
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 17 Information Theory and Coding
Solutions to Midterm November 9, 2010, SG1 – 13:15-15:00

You have 2 hours. It is not necessarily expected that you finish all problems. Do not
lose too much time on each problem but try to collect as many points as possible.

Closed-book, no calculators, cell-phones; only once piece of A4 paper is
allowed. Write only what is relevant to the question!

Good Luck!!

Name: I. M. Perfect

Prob I 40 / 40
Prob II 40 / 40
Prob III 40 / 40
Prob IV 40/ 40
Total 160 / 160



Problem 1 (Walk the Line). [40 pts] We consider a symmetric random walk on the integers
starting with X0 = 0. At each step with equal probability we either move one to the left
or one to the right.

(i) [10 pts] Note that X2 takes on the values {−2, 0, 2} with probability 1
4
, 1

2
, 1

4
, respec-

tively. This implies that H(X2) = 3
2
.

(ii) [10 pts] No.

(iii) [10 pts] Yes. To show this note that H(Xi | X0, . . . , Xi−1) = H(Xi | Xi−1) since,
given Xi−1 the rv Xi takes on the values Xi−1 ± 1. Since the respective probabilities
are 1

2
it follows that the entropy rate of this process is 1.

(iv) [10 pts] Note that from X0, . . . , Xn one can compute the vector Y1, . . . , Yn. It follows
that H(X0, . . . , Xn)/n ≥ H(Y1, . . . , Yn)/n for any n. But the map is invertible, since
Xi = Yi −Xi−1 and X0 = 0 is known. So the inverse inequality is true as well.
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Problem 2 (Compress That). [40 pts]

(i) [10 pts] We have ρ(X∞1 ) = 0. We show this by showing that ρ(X∞1 ) ≤ δ for any
δ > 0. To see the last statement, build an invertible FSM which ”recognizes” a string
of type ”ab...ab” for a particular length, call it L, and outputs lets say ”0” at the end
of this string and returns to the starting state. Hence this machine will output an
infinite string of ”0” when the input is X∞1 . Further, there is a loop in the starting
state when the input is b. In this case output 11, where the first 1 indicates that it
is not this special path and the second one that it is a b. Finally, from each state of
the chain which recognizes the special string make an edge back to the starting state
in the case the next input is not the correct one. The output for each such edge is an
encoding for the sequence where all odd bits are 1 and even bits are 0 to denote an
”a” and 1 to denote a ”b”. This machine is clearly lossless and has a compressibility
of 1/L for the desired sequence.

(ii) [10 pts] A machine as described above will have ρM(X∞1 ) = 1/4.

(iii) [10 pts] We have ρLZ = 0 since compressibility is non-negative and we know that
the compressibility of LZ is at least as good as that of any FSM, i.e., we know that
ρLZ(X∞1 ) ≤ ρ(X∞1 ).

(iv) [10 pts] The dictionary increases by 1 every time and has size 2 in the beginning.
Hence, if we look at lets say c steps of the algorithm then we need in total

c∑
i=1

dlog(1 + i)e ≤ c log(2(c+ 1))

bits to describe the output.

What are the words which we are using. Note that the parsing is a, b, ab, aba,
ba, bab,... Note that in average at most every second step the length of the used
dictionary word increases by 1, i.e., we have a linear increase in the used dictionary
words. Therefore, if we compute the total length which we have parsed after c steps,
this length increases like the squre of c.

It follows that the ratio of the total number of bits used divided by the total length
described behaves like 1/c, i.e., it tends to 0.
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Problem 3 (Smallest Most Probable Set). (i) Pr(A
(n)
ε ∩B) = Pr(A

(n)
ε )+Pr(B)−Pr(A(n)

ε ∪
B) ≥ 2(1− ε)− 1 = 1− 2ε

(ii) Each xn ∈ A
(n)
ε ∩ B is in particular in A

(n)
ε and therefore by definition of A

(n)
ε , we

have
Pr(A(n)

ε ∩B) =
∑

xn∈A(n)
ε ∩B

p(xn) ≤
∑

xn∈A(n)
ε ∩B

2−n(H−ε)

.

(iii)

1− 2ε ≤
∑

xn∈A(n)
ε ∩B

2−n(H−ε) ≤
∑
xn∈B

2−n(H−ε) = |B|2−n(H−ε).

Therefore |B| ≥ (1− 2ε)2n(H−ε).

(iv) In the previous part, we set B = C
(n)
ε . Then we use the fact that |A(n)

ε | ≥ |C(n)
ε | ≥

(1 − 2ε)2n(H−ε). Now, we take the logarithm of all three parts and we let n goes to
∞. The assertion follows due to the Sandwich property.
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Problem 4 (Data Processing Inequality).

(i)

I(X;Y, Z) = H(Y, Z)−H(Y, Z|X)

= (H(Y ) +H(Z|Y ))− (H(Y |X) +H(Z|X, Y ))

= (H(X)−H(Y |X)) + (H(Z|Y )−H(Z|X, Y ))

= I(X;Z) + I(X;Y |Z).

Interchanging Z and Y in the above, we get I(X;Y, Z) = I(X;Y ) + I(X;Z|Y ).

(ii) The mutual information I(X;Z|Y ) can also be expressed as the Kullback-Leibler
divergence between the conditional joint distribution pX,Z|Y (x, z|y) and the product
of the conditional joint distributions pX|Y (x|y) and pZ|Y (z|y), that is,

I(X;Z|Y ) = D
(
pX,Z|Y (x, z|y)||pX|Y (x|y)pZ|Y (z|y)

)
.

However, the Kullback-Leibler divergence is zero as pX,Z|Y (x, z|y) = pX|Y (x|y)pZ|Y (z|y).

(iii) Using the above two results and the fact that I(X;Y |Z) ≥ 0, we get I(X;Z) ≤
I(X;Y ).

(iv) We have equality if I(X;Y | Z) = 0 which is equivalent to saying that X −−◦ Z −−◦ Y
forms a Markov chain.

The data processing inequality is an important result in information theory that shows
that one cannot get back information that has been degraded. In this case, if X is the
information of interest, and Y is a degraded version of X (for instance Y = X +N , where
N is some noise), then one cannot get any more information about X by processing Y and
obtaining Z (the mutual information I(X;Z)) than from Y itself (the mutual information
I(X;Y )).
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