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of any word in any code e,,,, or else s’ is not a head of any 
word in any code e,.,. Therefore, by induction, the theo- 
rem is true for all o0 and all odd n,. 

Q.E.D. 
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ate equivalence class, and there are no other classes. Sup- 
pose, now, the theorem is true for all (odd) n < N. Let w 
be any word in any nondegenerate equivalence class of 
words of length N constructed from an alphabet of q 
letters. Construct a pattern p which generates some cyclic 
permutation of w. Now, p = plpz . . . pi for some odd i 
in the range 1 5 i I N/3, and p clearly satisfies conditions 
1 (a) and 1 (b) of Definition 2. Divide w into the i sections 
generated by the i components of p, and calculate the 
numerical values vi (j = 1, . . . , i). Since w belongs to a 
nondegenerate class, v = vlvD . . . vi belongs to a non- 
degenerate class of words of length i < N. For some p, the 
code (!?,,,i contains a cyclic permutation of v, by the induc- 
tive hypothesis. Therefore, some cyclic permutation of w 
is included in the code (%,,N. Therefore, by induction on n, 
the theorem is true for all u and all odd n. 

Q.E.D. 

Corollary: The codes e,,, are comma-free for all c and 
all odd n. 

IV. MAXIMALITY 

In this section, it will be shown that the codes e,., of 
Definition 2 are maximal (in number of words), and that 
the conjecture of Golomb, Gordon, and Welch in [I] is true. 

Let G, be the cyclic group of transformations on the 
words generated by 01, where 

WlWZ . . . w, a wzws * . . W,Wl 

Thus, G, is the group of transformations which rotate the 
word. We say that two words w1 and wz are equivalent if, 
and only if, there exists a transformation in G, which maps 
w1 into wa. An equivalence class can contain at most n 
members. If a class contains exactly n (distinct) words, 
then the class will be called nondegenerate; otherwise it 
it will be called degenerate. A comma-free code can never 
contain a word from a degenerate equivalence class, nor 
more than one word from any nondegenerate equivalence 
class. A sufficient condition for maximality of a code e,.,, 
then, is that it contain some word from every nonde- 
generate equivalence class. If this can be shown for all 
codes e,,, of Definition 2, then the conjecture of Golomb, 
et al., is true, for f(a, n) is the number of nondegenerate 
equivalence classes, as shown in [l]. 

Theorem 2 

For any c and any odd n, the code e,,, contains some 
word from every nondegenerate equivalence class. 

Proof: If n = 1, the theorem is true; for, each letter of 
the alphabet (0, 1, . . . , u - 1 ] constitutes a nondegener- 

Corollary: The codes c,,, are maximal (in number of 
words) for all g and all odd n, and contain f(u, n) words, 
proving the conjecture of Golomb, Gordon, and Welch. 

ACKNOWLEDGMENT 

The author wishes to thank Dr. Shimon Even for his 
helpful criticism of the manuscript. 

REFERENCES 
[I] Golomb, S. W., B. Gordon, and L. R. Welch, Comma-free codes, 

can. J. Math., vol. 10, 1958, pp 202-209. 
[2] Eastman, W. L., and S. Even, On synchronizable and PSK- 

synchronizable block codes, IEEE Trans. on Information Theory, 
vol IT-IO, Ott 1964, pp 351-356. 

[3] Golomb, S. W., L. R. Welch, and M. Delbriick, Construction 
and properties of comma-free codes, Biol. Me&L Dan. Vid. Selsk., 
~0123, 1958, pp 3-34. 

[4] Golomb, S. W:, Efficient coding for the desoxyribonucleic chan- 
nel, Mathematzcal Problem in the Biological Sciences, Am. Math. 
Sot., Providence, Rhode Island, 1962, pp 87-100. 

[5] Jiggs, B. H., Recent, results in comma-free codes, Can. J. Math., 
vol 15, 1963, pp 178-187. 

[S] Eastman, W. L., Defining patterns for comma-free codes for 
small prime word lengths, Sperry Rand Research Center Re- 
search Memo. 64-4, Apr 1964. 

The Convolution Inequality for Entropy Powers 
NELSON h/I. BLACHMAN, SEXIOR MEMBER, IEEE 

Absfracf-The entropy power of a band-limited random process INTRODUCTION 
is the power of white Gaussian noise having the same entropy rate. 
Shannon’s convolution inequality for entropy power states that the LTHOUGH it is generally difficult to determine 
entropy power of the sum of two independent random processes is 
at-least the sum of their entropy powers. This paper presents an 

the capacity C of a channel of bandwidth W 

improved version of Stam’s proof of this inequality, which is ob- 
which accepts signals of power S and adds to them 

tained by mathematical induction from the one-dimensional case. statistically independent noise of power N, Shannon’ has 
shown that 
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w log s + N+ X4-N -----<C<<log--- 
Nt N’ ’ 
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where 

p(x) exp -(‘I 21 x)2 dx (2) 
where N+ is the entropy power of the noise, i.e., the power 
of white Gaussian noise having the same entropy rate. 
If this rate is E?, then N+ = (exp &/W)/(27re). If H is the 
entropy of a portion of duration T which is described by 
n = 2WT values (or the n-dimensional vector which they 
comprise), fi = H/T, and the entropy power is 

N+ = ew 2Hln 
27re 

We shall use only natural logarithms and exponentials. 
The foregoing bounds on C are based on the convolution 

inequality for entropy powers’, which asserts that the 
entropy power of the sum of two statistically independent 
band-limited random processes is not more than the sum 
of the powers of the processes nor less than the sum of 
their entropy powers. It attains the upper bound only 
when all are white Gaussian processes, and it attains the 
lower bound only when they are Gaussian processes with 
proportional covariance matrices or, equivalently, pro- 
portional power spectral densities. 

The upper bound follows from the entropy-maximizing 
property of white Gaussian statistics for a given mean- 
squared value. In deriving the lower bound, Shannon3 
showed that the entropy power of the sum of two inde- 
pendent random processes of given entropy powers has a 
stationary point where the two processes are Gaussian 
with proportional covariance matrices, but his variational 
approach was not able to exclude the possibility that 
other statistics might yield an equal or lower entropy 
power for the sum. 

More recently, Stam [2] put this theorem4 on a rigorous 
footing through a somewhat involved chain of inequalities? 
The purpose of this note is to present his proof as simply 
and clearly as possible, eliminating the use of measure 
theory (which Stan1 [3] likewise eliminated in an outline 
of his proof), avoiding any reference to theorems concern- 
ing Fisher’s quantity of information (which are likely to be 
unfamiliar to readers of this journal), and supplying some 
details omitted from Stam’s argument as well as removing 
some unaecessary restrictions. For completeness, some 
parts of Stain’s proof are reproduced here without any 
change. 

This proof may be divided broadly into five parts. 
1) We first define x, to be the sum of a random variable 

5 with probability density p(x) plus an independent zero- 
mean normal random variable with variance f, and we 
show that the derivative of its entropy H(X,) with respect 
to f is 

2 Ibid., Theorem 15, 636. p 
3 Ibid., Appendix 6, 653. p 
4 See Stam [2], 4.4, Theorem 4, 108. sec. p 
6 Ibid., 4.1, Theorem 1, 91; 4.3, sec. p sec. Theorem 1, p 98; 

sec. 4.4, Theorems 1 and 3, p 102 ff; sec. 111.1, Theorem 5, p 147. 

is the probability density of x~. 
2) We establish that, if x: and y are statistically inde- 

pendent random variables with sum z = x + y, then 

1 
__ ‘+-& J(Z) 2 J(X) 

with equality only when x and y are normally distributed. 
3) We make use of (3) to show that 

e2H(Z) 2 ezH(x) + ezw), (4) 

with equality only under the same condition. If both sides 
of (4) are divided by 2ae, it becomes the convolution in- 
equality for entropy power in one dimension. 

4) Before proceeding to generalize (4) to the vector 
case, we prove an inequality based on the convexity of 
the function log cash u. 

5) Finally we use mathematical induction to show that, 
for statistically independent n-dimensional vectors x = 
(Xl, . . . , 4 and Y = (yl, . . . , YJ, 

e 211(Z)/Tz > ezH(x)/n + e2”‘Y’/“, (3 

with equality if, and only if, x, y, and z = x + y are 
normally distributed with proportional covariance matri- 
ces. Dividing both sides of (5) by 2ae, we see that the 
entropy power of z is at least the sum of the entropy 
powers of x and y. 

THE DERIVATIVE OF H(X,) 

Differentiating (2) inside the integral, we get the diffu- 
sion equation 

dPf(Xf) ___ zz 1 a2Pf(xf) 
df Sax:’ 

From (2) we see that p, 5 l/d2af; hence, 

H(X,) = - Irn P,(x,) log P,(x,> dx, -m (‘7) 

either converges absolutely or is + ~0. Because the mutual 
information of x and xf cannot increase with increasing 1 
and because the mutual information of x,. - x~, and x,,. 
with fz > fl cannot be negative, we have H(X,,) 5 
H(Xf,) I H(X,,) + 4 log (f2/fl). Hence, H(X,) < 00 fol, 
all f > 0 or H(X,) = + 03 for all f > 0. Supposing it to bc 
finite and differentiating inside the integral, we get dH(X,) s -apfdX _ 

df = - _m af f 

= &7(X,). (8 1 



Stam credits N. G. de Bruijn with the discovery of this 
relationship and its relevance to the convolution inequality 
for entropy power. 
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Hence, 

(a + b)‘[~]’ = [A’{a’s + b !$f$ 1 ,z}]’ 
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The term - $(@,/dx,) log p, I?‘, can be shown to vanish 
for f > 0 by applying Schwarz’s inequality to 

<E 
dPf --)==Q /-@ p(x)(xf - x) exp -(xf if IL.)’ dz. 

a’$+ b# Iz}, (11) 
-= 
ax, since the second moment of any random variable is never 

less than the square of its mean, with equality only if Thus, 

qiq 
dx 

5 -‘k 
s 

m 
1/2af5 -m 

p(x)(x, - 2)’ exp - (” - ‘I2 ,& 
2f 

since (z, - 2)’ exp -(x, - x)‘/2f 5 2f/e. From (9) we 
see that dp,/dx, is, at most, of the order of fi as p, + 0, 
and so (dp,/dxf) log p, 3 0 as xf ---f rt a. 

Since the integrand of (1) is never negative, J(X,) 
either converges or is + 0~. Dividing the second line of 
(9) by p, and integrating over all x1, we see that J(X,) < 
l/f. Hence, J(X,) is finite for all f > 0, converging uni- 
formly for 0 < e _< f and thus justifying (8). 

THE CONVOLUTION INEQUALITY FOR J 

If the probability densities of x, y, and x = x + y are 
P(X), do>, and 

.I‘ 

m 
r(x) = P(SM - x) dx, (10) -m 

respectively, and these density functions are differentiable, 
then dr/dx is 

m 
r’(z) = s p’(z)q(x - x) dx. 

-cc 

Thus, if p, q, and T never vanish, 

m> -= 
s 

m P(XM - x> P'(X) dx 
r(z) -m 44 P(X) 

= Em z 
{ II P(X) ’ 

the conditional expectation of p’(x)/p(x) for a given value 
of x. Likewise, 

s.t) = ew 2H(Xf) + exp 2HW,) 
exp 2fWJ G4 

-= 

44 

&L!iYl x .  

1 I I  4(Y) 
with respect to t with the help of (8), we have 

Therefore, for any constants a and 6, 

= (a+ b)‘$ 

with probability one whenever x = x + y. 
Averaging both sides of (11) over the distribution of x 

gives us 

(a + b)‘l:i&$]‘} _< B{[a$$ + b$J} 

= dE{[“a1511?) + b’E{[$$l’) 

or 

(a + b)‘J(Z) < a’J(X) + b’J(Y). 

Setting a = l/J(X) and b = l/J(Y), we obtain (3), with 
equality only when (12) holds. Substituting x = x - y 
into (12) and integrating with respect to y, we get 

Setting y = 0 shows that the “constant” of integration 
c(z) is differentiable, and it follows that r’(x)/r(z), too, is 
differentiable. Thus, differentiating with respect to z and 
setting x = 0, we have 

P'(-Y) 
-"p(-y> 

= (a + b) r(o)""(o) - "'('> 
l""(0) Y + c(O), 

from which we see that p(x) must be a normal density 
function. Similarly, the condition (12) for equality in (3) 
implies that q(y) is normal. 

THE OXE-DIMEKSIONAL %TROPY-POWER INEQUIZLITY 

We now define xf, x,, and z,, to be x, y, and x plus inde- 
pendent zero-mean normal random variables with variance 
f(t), g(t), and h(t) = f(t) + g(t), respectively. We suppose 
that f(0) = g(0) = h(0) = 0, and we restrict t to non- 
negative values. When f and g are positive, the probability 
density functions of xI, yP, and zh are everywhere diff- 
erentiable and positive. Thus, differentiating 

(13) 

e 21’(Zh)s’(f) = e2H(X’)f’(t)J(X,) + ezrr(yO)g’(t)J(Y,) 

- [ezHcx’) + e”“““‘][f’(t) - g’(t)]J(Z,). 
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Substituting the upper bound on J(Z,) given by (3), we 
find that 

April 

In effect, the second channel has a sequence of inde- 
pendent inputs with the probability density function 
PL(z) = aLp(x) for 1x1 <_ L 2 p(s) and pL(x) = 0 other- 
wise, to which it adds statistically independent distur- 
bances having the probability density function qL(y) = 
bdy) for IYI 5 L 2 q(y) and qL(y) = 0 otherwise, a, 
and bL being normalizing constants lying between 1 and 
l/P(L). If we call the input, disturbance, and output of 
this channel xL, yL, and xL, respectively, its mutual infor- 
mation rate is 1(X,; 2,) = H(Z,) - H(Y,). Hence, 

e 2H(Zhw) 

> [f’(t)J(X,) - g’(t)J( Yg)][ezHcX’) J(X,) - e21f(y0) J( Yg)]. 
- JW,) + J(Y,) 
Hence, by putting 

f’(t) = exp 2H(X,) and g’(t) = exp 2H(Y,), (14) 

we ensure that s’(t) 2 0, with equality only when equality 
holds in (3), i.e., when zI and yg are normal. Thus, s(t) 
is a constant if x and y are normally distributed; otherwise 
S(f CD) > s(0). 

If the entropy integrals H(X,), H(Y,), and H(Z,) 
converge uniformly near t = 0, then s(t) is continuous at 
that point and 

s(o) = exp 2&Q + exp 2H(Y) 
* exp 2H(Z) 

To evaluate s(+ m) we note that (14) implies f(+ a) = 
g(+“) = MS-m) = +m, and we define xF to be xf/ G. 
Then (2) gives us for its probability density 

Its entropy is H(X,) = H(X,) - + log f. As f grows infi- 
nite, -\/f p( t j u) becomes a delta function, and pF(xF) 
approaches (exp -3x:)/ 6. Thus, if H (X,) converges 
uniformly as f grows infinite, it becomes $ log 2rre in the 
limit, and H(X,) - $ log 2Pef -+ 0 as t + + ~0. Similarly, 
H(Y,) -+log2aeg+OandH(Z,) -~log2ae(f+g)--+O. 
From (12), then, we have s(+ a) = 1, and (4) is proved. 

This entropy-power inequality is automatically satisfied 
if any of the entropies H(X), H(Y), H(Z) are rt a, for 
1(X; 2) = H(Z) - H(Y) and I(Y; 2) = H(Z) - H(X) 
cannot be negative. If any of the other entropies are in- 
finite or do not converge uniformly or if p(x) and q(y) are 
not always finite, we can establish (4) in the following 
manner provided only that the integrals H(X) and H(Y) 
converge absolutely. We begin with a sequence of inde- 
pendent random channel inputs {x,}, all having proba- 
bility density function p(x), and a sequence of indepen- 
dent additive random disturbances ( yi } , all having proba- 
bility density function q(y). If zi = xi + yi is the channel 
output at time i, the mutual information rate for this 
channel is 1(X; 2) = H(Z) - H(Y). 

Next, we consider a channel with the same input and 
disturbance sequences which, however, skips over xi 
and y; without delay and goes on to xi+1 and yi+, whenever 
1~~1, 1~~1, p(xi), or a(yi) exceeds some large value L. If 
1 - P(L) is the probability that any xi and yi are skipped, 
the mutual information rate of the second channel cannot 
exceed I(X; 2)/P(L), for it conveys no more information 
than the first channel, and it takes P(L) times as long 
to do so. 

H(Z ) L _< H(Z) - H(Y) + H(Y ) 
P(L) 

L . 

The foregoing proof of (4) is applicable without dif- 
ficulty to the truncated distributions pL(zL), qL(yL), and 
their convolution rL(xL), and we have 

exp [2H(XL)1 + exp PH(YJl 

5 exp 2H(z)p;L;H(y) + 2H(Y,) . 1 
As L + 00, P(L) -+ 1 and, if H(X) and H(Y) converge 
absolutely, H(X,) -+ H(X) and H(Y,) + H(Y). This 
thus becomes (4) in the limit, completing the proof of the 
one-dimensional entropy-power inequality. 

THE LOG COSH INEQUALITY 

Before extending this result to the case of n-dimensional 
vectors, we must obtain an inequality that we shall use 
twice in deriving that generalization. Since (d”/du2) log 
(2 cash u) = sech’ u > 0, the function log (2 cash u) is 
strictly convex and thus lies entirely above any tangent 
except at the point of tangency u,,: 

log (2 cash u) >_ log (2 cash u,) + (u - u,) tanh uO. 

Hence, if E is an expectation operator and we take u,, = Eu, 
we have 

E { log (2 cash u) ) 

with equality only when u 
takes the same value. Since 

El log (ew v> I 

we have, on adding, 

E(log (2 coshu expv)} > 

or 

> log (2 cash Eu), 

always (with probability 1) 

= log (exp Ev), 

log (2 cash E(u) exp E{v)) 

E(log (e”U + eaeU)} 2 log (eE’“+u’ + eE’D-U’). 

Putting v = H, + H, and u = H, - H,, we finally get 

E { log (e’,’ + ezffn)) > log (ezEH’ + eZER’), (15-k 

with equality if, and only if, H, - H, always takes the 
same value. 
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THE ENTROPY-POWER INEQUALITY FOR VECTORS 
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we have, from (17), (18), and the inductive hypothesis (5), 

To establish (5) now, we use mathematical induction. 
We have already proved it for n = 1. We suppose it 
proved, along with the condition for equality, for n = m, 
and we thence show it to hold for n = m + 1. Letting 

u = (x1, ..* , XJ, x = Gl+1, 

v = (y1, ... > Ym>, Y = Ym+1, 

w = (21, . * * , ZJ, x = Gn+1, 

we have, from (4), for any given u and v, 

e SH(Zlu .v) 2 e2H(Xlu) + ePH(YI~), (16) 

with equality only when the probability densities p(x j u) 
and q(y 1 v) are normal. The conditional entropies in (16) 
are for fixed u and v and are not averaged over u and v; 
the random variables over which averages have been 
taken are indicated by capital letters. 

Taking logarithms now and averaging over u and v by 
means of the operator E, we find 

2H(Z 1 U, V) > E ( log [ezHCX’“) + ezHC ““)I 1 
2 log [eZH(XI’J) + eZH(YIV)] (17) 

by (15), with equality only if H(X 1 u) - H(Y 1 v) has the 
same value for all u and v (with probability I), i.e., if 
H (X 1 u) is independent of u and H (Y / v) is independent 
of v. Since the first inequality in (17) becomes an equality 
only when p(x j u) and q(y j v) are normal, equality holds 
throughout (17) only if, in addition, the variance of x 
for a given u does not depend on u and the variance of y 
for a given v does not depend on v. 

Because the mutual information of u and x for a given 
value of w is not negative, H(Z 1 W) - H(Z 1 U, W) 2 0 
or, since u and v together determine w = u + v, 

H(Z I W 2 fW I U, VI. (18) 

with equality only when the distribution of z for any given 
u and v depends only upon u + v. Since this is a normal 
distribution with fixed variance for equality in (17), we 
have equality in both (17) and (18) only when the condi- 
tional mean 

E1.z I u, VI = E{x + Y I u, VI = -@ix I ul + EIy 1 VI 

is a function of u + v alone. It follows directly that this 
function must be linear. Hence, E { J: I u 1 is a linear func- 
tion of u, and E ( y 1 V) is the same linear function of v to 
within an additive constant. From this, from the constancy 
of the conditional variances, and from the inductive 
hypothesis that u and v must be normally distributed for 
equality, it follows that (u, x) = (x1, . . . , xn+,) and 
(v, Y) = (Yl, * .. , Ym+d are multivariate-normal when 
equality obtains in (17) and (18) and in (5) for n = m. 

Since the entropy of (w, z) = (x1, . . . , x,+~) is 

HW, 2) = H(W) + H(Z I W), 

& H(W, 2) 

2 
m 7 1 log (e2HOJ)/~ + eW’)/m) 

+ 
m : 1 log (e2H(XIU) + emYIv)), 

with equality only if, in addition to the foregoing condi- 
tions, u and v are normally distributed with proportional 
covariance matrices. 

The right-hand side here is of the form of the left-hand 
side of (15) if, with probability m/(m + l), H, = H(U)/m 
and H, = H(V)/m and, with probability l/(m + l), 
H, = H(X / U) and H, = H(Y ) V). Hence, 

2 H(W z) 2 log (e12/(m+l)lH(U)+[2/(m+l)lH(XIU) 

m+l ’ 

+ e12/(n+l)lH(V)+[2/(m+l)l~r(rlv) 
> 

= lo 
g 

(e12/(m+l)lH(U,X) + e12/(m+l)lHw,Y) 
> 

which establishes (5) for n = m + 1. We have equality in 
(15) in this instance only if 

HOT) - WV) 
m = H(X I U) - H(Y I V). 

This condition is fulfilled along with the conditions for 
equality in (17), (18), and (19) only if the variances of x 
and y for fixed u and v are in the same ratio as the mth 
roots of the determinants of the covariance matrices of u 
and v. From the fact that equality requires u and v to 
have proportional covariance matrices and the fact that 
Eix I ul andEIy I I v are, to within an additive constant, 
both the same linear function it follows that the covariance 
matrices of (xl, * * * , x,+~) and (yl, . . . , y,,,) must be 
proportional. 

Thus, provided the integrals for the conditional en- 
tropies H(X 1 u) and H(Y I v) converge absolutely, we 
conclude that the entropy power of the sum of two inde- 
pendent band-limited random processes is no less than the 
sum of the entropy powers of the two processes, with 
equality if, and only if, they are Gaussian and have pro- 
portional spectral densities. 
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