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SUMMARY

Let P, and P, be two probability measures on the same space and let ¢ be
the generalized Radon—-Nikodym derivative of P, with respect to P;. If Cis
a continuous convex function of a real variable such that the P;-expectation
(generalized as in Section 3) of C(¢) provides a reasonable coefficient of the
P,-dispersion of ¢, then this expectation has basic properties which it is
natural to demand of a coefficient of divergence of P, from P;. A general
class of coefficients of divergence is generated in this way and it is shown
that various available measures of divergence, distance, discriminatory
information, etc., are members of this class.

1. INTRODUCTION

SEVERAL coefficients have been suggested in statistical literature to reflect the fact that
some probability distributions are “closer together” than others and consequently
that it may be “easier to distinguish” between the distributions of one pair than
between those of another. Such coefficients have been variously called measures of
distance between two distributions (see Adhikari and Joshi, 1956, for references),
measures of separation (Rao, 1952), measures of discriminatory information (Chernoff,
1952; Kullback, 1959) and measures of variation-distance (Kolmogorov, 1963).
While these coefficients have not all been introduced for exactly the same purpose,
as the names given them imply, they have the common property of increasing as the
two distributions involved “move apart”. Following Kullback (1959), we shall call
a coefficient with this property a coefficient of divergence of one distribution from
another. Itisthe object of the present paper to discuss a general method of generating
coefficients of divergence and to show that various available coefficients of divergence
belong to a general class defined by this method.

The idea underlying the method can be illustrated by considering two probability
distributions P, and P, on the real line, absolutely continuous with respect to Lebesgue
measure and with respect to each other, and by visualizing what happens to the
ratio ¢(x) = py(x)/py(x) of their densities as P, and P, “move apart”. If P, and P,
are the same then ¢(x) = 1. As P; and P, move apart ¢ takes larger values on a set
of decreasing P,-probability (incidentally of increasing P,-probability) and smaller
values on a set of increasing P;-probability (and decreasing P,-probability). Bearing
in mind that E;(¢) = 1 for all such P, and P,, where E, denotes expectation relative
to P,, this picture suggests that the P,-dispersion of ¢ increases as P; and P, move
apart. Hence we might anticipate that a coefficient of the P-dispersion of ¢
will have the basic properties required of a coefficient of divergence of P, from P,.
Now the expectation of a convex function of a real random variable measures its
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dispersion to a greater or lesser extent depending on the nature of this function and
so we are led to consider the P;-expectations of convex functions of ¢ as possible
coefficients of divergence.

We need not limit ourselves to distributions on the real line. From now on,
P, and P, will denote probability measures on the same sample space (%, F); ¢ will
be the generalized Radon-Nikodym derivative of P, with respect to P,, generalized
in the sense that it is allowed to take the value +oo on a Pj-null set if P, has a
component singular with respect to P;; and we shall consider as potential coefficients
of divergence, functionals which can be expressed in the form E*{C(¢$)} where C is
a real continuous convex function on the non-negative real numbers, and E* is a
generalized expectation to be defined subsequently.

2. Basic PROPERTIES OF A COEFFICIENT OF DIVERGENCE

In this Section we shall list four properties that it seems reasonable to demand
of a real coefficient d(P,, P,) if this coefficient is to reflect the facts that some
distributions may be closer together than others and that it may be more difficult to
distinguish between the distributions of one pair than between those of another.

First property. The coefficient d(P,, P,) should be defined for all pairs of measures
P, and P, on the same sample space.

Second property. Suppose that y = #(x) is a measurable transformation from
(Z, %) onto a measure space (#,¥%). Then we should have

d(Py, Py) = d(P t71, Pyt ).

Here P;t~! denotes the induced measure on % corresponding to P;.

This property, which has already been laid down by various authors, for example
Adhikari and Joshi (1956) and Kullback (1959), is possibly not self-evident in terms
of the formal statement given. It is best thought of in terms of distinguishability
of one distribution from another. We should not be able to increase our ability to
distinguish between two different distributions by “grouping observations together”
—mathematically by limiting consideration to a coarser o-field than that on which
the two distributions are defined. To take an extreme case, suppose that X; and X,
are disjoint measurable sets of & such that P,(X;)>0 and P,(X;)= 0 whereas
P(X,) = 0 and P,(X,;)>0. Given that a sample point is in (X; U X,), the additional
information about which of the sets X; and X, it belongs to is of great help in enabling
us to distinguish between P, and P,. We cannot suppress the latter information
without making it more difficult to distinguish P, from P,. The second property
above states this idea in a more general way.

Another particular case may be of value in the justification of this second demand.
Suppose that {x,,;n = 1,2, ...} is a stochastic process and that P, and P, are two possible
distributions for this process. It is plausible that the more observations made on
the process, the greater is our ability to distinguish the true distribution. In other
words, if P{™ denotes the marginal distribution of x,, x,, ..., x,, corresponding to
P; (i=1,2), then we ought to have

d(P{m, P{m) <d(P{™,P{) for m<n.

While some writers, for example Adhikari and Joshi (1956), have singled this out as
a separate demand it is really a particular case of the second property with ¢ defined by

1(X, Xgs oevs Xg) = (X1, Xgy « v 05 Xp)-
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Third property. d(P,, P;) should take its minimum value when P, = P, and its
maximum value when P, 1 P,.

This requires no explanation. It is an immediate consequence of the notion that
d(P,, P,) should increase as P, and P, move apart. The next requirement also springs
directly from this notion. While it is, in a sense, a very particular property, it is the
one which tells us most directly that the coefficient d(P,, P,) is measuring what we
want to measure.

Fourth property. Let 0 be a real parameter and let {Py; 0€(a,b)} be a family
of equivalent (mutually absolutely continuous) distributions on the real line such
that the family of densities p,y(x) with respect to a fixed measure p has monotone
likelihood ratio in x (see Lehmann, 1959, p. 68). Then if a<6,<0,<0;<b, we
should have

d(Py,, Py) < d(Py,, Pp).

This is a situation where, by any reasonable standard, P, is “further away”
from P, than is P,. So the demand we have made is very natural.

These four properties which we have stated are not intended to comprise an
exhaustive list. There may well be other properties that would be required of a coeffi-
cient of divergence designed for some specific purpose. However, they do provide a
framework in which we can study the class of coefficients which we shall now consider.

3. THE RELEVANCE OF EXPECTATIONS OF CONVEX FUNCTIONS OF ¢

It is well known that ¢ is sufficient for (P, Py). Therefore it is reasonable to restrict
attention to functions of ¢ when we are considering the divergence of P, from P,
at least if we are thinking of divergence in terms of our ability to distinguish P, from
P, as a result of an “observation”. If we wish to consider numerical coefficients of
divergence then the natural place to look is among the expectations of functions of ¢.
However, we first have to decide on the distribution relative to which those
expectations should be taken. A fairly general choice for this distribution is a mixture
Q= AP,+(1—2X) P, of P, and P, with 0<A<]1.

Now there is no real loss of generality in restricting attention to expectations
relative to P, since

Eo{h($)} = AE{h($)}+ (1 - ) Exh($)}
= E{A($)+(1— ) h($)}-

Given that, for these or some other reasons, we are going to consider only coefficients
which can be expressed in the form E;{g(¢)} we shall show in Theorem 1 that g must
be convex if the corresponding coefficient is to have the second property above.
Before doing so, however, we shall deal with one difficulty which we have ignored
up to this point. If we allow ¢ to take the value oo on a Pj-null set, how are we
going to interpret E;{g($)}?

In general, by the Lebesgue decomposition theorem, P, can be expressed as a sum
0+ S of two measures with Q absolutely continuous with respect to P, and S singular
with respect to P,. The Radon-Nikodym derivative ¢ = dQ/dP, is defined a.e. P,.
Moreover, there exists a P;-null set N such that, for every measurable set X,

S(X) = S(XnN).
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We shall define ¢ to be +oc0 on N and define a “generalized expectation” E* for
functions g(¢) by

) dP+ V) lim §@) @.1)

E*(s) = |
¢ ¢
provided that the right-hand side is meaningful, i.e. that lim, . {g($)/¢4} exists and
that the stated expression does not take the indeterminate form co—co.
(The motivation behind this somewhat peculiar-looking definition is as follows,
this having to be read in inverted commas.

<oo

E{g(@)= fN ¢($) dP+ ng(qS) P,

and

ng(¢) dPl: J‘Ng%ﬁ) sz.

Since ¢ = oo on N, if we interpret g(#)/$ on N as limy_,, g(¢)/¢, we are led to the
stated definition of E*.)

We shall adopt the convention that if P, is absolutely continuous with respect to
Py, then whatever limy ., g(¢)/¢ may be, Py(N)lim{g(#)/$}=0. With this con-
vention, E* becomes the ordinary expectation operator E; when P,< P,. Furthermore,
as a first indication that this definition of E* does not lead to inconsistency, we note
that E*(¢) = 1 always. Subsequent results will confirm this consistency.

We turn now to a result which confirms the relevance, to the problem in hand,
of the generalized expectations of convex functions of ¢, a relevance anticipated to
a certain extent by the heuristic argument in Section 1.

Theorem 1. In order that a coefficient of the form E*{g(¢)} should possess the
second property for all P, and P, on the same sample space, it is necessary that g be
a convex function. -

Proof. Consider the sample space Z consisting of three elements x,, x, and x3,
the distribution P, which assigns probabilities 1 —2p, p and p to these points respec-
tively and the distribution P, which assigns probabilities g, g5 and g5 to them. Let &
have two elements y; and y, and let ¢ be the transformation

tx) = y1,  1(xp) = 1(Xg) = Yy
If 0< p <} then we are in the absolutely continuous case and the second property

implies
_ Ui 92 B (1— 4 92143
5 2p)g(1—2p)+pg(p)+pg(p)/(1 Zp)g(1—2p)+2pg( 2p )

that is,
92 qa) {l(qz qa):
2) 4o 2) = 24122 + B),
g(p) g(p g2p p

this being true for all p, ¢, and g5 which satisfy 0<p<4%, 0<g,,93,95+gs< 1.
Now given any two non-negative numbers v; and v,, it is clear that these can always
be expressed in the form v, = qy/p, v, = qs/p, With p, g, and g, satisfying the above
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conditions. Hence the second property implies that, for any non-negative numbers
v, and v,, we have

g(v) +2(vy) >28{3(v1+ vy},

that is, that g is convex on [0, c0).

We are thus led to consider, as potential coefficients of divergence, functionals of
pairs of measures on the same sample space which can be expressed in the form
E*C(¢)}, where C is a real continuous convex function on (0,00). More generally,
if fis a non-decreasing function on (— o0, ©0) we might consider functionals of the form
SIE*{C(¢$)}] since if E*{C(¢)} has the basic property of increasing as P, and P, move
apart, so also has f[E*{C(¢)}]. We shall now show that coefficients of this form have
the properties demanded in Section 2.

4. PROPERTIES OF COEFFICIENTS OF THE FORM E*C(¢)
4.1. First Property

The first property that we demanded of a coefficient of divergence was that it
should be defined for all pairs of measures on the same sample space, and we now
prove that this is so for any coefficient of the form E*{C(¢)}, where C is a continuous
convex function on (0,0). If limy_,,, C(¢) = +oo (this limit is either finite or +c0),
we define C(0) to be 400 and allow the value of +oco for E*{C(¢)}. Then we have to
show, according to (3.1), that limy ., {C(¢)/¢} exists and that the right-hand side
of (3.1) cannot in this case take an indeterminate value. Now since {C(¢) — C(a)}/(¢ —a)
is a non-decreasing function of ¢ for ¢ > a, a being a fixed positive number, it follows
that limy ., {C(¢)/¢} exists either as a finite number or as +co.

Moreover, since C(0)> —oo and since

ch> E=2ict)-c@r+c@ for $>b>a,

and édP, >0, then f C(¢)dP, is either finite or +o0o, and it follows that
¢p<oo

<o

E*{C(¢)} is defined either as a finite number or +co, whatever P, and P, may be.

4.2, Second Property

The second property (Section 2) is easily established for coefficients of the form
E*{C(¢)} in the case where P, is absolutely continuous with respect to P,. For in
this case, as we have mentioned above, the generalized expectation E* reduces to
the ordinary expectation E;. Furthermore, P,z! is absolutely continuous with
respect to P, ¢~ and it is easily verified that if ¢(x) = dP,(x)/dP,(x) and

_drt™(y)
40 = R0

()} = $() = Ef{$(x)|1).

E [C{¢(x)}] = E(E,[C{$(x)}|])
> Ey[C{E((x)| )}]

= E[C{¢(}],

then

Also

by Jensen’s inequality,
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giving the required inequality. Note that there is equality here, for all C, if and only
if ¢ is sufficient for (P, P,).

In the general case where P, may not be absolutely continuous with respct to
P,, we cannot appeal to conditional generalized expectations which have not been
defined. However, the result does extend in the following way.

As before, P, decomposes into Q.+ S, with Q, absolutely continuous, and S,
singular, with respect to P,. Let N, be a P;-null set such that

Sa;(X) = Sx(Xn Na:)

for every measurable set X, so that ¢(x) = +0 on N, and

meqb(x) dPy(x) = 1= S,(N,) = 1= P(N,).

Now let ¢ be a measurable transformation from £ onto a measurable space %,
and denote, as usual, induced measures on % by P, ¢, etc.

Since Q, <Py, Q 7' < Pt7. Let ¢y(y) = d(Q,t71)/d(P t™).

However, S, ¢! is not necessarily singular with respect to P, ¢~ and in general
St decomposes into

Syt1=0,+S,,

where 0, <Pt and S, LP,t71. Let ¢y(y) = dQ,/dP; ¢t~ and let N, be a P, ¢t~ -null
set such that S,(Y) = S, (Y N N,) for every measurable set Y.

We now have a decomposition of P, ¢,
Pt71=(Q,t71+0Q,)+S,
in which Q,¢t74+Q,<P;¢t7! and S, L P t7%, so that

-1
$0) = {%@»+¢4w 2$ .2;

It follows that

ECHON = [ Clhrdddri+s %, lim S8
d(Y) <o

Now it is easily proved from the convexity of C that

C($1+d) < C(dp+ ¢a ¢11_>n:° {C(d)/¢}-

Hence

scgonls [ c@yanit+| L(M B0V AR+, | lim %"’)

d(Y) <o
_ C($)
= 1 1
L(wm C(p)dP t1+ { fm) de+Sy(N,,)} im ¢

- [ . ORI+ RN lim S
Jow <o o b
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Finally, by applying the argument given at the beginning of this Section to the
measure Q, (which is absolutely continuous with respect to P,) we have

f ) dPIt—lsf CLH))dP,
P(y) <o

(x) <o

and this yields the result that

E*[C{(} < E*[C{(x)}].

This establishes in general that coefficients of the form E*{C(¢4)} enjoy the second
property.

4.3. Third Property

When P, = P,, E*{C(¢)} = C(1), since then ¢ = 1. Now whether or not P, = P,,
if we consider the trivial mapping ¢, which maps & onto a single point, so that
P, t71 and P, ¢~ coincide, we have from the result proved in 4.2 the fact that

E*C()}=>C(1).

Hence E*{C(¢)} takes its minimum value when P, = P,.
If P, 1 P, then ¢ =0 a.e. P, and there is a P;-null set N, such that

Py(X) = P2(Xan) and  Py(N,) = 1,
so that

E*C($)} = C(0)+ q}lgr; {C($)/4}.

Now for ¢>0, C($)<C(0)+¢lim, ., {C(¢)/¢}, and from this it follows easily
from the definition that in general

EXC(P}< CO)+ ¢1er; {C(@)/¢}-

Thus we have demonstrated that coefficients of the form E*{C(¢)} have the
third property.

4.4. Fourth Property
The fourth property is concerned with a one-parameter family of equivalent
distributions on the line whose densities py(x), 0€Q, relative to a fixed measure p,
have monotone likelihood-ratio in x. To show that the type of coefficient which we
are discussing has the fourth property we have to show that, if 6, < 6, < 6,, then

E*{C($o)} < E*{C($9)},

where ¢,(x) = po,(X)/pe(x), i= 2,3, and E* denotes generalized expectation relative
to the distribution corresponding to 6,. Because the distributions concerned are
equivalent (we have made this restriction only to avoid somewhat irrelevant detail),
E* reduces in this case to the ordinary expectation operator E,.

Suppose that the family of distributions has monotone non-decreasing likelihood-
ratio. Then ¢y(x) and ¢4(x) are non-decreasing functions of x and so also is the
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ratio Py(x)/Pe(x) = pe,(x)/ps(x). The fact that the ratio is non-decreasing implies
that either
(i) ¢s(x) <o), for all x,

(i) Pg(x)> po(x), for all x, or

(iii) there exists a number a such that ¢g(x) <Py(x) for x<a and ¢g(x) > dy(x)
for x>a.

Then, since E,(¢3) = E1(¢s) = 1, neither (i) nor (i) is possible and therefore (iii)
holds. Now it follows from the monotonicity of ¢, and ¢, that if b < ¢y(a),

{x: $o(x) <B} = {x: hy(x) < b},
{x: $o(x) <B}={x: $y(x) <}

Hence, if F, and F; are the distribution functions of ¢, and ¢, respectively (the dis-
tributions of these random variables being determined by P,), these distribution
functions “cross once” in the sense that

Fy($)<Fy(¢) for ¢<dy(a)
Fy($)=>Fy($) for ¢>gy(a).

Since E;(¢,) = E,(¢s), this means that, according to any reasonable interpretation
of dispersion, the P, -dispersion of ¢, is no more than that of ¢;, so that one would
anticipate that the expected value of any continuous convex function of ¢, would be
no more than the corresponding expected value for ¢, This is in fact true and the
essence of a proof is contained in two results proved by Ali and Silvey (1965). The
first of these results (Lemma 3) shows that the “crossing-once” of the distribution
functions and the fact that E,(¢,) = E,(¢3) imply that, for every £k,

El(l¢2-kl)<E1(]¢3—k[)’

and the second (Theorem 1 of the paper referred to) shows that this in turn implies
that, for any continuous convex function C on (0, c0),

E{C($)} S E{C(¢3)}.

The argument for the case of monotone non-increasing likelihood-ratio is obviously
similar.

while if 5> ¢y(a),

and

4.5. A Summarizing Theorem

We have now shown that any coefficient of the form E*{C(¢)}, where C is a
continuous convex function on the positive real numbers, has the four properties
demanded in Section 2. It is obvious that if fis an increasing real function of a real
variable then a coefficient of the form f[E*{C(¢)}] also will have these properties.
So we can state the following theorem.

Theorem 2. Let C be a continuous convex function on (0,c0) and let f be an
increasing real-valued function of a real variable. Then if P, and P, are two probability
distributions on the same sample space and ¢(P,, P,) is the generalized Radon-
Nikodym derivative of P, with respect to P,, the coefficient

d(Py, Py) = fTE*{C($)}]

is a possible measure of divergence of P, from P, in the sense that it enjoys the four
properties demanded in Section 2.
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It remains to remark that some coefficients of the form indicated will be trivial
and so not very useful in practice: for instance, this will be the case if C is a linear
function. But it is clear that the class of coefficients of this form is quite large and
contains many non-trivial coefficients also. We shall now see that it contains several
more or less well-known coefficients.

5. VARIOUS SUGGESTED MEASURES OF DIVERGENCE

Adhikari and Joshi (1956) have discussed, in considerable detail, the properties of
various measures of divergence having different interpretations depending on their
purpose. We shall now show that most of these can be expressed in the form
SIE*{C($)}]. In what follows p, and p, will be the density functions of P, and P,
with respect to a measure A such that P,< A, i = 1,2; such a A always exists.

) E*{(¢—1)log¢}.

This is Jeffreys’ measure of divergence
1,2) = |(py—py)log22an
J(1,2) = |(p. P1)°gp .
1

(i) E*(—log¢d) and E*(dlogd).

These are Kullback’s and Leibler’s measures of discriminatory information I(1,2)
and 1(2, 1) respectively:

I1,2) = fpllogp—l dx,
)2

12,1) = fpzlog& dX.
D1

(iif) FE*($— 1%

This is Kolmogorov’s measure of distance, namely,

3 f(«/m.—«/pl)2 dX.

@iv) {E*(J¢— 13
This is Matusita’s measure of distance.
) 3E*|$-1].
This is Kolmogorov’s measure of “variation distance”,
A
(vi) E¥(—¢th,0<t<1.

This is the basis of Chernoff’s measure of discriminatory information,

—log inf f pipildA.

o<i<1
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It is easily deduced from Theorem 2 that the latter coefficient has all four properties
demanded in Section 3. However, it does not appear that this coefficient can be
expressed in the form f[E*{C(¢$)}], with f increasing and C convex.

(vii) We conclude this Section by a discussion of two coefficients of divergence
arising from the classification problem.

Given a measurement x on an individual which may have come from one of two
populations G, and G, with density functions p,;(x) and p,(x) respectively, it is required
to assign this individual to either G, or G,. A solution of this classification problem
consists in partitioning the sample space & into complementary regions R; and R,
and allocating the individual to G; if x€R;. The region R, is usually chosen to
minimize, in some way, the probability of misclassification. If the distributions of
G, and G, are “far apart”, then the probability of misclassification should be small.
So one might expect to be able to derive coefficients of divergence from probabilities
of misclassification.

We consider first the case where the individual concerned is drawn at random
from a mixed population in which G; and G, are mixed in known proportions
and m,. Then the probability « of misclassification is given by

o=y przdx-l-'rrl prldx.
2

1

If R, is chosen to minimize «, we have, as is well known,

Ry = {x: py/py <my[ms},
and consequently

Ry = {x: py/py>m[ma}.
In this case it is easy to show that

1-—04=7r1+7r2f ((}S—ﬂ)dx
¢>my/my o,

= 3+ 4m E¥|p—my/my|.

Now one might expect the coefficient 1—2« to reflect the distance apart of the
distributions of G; and G, and this is confirmed by the fact that

1-2a= 77'2E*]¢—7r1/772|,

which demonstrates that this coefficient has properties 1-4.

Rao (1952) has discussed this problem in the case where =, and =, are unknown.
If we demand that the probability of misclassification should be minimized subject
to the condition that it be the same for members of G; and G,, then this common
value o* can be expressed in the form

a¥ = f Do dx,
Ry*

where R = {x: ¢ <b}, b being chosen to ensure that

Rp* Ry*

Rao has proposed 1 —a* as a measure of separation of G, from G;.
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There is no doubt that this coefficient does measure the divergence of G, from G;.
However, it does not appear to be expressible in the form which we are discussing.
Of course, it would be over-optimistic to expect that every reasonable measure of
divergence can be expressed in this form. After all, there are measures of the dispersion
of a random variable, such as the quartile deviation, which are not the expectations
of convex functions of it. So even if the problem of measuring divergence were
equivalent to that of measuring the P;-dispersion of ¢ (and this we do not claim), we
still could not expect all coefficients to be of the form f{E*{C(¢)}].

6. THE MULTIVARIATE NORMAL DISTRIBUTION

The normal distribution plays such an important part in multivariate theory
generally, and in discrimination theory in particular, that it seems appropriate to
make one or two remarks in this context about the class of coefficients of divergence
which we are considering.

First, we consider the problem of divergence between two n-dimensional normal
distributions with different mean vectors but the same variance matrix. Let these be
N(p;, 2), i=1,2. Mahalanobis’s generalized distance is o2, where

o = (g — ) 7 (pp — p)-
o is a metric and a generally accepted measure of distance between the two
distributions.
Now every coefficient in the class we are considering is an increasing function of w.
This is easily demonstrated by considering the transformation

y=x—p) T (po— )/

and so reducing the problem to that of the divergence of a N(«, 1) distribution from
a N(0,1). The family {N(«,1): a>0} of distributions of y has monotonic increasing
likelihood-ratio in y and it follows from Theorem 2 that if f is increasing and C
convex then f[E*{C(¢$)}] is an increasing function of .

Next, we consider two n-dimensional normal distributions with the same mean
but different variance matrices. Suppose that these are N(,Z,), i = 1,2. By making
a suitable standard linear transformation, i.e. essentially by renaming the vectors
involved, we can reduce the problem of the divergence between these two to that of
the problem of the divergence of N(0,4) from N(0,I). Here I is the unit matrix of
order n and A is diag {A;, Ay, ..., A,;}, the X’s being the roots of |Z,— AZ,;|= 0.

Now the closer to unity are the A’s the nearer is N(0,A) to N(0,I), according to
any reasonable interpretation of the proximity of two distributions. So in view of
the several results which we have obtained we might anticipate that if ¢(x) is the
ratio p(x,A)/p(x,I) of the N(0,A) and N(0,I) densities and E is the expectation
operator relative to N(0,I), then E{C(¢)} will be an increasing function of each
|1—X;|, when C is convex. This is indeed the case and it can be proved as follows.

We note that

$®) =i£ Pxs )

where (-, A) is the ratio of the densities of a N(0, A) and a N(0, 1) distribution. Now
P¥(», A) is a non-decreasing (non-increasing) function of y for A>1 (A<1). It follows
by the kind of argument used in Section 4.4 that E{C(i})} is a non-decreasing function
of [1—A| and that in particular E|s—k| has this property for every positive k.
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From this we can deduce, by using another result of Ali and Silvey (1965, Lemma 4
and subsequently) that E{C(¢)} is a non-decreasing function of each |1— X, as
anticipated.

These particular results on the normal distribution add a little more weight to
the already strong case for the thesis that the problem of measuring the divergence
of P, from P, is closely related to that of measuring the P,-dispersion of ¢, a thesis
which provides a unifying principle underlying many of the numerous coefficients
of divergence suggested in the literature.

Note added in proof. It has been brought to the notice of the authors that the result
established in Section 4.2 has been proved (Theorem 1, Cor. 3) in the following paper:
CsISZAR, 1. (1963). “Eine informationstheoretische Ungleichung und ihre Anwendung auf

den Beweis der Ergodizitit von Markoffschen Ketten, Publ. Math. Inst. Hung. Acad.

Sec., 3, 85-107.
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