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Measuring information beyond communication theorymWhy some 
generalized information measures may be useful, others not 

J. ACZ~L 

Summary (and Keywords). Non-communication models for information theory: games and experiments. 
Measures of uncertainty and information: entropies, divergences, information improvements. 

Some useful properties of information measures, symmetry, bounds, behaviour under composition, 
branching, conditional measures, sources. R6nyi measures, measures of higher degree. 

Promising and not so promising generalizations. Measures which depend not just upon the probabilities 
but (also) upon the subject matters. 

1. The usual model for information theory in communication theory consists of 
messages, their frequencies (or frequencies of errors in their transmission), coding, 
and the entropy as lower bound of the average codeword length. While this is where 
information theory came from, as it happens, this is not a very universal model and 
its use beyond information theory is limited. Questionnaire theory is rather close to 
this model but I will not deal with that theory here. 

A connection exists with a very flexible model, that of logical games like "twenty 
questions" and "counterfeit coins". Indeed the "twenty (or n) questions" or "binary 
search" can be made into a highly effective tool, similar to urn model in probability 
theory. The yes (1) or no (0) answers may be considered as coding symbols and the 
string of l 's (yes) and O's (no) as determining the searched object by its codeword. 
Similarly, whether the left (2) or right (1) beam of the beam-balance used for finding 
a counterfeit coin is lighter or they are equal (0) furnishes the symbols, and their 
sequence the codeword of that coin. 

I think, however, that the most convenient model for our purposes is that of an 
experiment with possible outcomes (events) El,  E2 . . . . .  E, which have probabilities 

n 

Pl, P2 . . . . .  pn(~pk = 1). Traditionally the Shannon entropy [40, 9-1 
n 

n~(pl  . . . . .  p,)  = - ~ . p ~  log pk (1) 
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(usually log = log2) measures the amount of uncertainty in the outcome of the 
experiment--and also of the information expected from this experience (for short, 
uncertainty and expected information). 

2. This interpretation is explained by properties of the expression (1) [9]. For 

,nstan e, ,is=,oa,,:,o n,w.on.  . . . . .  (__!), t at is, 
probabilities are equal, as can be expected of a measure of uncertainty. (The redundancy 

H. 
of first order is thus nonnegative: 1 - -  ~ 0.) More trivially, H.  is nonnegative 

log n 
(thus bounded on both sides). It is also symmetric (it does not depend upon the order 
of labelling the events). 

More interesting are the properties describing the behaviour-of this measure under 
composition, that is, when two (or more) experiments are performed: 

H,..[p(E,, F,) . . . . .  p(E,, F,) . . . . .  p(Em, F1), . . . ,  p(Em, F,)] < 

H,.[p(E,) . . . . .  p(E,.)] + H.[p(Vl) . . . . .  p(V.)] 

which is called subadditivity with equality (additivity) when the two experiments are 
independent, that is when p(Ei, F j) = p(E~)p(Fi) (i = 1 . . . . .  m; j = 1 . . . . .  n). Here p(Ei), 
p(Fj) andp(E i, F j) are the probabilities of the outcome of E~ in the first experiment, 
of Fj in the second, or of the outcome E~ in the first and Fj in the second experiment, 
respectively. The subadditivity and additivity can be written shorter as 

H(PQ) < H(P) + H(Q) (2) 

and 

H(PQ) = H(P) + H(Q) when P and Q are independent. (3) 

They state that the information expected from two experiments is not more than the 
sum of the amounts of information expected from the individual experiments and 
equal to this sum if the two experiments are independent. 

In analogy to the definition of the conditional probability p(F/E) by 
p(E, F) = p(E)p(F/E), the conditional entropy H(Q/P) can be defined by 

H(PQ) = H(P) + H(Q/P). (4) 

In view of this, (2) and (3) can be written as 
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H (Q/P) < H (Q) (5) 

and 

H(Q/P) = H(Q) if P and Q are independent, (6) 

respectively, again conforming to our intuitive expectations of what conditional 
uncertainty should mean. Thus the mutual information I(P, Q) = H(Q) - H(Q/P) = 
H(P) + H(Q) - H(PQ) is nonnegative (0 if P and Q are independent). The channel 
capacity is the maximum of the mutual information between the input and the output 
(on all possible inputs considered). 

For Shannon entropies, the relatively simple formula 

H(Q/P) = ~ p(E,)H,[p(F1/E,) . . . . .  p(F,/E,) ] (7) 
i = l  

holds. Also, for these conditional entropies we have the following generalization of (2): 

H(PQ/R ) < H(P/R) + H(Q/R). (8)~ 

(In view of (6), this reduces to (2) if R is independent of P and Q.) By (4) we can write 
(8) a s  

H(PQR) + n ( g )  < H(PR) + H(QR). (9) 

Again by (4), this can also be written as 

H(P/QR) < H(P/R), (10) 

which is a generalization of (5). For Shannon entropies we also have 

H(P/P,P2 ... P,) < H(P/P,P2 ... Pr- , )  

as a further generalization of (5) and (10).--The conditional entropies are also 
nonnegative. These equations and inequalities make the definition of the source entropy 
a s  

H (oo) = lim H(P')/r = lim H(P/P' -1)  
r ~ o o  r ~ o o  

possible (and the existence and equality of the two limits valid). For our model this 
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means that the averaoe information expected from r repetitions of an experiment and 
the conditional uncertainty in the result of the r-th repetition have limits and they are 
equal. These conditional uncertainties decrease with increasing r and are not greater 
than the unconditional uncertainty in the original experiment and thus than log n. 
So the redundancy (of infinite order) is also nonnegative: 

n {o0) 
i - - - > _ _ o .  

log n 

The definition (I) of the Shannon entropy makes no sense if zero probabilities 
n 

(pk = 0 for one or more k, but not for all k, because ~pk = 1) are permissible. But it 

can be made meaningful in these cases too, if the convention 

0 log 0 = 0 (11) 

is adopted. Then the expansibility 

H.+I(pI ..... p., O) = H.(pI, ..., p.) (12) 

holds too, stating that the uncertainty does not change when we add to the possible 
outcomes of the experiment one with probability 0. This sounds pretty intuitive too, 
though not for all applications (for instance not in economics, where (1) is interpreted 
as measure of equality, Pk being there the relative wealth or income, etc. of the k-th 
group, cf. [43]). Anyway, the expansibility (12) and (4) with (7) imply 

H,+l(plql, plq2, P2, . . . ,  P~) = Hn(pl, p2 . . . . .  Pn) + plH2(ql, q2) (13) 

n 
(Zpk = 1 = ql + q2). This is the recursivity (or branching property; the latter name, 

however, has been used recently for somewhat more general properties, see below), 
because it completely determines H.  recursively for all n >__ 2 if H2 is known, It 
describes what happens to the uncertainty if one possible outcome of the experiment 
is split into two and so makes intuitive sense also without (12), (7) and (4). 

3. Already a few of these properties are sufficient to characterize the Shannon 
entropy. For instance [11, 91 only 

/I 

a log #(Pk # 0) + b~.p~ log pk (a ~_ 0 >_- b) 
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is symmetric, subadditive (2), additive (3) and expansible (12). In the second term the 
convention (11) is used and it is, of course, a constant multiple of the Shannon 
entropy. The first term is (a constant multiple of) the so called Hartley entropy, the 
logarithm of the number of nonzero probabilities. However if, instead of (2), we 
suppose (8) or, equivalently, (9) [or (10)-I then, as B. Forte has recently observed, 
a = 0 and we have characterized the Shannon entropies (up to a nonnegative multi- 
plicative constant; we can get rid of it if we use the normalizing condition H2(!, !) = 1, 
for example). 

On the other hand 1-20, 23, 35-1, constant multiples of the Shannon entropy are 
the only bounded symmetric and recursive (13) entropies. Contrary to the first, this 
characterization works [13] also if zero probabilities are excluded, which may be 
desirable in view of our above observation on applications in economics (and of the 
generalizations to follow). The boundedness condition here may be supposed only 
for H 2, only on a (small) interval (or even only on a set of positive measure, but his, 
in my opinion, is only of theoretical interest) or replaced [9] by 

lim H2(1  --  q, q) = 0 (14) 
q ~ O +  

This last property is intuitive again: It states that, for experiments with two possible 
results, if one is very probable, the ~ther very improbable, then the uncertainty in 
the outcome of the experiments is small. The properties (14), (2), (3), (12) and symmetry 
give another characterization of nonnegative multiples of the Shannon entropy. 

A further characterization comes from forecasting theory. The probabilities 
pl . . . .  , p, of the events E1 . . . . .  E~ (the objects of the forecasts, weather, market 
situations - -  or the outcomes of an experiment) are estimated by a forecaster as 
ql . . . . .  q,,. A p a y o f f f ( q k )  is paid to the forecaster if Ek happens. The question "how 
to keep the forecaster honest?" is answered by choosing the payoff function so that 
the forecaster's expected gain is maximal when qk = pk, that is, 

n n 

Z P k f ( q k )  <= ZPkf(Pk)" (15) 

If (15) is supposed for all n or even for one n > 2, then 124, 9] f ( q )  = a logq + b 
(a > 0) is obtained without regularity conditions o n f a n d  without 0-probabilities, so 
the maximal expected gain is 

~_,Pkf(ph) = a Ph log pk + b, 
k = l  
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containing the Shannon entropy. Conversely, thef(q)'s just obtained satisfy (15). This 
is a consequence of the well known nonnegativity of the directed divergence, 

1 P k  
pklog~k k (16) 

n n 

(~pk = Zqk  = 1), another important measure of information (this containing two 

rather than one probability distribution, it has applications a.o. in statistics), which 
is thus characterized by (15) [9]. Obvious further generalizations of (16) have been 
abundantly treated. It seems that Theirs [43] information improvement (containing 
three probability distributions and introduced for the purpose of applications in 
economics) 

. r k  pklog-- (17) qk 

n n n 

(~.Pk = ~.q* = ~rk = 1)is the last where we can hope for genuine applications. 

These measures have also been characterized. Here the problem of some q~ = 0 
(or rk = 0) is not so easily eliminated as in (1) by (11). So rather complicated pre- 
scriptions were attached, also to the characterizations, like the requirement that 
qko = 0 (or rko = 0 )  should imply Pko = 0. (Several "characterizations" where these 
restrictions were missing, were simply incorrect.) Fortunately, again, a characterization 
by an analogue of the recursivity (13) with several probability distributions, all 
containing positive probabilities only, has been found recently [13] which frees us 

n 

from such restrictions. Actually one characterizes e.g. ~ pk(a log Pk + b log qk + C log rk) 

and then specializes it to, say, (17) by normalizing conditions. 

4. What is the use of such characterization theorems? They list the properties (in 
a "good" theorem this list is short and the properties are simple and intuitive) which 
have to be checked for a quantity which occurs in a newfield of applications in order 
to notice that it is really the Shannon entropy (or a similar measure depending upon 
more than one probability distributions). 

On the other hand, other, more flexible measures may be needed in these new 
fields (or in the old ones). Since the above conditions do characterize the Shannon 
entropy, other entropies cannot have all these properties. Some have to be dropped 
or modified. The recursivity (13) rather suggests the generalization 

H.+l(plql ,Plq2,p2 . . . . .  p.) = H.(pl . . . . .  p,) + m(pl)H2(ql,q2) (n = 2,3 . . . .  ). (18) 
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How should we choose the function m? If the similar equat ion 

H,+ 2(Plql, Plq2, Plq3. P2 . . . . .  P,) = H,(Pl . . . . .  P,) + rn(pl)H3(ql, q2, q 3 )  (n  = 2, 3, ...) 

is also supposed, then, as can be easily proved, m has to be muhiplicative 
(m(pq) = m(p)m(q)). In this case (18) is completely solved, again also for several 
probabili ty distributions containing only positive probabilities [13]. 

Practically, only the cases where m is not  identically 0 and somewhat  regular (say, 
measurable) seem to be applicable. Then m(p) = p" and our  measures are of  degree a. 
In this case, if a # 1, the general symmetric solution of (18) is, interestingly without  
any boundedness or other  regularity suppositions, 

H,(p l ,  P2 . . . . .  pn) = c p ~ -  1 (19) 

the entropy o f  degree a [29, 18, 9]. If there are several (s) probabil i ty distributions, then 

the pk are (s-dimensional) vectors (with ~ pk~ = 1 f o r j  = 1 . . . . . .  s) and in (19) 
k = l  

P~ (Pkl, Pk~) ~"~ ...... J~ ~I "~ = • " • ,  = Pkj" 
i = 1  

In the one-dimensional  (one probabili ty distribution) case (and also in some 
components  of more  dimensional vectors) the result (19) can be extended by the 
convention 0" = 0 (even if a < 0). - -  If s = 1, a > 1 (and c =< 0 so that  H ,  > 0), then the 
entropies of degree a are subadditive (2), but in general not  additive (3).--If  we 
normalize (19) (just as the Shannon entropy), by H"2(!,1 !) = 1 then c = (21 -"  - I ) -  1 
and (s = 1) 

a H,(p l  . . . . .  p,) = (21-" - 1) -1 p~ - 1 (20) 

and the limit of this, as a ~ 1, is the Shannon ent ropy (1) (which, as we have seen, is 
subadditive too but  also additive). This limit relation, the subadditivity of H a for 
a > I and applications [29, 21, 22], for instance to pat tern recognition, seem to indicate 
that entropies of degree a > 1 (and other, similar, multidimensional information 
measures) could have fruitful applications elsewhere too. The lack of additivity may  
be compensated by the flexibility assured by the possibility of choosing the parameter  
a according to the special characteristics of the specific problem. 

5. There  are o ther  characterizations of the Shannon ent ropy and of similar 
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measures based on the formal shape of the expressions (I), (16), (17), etc. combined 
with additivity (or with a generalized additivity). 

n 
For instance, both (I) and (19) (written as ~c(p~ - pk)) are of the sum-form 

n 
n.(pl . . . . .  p.) = Y , ~ ( p ~ ) .  (21) 

This may seem to be a rather superficial property, but a consequence of 1,37] (cf. 19]) 
shows that (21) follows from the symmetry, expansibility (12) of H,  and from the 
"ultimate generalization" of (13) and (18), the branching property 

H,,(pl, p2, P3 . . . . .  p.) = H . -  l(pl + P2, P3 . . . .  , P,,) + J,,(Pl, P2), 

or, if no expansibility is supposed (for instance when 0 probabilities are excluded), 
from the "penultimate generalization" 

ll.(pl, p2, P3 ..... p.) = Hn- I(pl + p2, p3 .... , p.) + J(P1, p2) (n = 3, 4 .... ). 

(In order to see that these are indeed generalizations of (18) and thus also of (13), 
write (18) in the form 

Hn+ 1(ffl, if2, P3 ..... Pn+l) = H.(/~I +/~2, P3, "'-,/~.+ I) 

-{- m(Pl q- ff2)H2( ~ if--J1 , 02 ) 
~Pl "Jr'if2 ffl~ff2 ' 

where Pl = pxql, P2 = p l q 2 ,  and/~j = pj- x for j = 3, 4 . . . . .  n + 1). 
If H,  is additive and of the form (21) with some mildly regular (measurable) q~, 

then it is a constant multiple of the Shannon entropy (1) 1-19, 9]. (Even additivity 
can be weakened by supposing it only for particular m, n.) 

How does (19) fit into all this? It is of the form (21) but not additive. Instead, it 
satisfies 

H(PQ) = H(P) + H(Q) + ~H(P)H(Q) if P and Q are independent. (22) 

This and (21) with measurable q~ again characterize the entropies (19). There are also 
similar theorems for measures depending upon several probability distributions (see 
e.g. [30]). The property (22) is simple enough and reduces to (3) ifc ~ oo (in accordance 
with c = (21 -° - I)- 1 ~ ov as a ~ 1) but I see no natural interpretation. New measures 
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of information, based on further generalizations of (21) and (22) seem even less natural 
and/or applicable to me. 

6. Another way of looking at the Shannon entropy (1) is to notice that it is the 
n 

arithmetic mean of the ( -  log Pk), weighted by the probabilities Pk (notice that ~ Pk = 1). 

good case was made by R6nyi [38] that the ( - l o g  pk) here is the information yielded by 
the event Ek with probability pk (here again it is of advantage to exclude 0 probabilities), 
which indeed makes (1) the expected information. It was further proposed in [38, 39"1 
to consider also other quasiarithmetic means of these ( - l o g  pk), thus defining 

,) *H,(Pl, .. ., P,) = ~b -1 k~b(--lOgpk 

where $: ]0, oo[ ~ R is continuous and strictly increasing. If*H is of this form, additive, 

and satisfies lim *H2(1-q ,  q )=  0 (cf. (14)), then [17, 7, 9] either *H, is the 
q ~ O +  

Shannon entropy or the R6nyi entropy of order a > 0 (a # 1) 

n 

~H.(pl . . . . .  p.) = 7-~log~p~, .  
l - - a  - -  

(23) 

In fact, ~H, is additive even for negative a. Here too, both the entropy and its charac- 
terization can be extended to 0-probabilities. Also, just as for (20), the limit of (23) 
as a--* 1 is again the Shannon entropy. Moreover, the limit of (23) as a--*0 is the 
Hartley entropy log #(pk # 0). These limit relations, the additivity, applications to 
"random search" problems [39] and rather similar relations to other mean codeword 
lengths as those of the Shannon entropy to the arithmetic mean codeword length 
1-14, 15, 1, 9] make also the R6nyi entropies good candidates for a wide range of 
applications. 

Again, also measures of order a, depending upon more than one probability 
distribution can be defined. For instance, the analogue of (16) is the directed divergence 
of order a 

- 1 l og~  a - -  P k  aq~ - ~ (24) 

which converges to (16) as a ~ 1. For a characterization of (24) and (16), similar to 
that of all, above, see [38]. 

There is also a connection between (24) and (15) [25, 9]: For positive f, 
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f(Pk) pkf(-~) =< 1 (25) 

if, and only if, f(q) = cq a- 1 with c > 0, 0 < a _< 1. This f indeed satisfies (25): trivially 

q k = l =  pk f o r a = O ,  l a n d  

p a - -  1 

ZPk~kk--~if < 1 if 0 < a < 1 

by H61der's inequality. This exactly expresses that the directed divergence of order a 
(24) is nonnegative for 0 < a < 1. This is true also for a > 1 because, again by the 
H61der inequality, 

n r t a - -  l 
pkq~q- > 1 if a >  1. 

See [26] for the corresponding counterpart of the inequality (25), viz. 

~ m  f (p ' )  >-- 1. 
- ' f (q , )  - 

In all these results zero probabilities can and should be excluded. 

7. There is a large number of "entropies" and other "information measures" and 
their "characterizations", mostly formal generalizations of (1), (19), (16), (24), (17), (23) 
etc. popping up almost daily in the literature. It may be reassuring to know that 
most are and will in all probability be completely useless. Just possibly the following 
(and the respective measures depending upon more than one probability distribution) 
may be exceptions. The entropies of order (a, b) [8, 33]: 

- a l o g  a b b Pk Pk (b # a), 
n n 

-- Z P~ log Pk/Z P~ (for b = a), 

those of degree (a, b) [42]: 

n n 
(2 * - ~ -  2~-b)- ~ ~(p~,-- p~) (b # a), --2~-X~p~,lOgpk (for b = a) 
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and those of order a and rank b (see 1-41, 44], also for "characterizations" by (22) and 
n n 

by a generalized quasiarithmeticity H(pl . . . .  p.) = ~,-1 [ ~ ( p k ) ~ ' ( -  lOgPk)/~dP(pk)'! ): 

n 

H(p,  . . . . .  p.; a, b) = (2 (~-a~b - 1)- l((~p~) b - 1) (a :/: 1, b :/: 0). 

The first two seem interesting because they are so natural generalizations of (23) 
n n n 

aH = ~ _ a l O g ( ~ p ~ / ~ p k )  or of (20) H " =  (2 ~ - a -  1 ) - t~ (p~-pk) ,  respectively, the 

third because it contains as special or limiting cases both the entropies of degree a and 
of order a (just one such relation would not justify the introduction of a new measure): 

H(pl  . . . . .  p.; a, 1) = Ha(p1 . . . . .  p.) and l imH(pl  . . . . .  p.; a, b) = aH(p~ . . . . .  p.). 
b ~ 0  

The Shannon entropy is also directly a limiting case (not just through aH and Ha): 

n 

l imH(pl  . . . . .  p.; a, b) = --~pklOgpk. 
a ~ l  

I wish to urge here caution with regard to generalizations in general, and in 
particular with regard to those introduced through characterizations. In the best of 
all possible worlds, there is an information measure, which originated from an applied 
problem, it has interesting properties (usually attractive, reasonable generalizations 
of properties of Shannon's entropy or of similar widely used measures), and these 
properties characterize it. Less ideal, but still acceptable in my opinion, is the following 
situation. Some natural looking weakening or generalization of the properties 
characterizing Shannon-type measures are isolated and all measures having these 
properties are determined. If the properties are indeed intuitive and significant then 
there is a good chance that the measures thus obtained may have future applications. 
But what many authors seem to do is to contrive some generalization of known 
information measures (usually by sticking in more parameters almost at random here 
or there), derive its often not very interesting or natural and also often not very 
attractive properties and then characterize, by several of these properties, the 
"measures" which they have defined in the first place. Not many good or useful 
results can be expected from this kind of activity. 

A generalization of (16), which does seem fruitful is the f-divergence ~ q k f  

introduced and characterized by Csisz~ir [16], wheref is  an arbitrary convex function 
(in (16),f(x) = x log x). 
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$. There are, however, generalizations in a completely different vein. One is the 
"theory of information without probability" (see e.g. [27]). It is based on the observation 
that some events furnish information even though they have no probabilities, because 
they cannot be repeated. Part of this is connected to the outdated or at least partisan 
view that probabilities are "limits" of frequencies (in a certain sense, difficult to define 
since late large variations are always possible), so only such events can have 
probabilities which can be repeated infinitely often (or at least as often as we want 
to). But this would be analogous to calling only such lengths, temperatures, etc. 
measurable which can be measured arbitrarily often. 

Since Kolmogorov's fundamental work [34] in the 1930's, it is more or less 
accepted that probability is what satisfies certain conditions (axioms). According to 
our above definition of I = - l o g  p as the information yields by the event E, if it 
has a probability p, we can conversely define 2-* as the (generalized) probability of E 
if I is given. But the main objection against that theory seems to be that it does not 
lead far enough (which, on the other hand, could be construed also as an incentive 
to work on it harder). We will not deal here further with that subject, rather we give 
some details on another generalization of the probabilistic theory of information, the 
"mixed theory". 

In the mixed theory of information, the measures of information are permitted to 
depend both on the events (messages, outcomes of an experiment, weather, market 
situations, etc.) themselves and on their probabilities (or similar parameters). For this 
we have to grasp mathematically the concept of an "event". It seems that they can 
be considered adequately as elements of a ring of sets, really of subsets of a compre- 
hensive set (universe) S which contains, with any two subsets, also their union (u) 
and difference (\), therefore also their intersection (m) and the 0 (empty) set. If also 
S belongs to the ring then it is Boolean. So we are dealing now with (real valued) 
measures 

E2 . . . . .  En (E l r~Ek=(J i f jCk ,  pk>O,~.pk=l)"  
Hn p2 . . . . .  P, J = 

(Again, we may have also further sets of probabilities but those should be positive, 
at least when the corresponding p is.) By symmetry we mean here that the value of 

H, d o e s n o t c h a n g e i f t w o c o l u m n s ( E ~ ) a n d ( E k ) a r e e x c h a n g e d .  Theanalogue 
of the recursivity (13) is here pj pk 

H,+I Exc~FI, E lnF2 ,  E2 . . . .  , =Hn +plH2 
( plql, ptq2, p2 . . . . .  ( Pl, p2 . . . . .  P, ) ( ql, q2 )~ .  

n ! 
( E S ~ E k = O i f j ~ k ,  F l n F a # O ,  pk~_O,q,~O, q2~_O,~,pk= l = q l + q 2 ) .  .J  

(26) 
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Again one may ask for the general form of symmetric measures satisfying (26) 
and, say, continuous in the probabilities. This has been proved [10, 5-1 to be 

where a is an arbitrary constant and 0 an arbitrary real valued function on the ring 
n 

of sets. Note that it is not supposed here that UEk = S (S may not even be in the 
n 

ring of sets considered). If we have Boolean rings (thus containing S) and UEk = S 
then, with h(E) = #(E) - 0(S), (27) goes over into 

n II  

aEpdogpk + Ep~h(e~). (28) 

(For the characterization of similar quantities depending upon several probability 
distributions, see [31, 32].) 

The quantities (27) and (28), consisting of Shannon's entropy plus additional terms 
depending upon events, are called inset entropies of the Shannon type. (Inset may be 
understood in its dictionary meaning "a map set into a map" or as "in set", but really 
the name was chosen because the idea was born at a meeting at the l~cole Normale 
Sup6rieure de rEnseignment Technique - -  ENSET - -  near Paris.) 

9. There are applications of these measures in information theory and elsewhere. 
Traditionally 

- f~ f (x ) log  f (x )dx  (29) 

is considered to be the "continuous analogue" of (1) for a random variable with 
probability density function f. Contrary to what one may think, however, the sums 
approximating (29) 

n 

-- ~f(~k)log f(~k)(Xk -- Xk- 1) (30) 

(a = Xo < ~1 < xl  ~ ~2 < . . .  < ~, ~ x, = b) are not Shannon entropies of the form (1) 
but they are inset entropies of the form (28). We see this by realizing that l',,re 
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(l standing for length) so that (30) goes over into 

n I n --~Pk ogPk + ~pklogl(Ek) 

AEQ. MATH. 

(31) 

which is indeed of the form (28) I-4]. 
However, contrary to (1), the quantity (29) and therefore also (31) may be negative. 

(That is one reason why (29) is not a very good analogue of the Shannon entropy 
(1) and also why in characterizations of the above inset entropies we have used 
continuity rather than boundedness--we certainly could not have used nonnegativity.) 
On the other hand, i fn = 1 and E = ]a, b], then pl = 1 and (31) reduces to log l(E). 
This corresponds to the case where we know that the value of the random 
variable falls into ]a, b] but don't know its probability distribution. Since 

0 ]a, b] = U]Xk-1, xk] = Ek, the decrease of uncertainty between this ignorant 
k = l  

state described by (31), where we know the probabilities, is 

log//[~lEk] " 1 " 
/ N 

-- ~,pk ogl(Ek) + •pklOgpk, (32) 

an inset entropy of the form (27) (this happens to be also nonnegative) [4]. 

Also the qk = l(Ek)/l Ek can, of course, be considered (geometric) probabilities, 

r .  1 pk. so (32) may be written as 2.,Pk o g ~ ,  the quantity (16), which we have encountered 

before and called directed divergence. Conversely, since in inset entropies the 
dependence upon the events can appear as dependence upon parameters determined 
by the events, all directed divergences, information improvements, etc. may be 
considered inset entropies. 

There have been recent efforts to take, in addition to the probabilities, also the 
"usefulness" of events (again of weather, of market situations, etc.) into consideration 
[28]. In view of the above it would seem worthwhile to look at these "measures of 
useful information" as inset measures and thus develop an appropriate theory. 

For a more playful application, to the theory of gambling, Meginnis [36] considers 
the second term in (28) the expected gain (Ek being the k-th outcome of the game 
which has a gain in the amount h(Ek) attached to it). So this time it is the first term 
which has to be explained. Since the expected gain alone would not motivate gambling 
(it is almost always nonpositive), he interprets the first term as quantifying the joy 
in gambling. He too derives (28) from requirements fairly natural for this application. 

Also inset measure of degree a can be characterized by analogues (of symmetry 
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and) of the recursivity (18) with re(p) = pa ([12, 32] in the one dimensional and 
W. Sander in [45], p. 282, in the multidimensional case). For inset entropies of degree 
a this gives the expression 

1=,,=.,-,(0=.) 
" E  or, if ~ k=S, 

n 

~p~,h(Ek) - c, 

(g, h arbitrary real valued functions on the ring of sets, c an arbitrary constant), which 
are even simpler than (27) and (28). Also the latter has applications to the theory of 
gambling [36]. 

10. Finally, also the forecasting theory application, mentioned above, can be 
naturally generalized to such inset situations. The payoff f(Ek, qk) may very well 
depend upon the k-th event itself, not only on its probability. Then the forecaster's 
expected gain is 

n E ~Pkf(  k, qk) 

and we "keep the forecaster honest" by choosing f so that (cf. (15)) 

" E " ~.Pkf( k, qk) < ~pkf(Ek, pk). (33) 

It has been proved [3] that this happens (for a fixed n > 2) if, and only if, 

f(E, q) = alogq + h(E) 

(a > 0 an arbitrary constant, h an arbitrary real valued function on the ring of events). 
So the right hand side of (33) goes over into 

n n 

a~,pklogpk + ~p~h(Ek), 

again an inset entropy of the form (28). 
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Not all characterizations of the Shannon and other probabilistic measures can 
be easily extended to characterize some inset measures. For instance, the obvious 

n 

generalization of the sum property (21) to H(P) = ~,ck(Ek, Pk) with t# measurable in 

the probabilities and with the additivity similarly generalized from (3) implies that ~b 
does not depend upon the EL and gives essentially only multiples of the purely 
probabilistic Shannon entropy [2]. 

The characterization theory of inset measures of information is also somewhat 
behind the probabilistic theory. Among others, as we have mentioned before, 
0-probabilities have recently been eliminated from much of the characterization theory 
of purely probabilistic information measures. But in the similar theory of inset 
measures, impossible events (empty sets) are vigorously used. While the probabilities 
are separate variables, it seems to be common sense to require that impossible events 
have 0 probabilities. Up to now there are only two results where impossible events 
and 0 probabilities have been completely eliminated. One is the determination by 
B. Ebanks and Gy. Maksa in [45] (pp. 269 and 277) of all one dimensional measures 
(entropies) which satisfy the inset analogue of (18) with re(p) = pa, that is, 

E l  n Ft ,  El  C~ F2, E2 . . . . .  En = H~ + palH 2 
Hn+ 1 Plql,  Plq2, P2, " " ,  Pn {. Pl, P2, " " ,  Pn q2 

(Ek v~ O, F1 ~ ~, F2 ~ ~J, EjC~Ek ~ 0, if J r  ~ k, F l  n F 2  = 0 ,  Pk >0,  ql >0 ,  q2 >0 ,  
n 

~pk = 1 = ql + q2) 

(cf. (26)). The general case (arbitrary multiplicative function m, arbitrary dimensions, 
is still not solved. The other result is the solution of (33) in [3], mentioned above, 
keeping the expert honest with inset reward and without impossible events and zero 
probabilities (but still with some money). Some simple results in [6] have already 
been used and may serve as tools to obtain other inset characterization theorems 
without empty sets. This is still a wide open domain for further research. 

11. In our opinion, exactly the serious applications of information theory to fields 
other than the classical communication theory could make good use of this new, 
mixed theory of information. Indeed, in the classical communication theory the 
contents of messages are usually ignored and only their frequencies, probabilities, etc. 
considered. This makes the probabilistic information theory the right tool there. But 
it seems to us that in many other applications the contents are essential, and so it 
would be worth exploring whether the new theory could be more appropriately and 
efficiently applied there. 
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I did not aim at stating results in their most general form or at completeness in 
any sense (not even in the references). Also the opinions expressed here are subjective 
and some (several?) may turn out to be erroneous. But I hope that I have succeeded 
to give at least an idea of some non-communication applications of information 
theory or possibilities of such applications and also some food for thought concerning 
further work which seems worth doing. 
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