e, M, (2)

r}{’)

and reduces the memory requirement significantly. Even
with this modification, computing the maximum entropy
distribution required more than 20 CPU hours on a VAX
117780 when M = 49, m = 6, and the uniform initial
estimate was used. Better initial estimates reduce this by
a factor of 10. A theorem of Darroch and Ratcliff (1972)
proves convergence of the algorithm whenever the con-
straints are consistent. At convergence, the transformation
¢; = c!""g;, with ¢ chosen so that 26, = 1, puts the dis-
tribution in the form given by the theorem.
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4. EVALUATING LOTTO STRATEGIES

The maximum entropy distribution produces an esti-
mate of the probability that a randomly selected lotto
player will choose a particular ticket. All calculations are
for the Canadian lotto game of July 6, 1985, with *) =
13,983,816 sixtuples. Under the uniform distribution each
sixtuple has probability 7.15 x 108 of being selected. It
follows from the form of the maximum entropy distribu-
tion that the least popular ticket in the maximum entropy
distribution consists of the six least popular numbers in
Figure 2. When the assumptions leading to the maximum
entropy distribution are correct, the least popular ticket,
containing the numbers 20, 30, 39, 40, 31, and 48, is se-
lected with probability 1.73 x 10-%. A couple of other

interesting choices: 6-11-15-20-29-44 has probability 7.15

x 1078, approximately the same as under the uniform
distribution, and the most popular ticket, 3-7-9-11-25-27,
has probability 2.52 x 10-7. It seems that the least popular
ticket occurs one-fourth as often as it would under the
uniform distribution and the most popular approximately
four times as often. A histogram of the probabilities under
the assumptions leading to the maximum entropy distri-
bution appears in Figure 3. For the uniform distribution
all 13,983,816 tickets fall in one cell of the histogram.
The probability of winning each prize and the expected
value of each prize are required to compute the expected
return for a particular sixtuple. The probability of winning
various prizes can be computed from the hypergeometric
distribution. The probability of matching j of the six win-
ning numbers is ($}(;%)/(%). The probability of winning
any prize at all is less than .02. These probabilities are the
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Figure 3. Histogram of Ticket Probabilities Under the Maximum En-

tropy Distribution. Frequencies are measured in millions of tickéts. There
is a total of 13,983,816 tickets. ’
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same for any selected sixtuple, since the winning numbers
are selected at random. The expected prizes depend on
the ticket being considered. The expected prize for match-
ing a given subset of the winning numbers cannot be easily
computed analytically. Approximations can be made, but
these are still computationally intensive. To avoid this, we
use a simulation to compute the results of sample lottery
"games. We first ignore the special rules for the jackpot
(the imposed minimum and the carryover from previous
games).
The first step in the simulation is the choice of the sim-
ulation ticket. This is the sixtuple of numbers for which
the expected prizes are to be computed. The expected
value of each prize is computed separately. As an example,
to-compute the expected prize for four matching numbers
the following procedure is used. Let X be the number of
tickets purchased in the game. A set of winning numbers
is chosen at random from among all sixtuples that contain
four of the six numbers on the simulation ticket. A bonus
number is also chosen. For the six winning numbers and
the bonus number chosen in the simulation, the maximum
entropy distribution P* is_used to compute the probabil-
ities ps, Ps, Ps» Ps+p, Ps that a randomly selected ticket
matches 3, 4, 5, 5, and the bonus, or six of the winning
numbers. These probabilities are different for each sim-
ulated set of winning numbers. It is assumed that X — 1
tickets are selected according to P* and the remaining
ticket is the simulation ticket. The number of winners of
the various prizes has the multinomial distribution with
probabilities ps, p4, ps, Ps+s. Psand 1 — ps — py — ps —
Ps+s — Pe This last probability is the probability of not
winning any prize. An observation is drawn from this mul-
tinomial distribution using a sequence of binomial random
variables. The number of tickets that match three of the
winning numbers has the binomial distribution with X —
1 trials and probability of success p,. Call this random
variable N,;. Conditioned on the value of N, the number
of tickets with four winning numbers is a binomial with X
— 1 — N; trials and probability p,/(1 — p;). This pro-
cedure is repeated to obtain the complete multinomial
observation. Poisson random variables generated using the
IMSL routine GGPON have been used to approximate
the binomial random variables. The prizes are then de-
termined according to the lotto rules. One hundred sets
of simulated winning numbers are used to find the mean
prize for four winning numbers and an estimate of the
standard error. The expected value of other prizes is de-
termined in the same manner.

The simulation has been repeated for several sixtuples
of interest. The results for the least popular, most popular,
and an “average” ticket are given in Table 1. The “av-
erage” ticket is a sixtuple that has approximately the same
probability of being selected under the uniform and the
maximum entropy distribution. Estimated standard errors
for the mean prize are given in parentheses. Prizes for
unpopular tickets are much larger than those for popular
tickets. The last number in each column represents the
expected return for a one dollar ticket. Standard errors
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for the estimated mean ticket return are approximately
1.5 cents. This standard error should be distinguished from
the standard deviation of the return on a single ticket,
which is quite large. X is taken to be 10 million tickets
per game (this is typical of the Canadian lottery). The
least popular ticket returns $.30 more than the “‘average”
ticket. Note that the return for the “average” ticket is less
than we might expect. We suspect that this is a result of
ignoring the jackpot minimum and the jackpot carryover.
The effect of ignoring these jackpot rules is eliminated by
considering X = 1 billion tickets. In that case the least
popular ticket returns $1.28 on average, the most popular
ticket returns $.25, and the ““average” ticket returns §.45.
This last figure matches the 45% return we expect, since
55% of ticket sales are not returned as prizes. A favorable

~ strategy has been determined for those readers who insist

on playing the lottery—choose an unpopular ticket and
convince a billion of your friends to enter the lottery.

The jackpot carryever can be analyzed using simulation
as above. The least popular ticket benefits from large
carryovers, since there are unlikely to be many winners
when the least popular ticket wins the jackpot. For the
least popular ticket and sales of 10 million per week a
carryover of about 5 million dollars leads to an expected
return of more than one dollar. This calculation ignores
the increase in the number of bettors when the jackpot
carryover is large. Taxes and deferred payments must also
be considered in determining the break-even point.

Of course the chance of winning any prize is less than
1 in 50. If only one ticket is purchased each week, then
many thousands of games are required for a player to have
a chance of ending up ahead. This is due to the fact that
the improved return is mainly a result of infrequent, ex-
tremely large prizes. An alternative is to have several play-
ers pool their money and bet on many unpopular com-
binations. The least popular 7,710 combinations pictured
in Figure 3 each have expected returns 40% higher than
the average ticket.

5. EVALUATING THE FIT OF THE MAXIMUM
ENTROPY DISTRIBUTION

The maximum entropy distribution is a first approxi-
mation to the distribution on lotto tickets; it is close to
the uniform distribution and matches the observed mar-
ginals. The theoretical justification of the maximum en-
tropy distribution assumes that the unconditional distri-
bution on tickets is the uniform distribution. There are
several reasons, however, to suspect that the unconditional
distribution may not be uniform. Most states make it pos-
sible for players to have a computer pick a random ticket
for them. Typically, less than half of the players use this
option. The rest are a conglomeration of players who tend
to choose birthdays, lucky numbers, and numbers with
convenient locations on the ticket. In addition, there are
countless over-the-counter devices sold to lottery players
as randomization devices that have buiit-in biases. Com-
mercially available dice in Massachusetts, which are sup-
posed to generate a random sixtuple, actually generate
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Table 1. Expected Prizes and Expected Returns for Sample Tickets Under the Maximum 1
Entropy Distribution 5
Number of Least popular Average Most popular P
winning nos. {20 30 39 40 41 48) (611152029 44) (379112527) i
3 10.0 {.0) 10.0 (.0) 10.0 (.0) SI
4 1513 (2.2) 72.4 (1.55) 33.0 (.76) a
5 6,305.0 (111) 2,047.7 (50) 597.4 (14.4)
5 + bonus 375,032.0 (18,073) 108,050.0 (6,113) 25,120.0 (787) fi
6 1,482,952.0 (28,626) 934,802.0 (34,381) 269,851.0 (16,541) =
Expected return 703 397 249 0
NOTE: Estimated standard errors are in parentheses. t
less than 3% of the possible combinations. In addition, parameters. In this case the probability of a ticket is ob- S
recall from Figure 2 that the marginals are not consistent tained by multiplying factors 1; corresponding to pairs of t
with the uniform distribution. For these reasons we expect numbers, i and j (i <j), on the ticket. This would allow ?
that the maximum entropy distribution will dramatically the introduction of correlation into players’ selections. :
underestimate the popularity of the most popular tickets. Note that although the formal assumption behind the max-
It is necessary to determine the consequences of the imum entropy distribution would still be suspect this in-
nonrandom ticket buyers before applying the simulation creased information would lead to a better fit.
results of the previous section. Table 2 indicates the num- Joe (1987) considered other models for estimating the
ber of sixtuples that were selected with particular fre- distribution on tickets. A class of minimally dependent
quencies in a sample of §,717,817 tickets from a recent distributions was suggested for games like lotto. This class
game in the California lottery (which has rules similar to  includes the maximum entropy distribution. Ziemba et al. P
those of the Canadian lotto game). Table 2 also contains  (1986) used regression to estimate directly the expected g
the expected number of tickets with particular frequencies return on a ticket instead of estimating the unknown dis-
under the maximum entropy distribution. The maximum tribution. They found that unpopular tickets may have u
entropy distribution from the Canadian game was used in  expected returns as high as $1.50, with no carryover. ,\]r |
Table 2, since the range of popular and unpopular numbers Another approach to estimating the distribution of tick-
is similar to those in California. As expected, maximum ets purchased by the public is to model the public’s be- F.
entropy underestimates the number of sixtuples selected havior. For example, suppose that a proportion P, of the f 5
more than twice. The maximum entropy distribution does ticket buyers chooses numbers at random and the re- ’
not do as poorly for unpopular tickets. In fact, the number mainder (the nonrandom ticket buyers) select tickets from
of sixtuples that were not selected is underestimated. This  a fraction, P,, of the nearly 14 million possibilities. Let
indicates that the maximum entropy distribution may be NR represent the subset of sixtuples considered by the
conservative in evaluating the benefits of selecting un- nonrandom ticket buyers. This would include popular a
popular tickets. numbers and common birthdays. Let &, be the number of 0
times the sixtuple ¢ is selected in a sample of N tickets. t |
6. ALTERNATIVE APPROACHES Under tFﬁs model the probabiiity‘ that N,' = k is computed é
by conditioning on whether the sixtuple is part of the non- :
The bottom line in examining the fit of the maximum random subset NR. Let A, represent the expected number t
entropy distribution is that a multinomial distribution on  of times a ticket is selected by the random ticket buyers, u
nearly 14 million cells is fit using 49 parameters. The most  and let 1, represent the expected number of times a ticket <.
logical way to improve the fit would be to gather more in the NR subset is selected by either random or nonran- ¢
data. If, for example, the pairwise marginals g, are avail- dom ticket buyers. Then, using the Poisson distribution 2
D

able (the proportion of tickets purchased that contain an
fand aj), then the arguments given earlier can be repeated
to find a maximum entropy. distribution with (%) = 1,176

Table 2. Number of Sixtuples Selected With Different Frequencies

Frequency Actual Maximum entropy
0 times 10,324,457 9,372,767
1. time 2,695,138 3,670,044
2 times 639,870 794,660
3 times \181,819 126,627
4 times - 65,537 16,668
5 times 29,251 1,926
10 times 2,677 0
20 times 371 0
>20 times 5,078 0

for N, leads to
Pr(N, = k) = Pr(t ¢ NR)Pr(N, = k|t ¢ NR)
| + Pr(t € NR)PK(N, = k |t € NR)

A A
= (1 — Pexp(—-4) E + Pyexp(— 4) 7’
where ‘
A1 = NP/13983816 .
and

_ NP1 N(l - Pl)
. 13983816 13983816 P,
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The maximum likelihood estimates for P; and P, are com-

-~ puted from the Southern California data using a method

described in Efron and Thisted (1976). The probabilities
Pr(N, = k) for k = 0, . . ., 20 are used as probabilities

- in a multinomial likelihood (conditioning on 20 or fewer
- selections). The observed Southern California frequencies

are used to determine the maximum likelihood estimates

: for Py, P,. In this case the estimates are P, = 711and B,

= .041 = (3N/(%). This simple model suggests that 71%
of the public chooses tickets at random and 29% chooses
tickets from a subset of 30 numbers.

The Efron and Thisted (1976) approach to modeling
Shakespeare’s word usage provides another model for
ticket frequencies. The number of occurrences of the ith
ticket is taken to be a Poisson random variable with mean
4. Each ticket is assumed to have its own mean rate of

. occurrence. A gamma distribution with shape parameter

a and scale parameter f is used as a prior distribution for
the A’s. The unknown parameters a, f§ are estimated using
the multinomial likelihood approach. The fit of the two
models described here is compared with the actual data
and the maximum entropy fit in Table 3. Other models
produced similar results.

The models described here fit the Southern California
data better than the maximum entropy distribution and
use only two parameters each. Unfortunately, they pro-
vide little help in identifying sixtuples that are unpopular.
They merely provide a model that is consistent with the
presence of popular and unpopular numbers. Other
sources of information are required to determine which
tickets are likely to be unpopular.

7. SUMMARY

The lottery numbers selected by players are not chosen
at random. The sizes of the prizes are larger for combi-
nations of numbers that are unpopular than for other com-
binations. A theorem shows that if the unconditional dis-
tribution of tickets selected is uniform, then the conditional
distribution given a set of marginal constraints tends to
the maximum entropy distribution. In this case simulations
indicate that choosing unpopular numbers improves the
expected return on a one dollar ticket by more than 50%
over a random selection. The unpopular numbers include
20, 30, 38, 39, 40, 41, 42, 46, 48, and 49. The most popular
numbers, which should be avoided, are 3, 7, 9, 11, 25, 27.
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Table 3. Number of Sixtuples Appearing k Times Under Each Model
fin thousands)

Frequency Actual  Maximum entropy P, P, Model Gamma
0 times 10,324 9,372 10,049 10,390
1 time 2,695 3,671 2,991 2,455
2 times 640 795 544 754
3 times 182 127 169 249
4 fimes 65 17 104 85
5 times 29 2 65 30
10 times 2.7 0 7 2
20 times 3 0 0 o

Most of the evidence seems to indicate that the assumption
behind the maximum entropy result is suspect. This intro-
duces doubts about the use of simulation results in de-
signing a lotto strategy. Other modeling approaches are

‘discussed. These alternatives do not provide as much de-

tailed information as the maximum entropy distribution
but seem to better capture the range of popular and un-
popular tickets. These approaches do not provide strategic
advice. In general, lottery purchases for profit are still not
recommended. By choosing unpopular numbers and wait-
ing for carryover jackpots, however, it is possible to turn
a lottery bet into an even or favorable bet.

[Received February 1987. Revised May 1989.]

REFERENCES

Chernoff, H. (1981), “An Analysis of the Massachusetts Numbers Game,”
Mathematical Intelligencer, 3, 166-172.

Csiszar, I. (1984), ““Sanov Property, Generalized I-Projection and a Con-
ditional Limit Theorem,” The Annals of Probability, 12, 768-793. )

Darroch, 1. N., and Ratcliff, D. (1972), “Generalized Iterative Scaling
for Log-Linear Models," The Annals of Mathematical Statistics, 43,
1470-1480.

Efron, B., and Thisted, R. (1976), ‘‘Estimating the Number of Unknown
Species: How Many Words Did Shakespeare Know?” Biometrika, 63,
435-447.

Joe, H. (1987), **An Ordering of Dependence for Distributions of k-
tuples, With Applications to Lotto Games,” Canadian Journal of Sta-
tistics, 15, 227-238.

Kagan, A. M., Linnik, Y. V., and Rao, C. R. (1973), Characterization
Problems in Mathematical Statistics, New York: John Wiley.

Kullback, S. (1959), Information Theory and Statistics, New York: John
Wiley.

Van Campenhout, J. M., and Cover, T. M. (1981), “Maximum Entropy
and Conditional Probability,” IEEE Transactions on Information The-
ory, 27, 483-489,

Ziemba, W. T., Brumelle, 8. L., Gautier, A., and Schwartz, S. L. (1986),
Dr. Z's 6/49 Lotto Guidebook, Vancouver: Dr. Z Investments.




